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ABSTRACT: Antifreeze proteins (AFPs) are of much interest for
their ability to inhibit ice growth at low concentrations. In this
work, we present a genetic algorithm for the in silico design of AFP
mutants with improved antifreeze activity, measured as the
predicted thermal hysteresis at a fixed concentration, ΔTC. Central
to the algorithm is our recently developed neural network method
for predicting ΔTC from molecular simulations [Kozuch et al.,
PNAS, 115, 13252 (2018)]. Applying the algorithm to three
structurally diverse AFPs, wfAFP, rQAE, and RiAFP, we find that
significantly improved mutants are discovered for rQAE and
RiAFP. Testing of the optimized mutants shows an increase in ΔTC
of 0.572 ± 0.11 K (262 ± 50.6%) and 1.33 ± 0.14 K (39.9 ±
4.19%) over the native structures for rQAE and RiAFP,
respectively. Structural analysis of the optimized mutants reveals that the algorithm is able to exploit two pathways for enhancing
the predicted antifreeze activity of the mutants: (1) increasing the local order of surface waters by encouraging the formation of
internal water channels in the protein and (2) increasing the total ice-binding area by improving the planar structure of the ice-
binding surface. Additionally, analysis of all mutants explored by the algorithm reveals that a subset of residues, mainly nonpolar, are
particularly helpful in improving antifreeze activity at the ice-binding surface.

■ INTRODUCTION

Antifreeze proteins (AFPs) are a broad class of proteins that
noncolligatively depress the freezing point of water by binding
to nascent ice crystals. Once bound, the proteins increase the
local curvature of the ice surface, thereby depressing the
freezing point through the Gibbs−Thomson effect.1,2 The
resulting difference between the melting temperature and the
freezing temperature is referred to as thermal hysteresis, ΔT.
AFPs have already been widely used in the food industry,

and they are also being explored for use in cryopreservation,
agriculture, and de-icing.3−7 However, for many applications,
the native antifreeze activity of AFPs is too low for practical
implementation. For example, it was found that transgenic
plants expressing AFPs could withstand temperatures as much
as 3 °C colder than the wild type, but that this was insufficient
for crop protection, which required plants to remain unfrozen
at temperatures of −5 or −6 °C.8 While there are of course
many factors at play in the cold survival of plants, increasing
the antifreeze activity of transgenically expressed AFPs is one
potential route for achieving the necessary cold endurance.
As discussed in our recent paper,9 many methods have been

explored for studying and designing new AFPs. Early
experiments used site-specific mutations to probe which
residues were involved in ice binding by determining which
mutations led to the greatest loss in antifreeze activity.10−12

Later work studied the effect of joining AFPs into dimers,13

resulting in a significant increase in ΔT on a molar basis,
although little to no increase in ΔT was observed on a per-
mass basis (which we suggest for more equal comparisons of
differently sized AFPs). In a similar fashion, Marshall et al.14

increased the ice-binding surface (IBS) of AFPs by extending a
repeating loop structure already present in the native AFP,
demonstrating that these enlarged structures possessed higher
antifreeze activity than the wild type. Fusion constructs have
also been a useful tool in studying AFP behavior15 and have
been used to design increasingly complex antifreeze
particles.16,17 In contrast to earlier work, more recent site-
directed mutagenesis of a highly active insect AFP was used to
produce mutants with higher antifreeze activity than the wild
type by specifically mutating residues that were suspected to
interfere with ice binding.18 In addition to these experimental
techniques, computational methods have also been widely used
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to study AFP behavior2,3,19−23 and identify potential AFPs
from growing genetic and structural databases.24−27 However,
these efforts have, until now, not yet been directed toward the
optimization of AFP antifreeze activity at the atomistic level.
We propose here a general method for optimizing naturally

occurring AFPs in silico using a genetic algorithm (GA) that
successively mutates the protein of interest. Evaluation of the
resulting mutants is performed using our recently developed
technique for predicting protein antifreeze activity from
molecular simulations.9 Details of the GA and corresponding
molecular simulations are provided in the Methods section.
Performance of the GA and discussion of the optimized AFPs
are presented in the Results and Discussion section.

■ METHODS

Genetic Algorithm. In this work, we aim to develop a
strategy for optimizing the antifreeze activity of naturally
occurring antifreeze proteins in silico through the implementa-
tion of a genetic algorithm.28 Fundamental to all genetic
algorithms is the fitness function, f(X), which is used to
evaluate the fitness of each individual in the population, where
X is a vector describing a given individual. For our fitness
function, we employ our recently developed neural network
method for predicting protein antifreeze activity from
molecular simulations.9 In this work, antifreeze activity is
specifically defined as ΔT at a fixed concentration of 0.3 g/L
AFP, referred to as ΔTC.
Briefly, this method relies on the observation that high-

activity antifreeze proteins possess a planar ice-binding surface
(IBS), near which the hydrogen bond lifetime, L, of the
solvating water is longer than elsewhere near the protein. To
quantify this property, an all-atom molecular dynamics
simulation is first performed for the protein of interest. From

this simulation, each solvent-accessible residue, i, is assigned a
mean hydrogen bond lifetime value, Li, calculated from the
nearby solvation water. Our algorithm then automatically
identifies a set of planar residues, S, that form the IBS. S is
selected by maximizing the area of the IBS, A, and the mean Li
for residues in the IBS, LB, while minimizing the mean Li for
residues not in the IBS, LN. The neural network then predicts
ΔTC from A, LB, and LN. The function is positively correlated
with A and LB and negatively correlated with LN. For
simulation details and complete description, see our previous
work.9

Given that our chosen f is expensive to compute (∼24 h on
1 GPU/14CPUs, mainly for the molecular simulation) and the
sequence space is immense, it would be impractical to employ
a standard genetic algorithm. Instead, we choose to implement
a directed and simplified genetic algorithm with targeted
mutation, zero crossover, and elitist selection.29 This design
limits the population of each generation to a manageable
number, but it should be noted that, given more resources or a
less expensive f, the full search space would likely be explored
better with the inclusion of some selective crossovers. The
following describes our algorithm in detail, and a procedure/
schematic is provided in Figure 1.
The algorithm is initialized by first evaluating the native

antifreeze protein of interest (obtained from rcsb.org30) with
the fitness function. This is generation g = 0, and it provides
the score (ΔTC) for the native protein as well as identifying the
native IBS and providing Li for each residue in the IBS. Since
the fitness function is positively correlated with LB, it is logical
to mutate the residue in or adjacent to the IBS with the lowest
Li, referred to as iL

min, since we seek to eliminate low Li on the
IBS and to expand the IBS to encompass nearby residues when
possible. Here, “adjacent to the IBS” is defined as all solvent-
exposed residues with a geometric center within 1 nm of the

Figure 1. (A) Procedure for the genetic algorithm explained in the text. (B) Schematic illustrating how residues are selected for mutation. [G0]:
Generation zero, the native antifreeze protein (large green circle) is evaluated with the fitness function and the residue with the lowest Li (red
square) is mutated to form the next generation (only 5 of the 17 shown for each generation). [G1/G2]: Individuals in the generation (blue circles)
are evaluated and the best-performing individual (dark blue circle) is selected to produce the next generation through the same mutation scheme.
[G3/G4]: None of the mutants in G3 outperform the best mutant in G2, so the algorithm returns to the best mutant in G2 and mutates at the
residue with the second lowest Li (orange square) to produce G4.
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geometric center of any residue in the IBS. As such, the next
generation (g = 1) is populated by mutating iL

min to all other
nonaromatic residues using the SCWRL431 program to
generate new protein structures (aromatic residues were
considered too bulky to assist in ice binding). We note that
the length of the simulations employed during the optimization
is not enough to fully “refold” the proteins. Instead, the
method assumes that a point mutation is a small enough
perturbation in most cases that a short equilibration period is
enough to resolve changes to the IBS. This yields a population
of 17 individuals (all mutants), which are then simultaneously
evaluated using the fitness function.
Elitist selection is then performed by finding the best-scoring

individual, Imax, observed so far in any generation. The same

mutation procedure is then repeated, except that now we
mutate at the residue in Imax that has the lowest Li on the IBS
and has not yet been chosen for mutation. In this way, a new
generation is always produced by mutating the best-observed
individual, and no generations will be unnecessarily repeated.
This procedure is then repeated until 30 generations are
completed.

Molecular Simulation. All molecular dynamics simula-
tions were performed using GROMACS 2016.4.32−35 Native
protein structures were obtained from the RCSB Protein Data
Bank and solvated in at least 1.5 nm of water in all directions,
employing periodic boundary conditions for a protein−protein
self-image distance of at least 3 nm. Na+/Cl− ions were added
for charge neutralization. Water was modeled using the

Figure 2. Properties of the three AFPs studied in this work. Type refers to the structural classification of each AFP.3 Structures are shown with α-
helices in purple, β-sheets in yellow, and unstructured loops in white. Ice-binding residues are explicitly shown with carbons in green, nitrogen
atoms in blue, and oxygen atoms in red (hydrogen atoms not shown for clarity). Transparent protein surfaces shown with the IBS in blue and the
non-IBS in red. PDB structures are obtained from www.rcsb.org with refs 46, 47 and 48 for wfAFP, rQAE, and RiAFP, respectively. Visualization is
done with PyMOL.49

Figure 3. Evolution results for wfAFP, rQAE, and RiAFP over 30 generations. (A−C) Points are the maximum ΔTC predicted for a given
generation, and the solid line represents the maximum ΔTC observed over all previous generations. (D−F) Block averaged results for longer
simulations of selected mutants for each AFP. Error bars are 95% confidence intervals (1.96xSE).
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TIP4P/Ice model36 for its realistic melting temperature of
∼270 K,37 and proteins/ions were modeled by the Amber03w
force field38 for its compatibility with 4-site water models.39,40

The temperature was maintained at 265 K to mimic
subfreezing conditions using a v-rescale thermostat.41 All
systems were first energy minimized using the steepest descent
and then equilibrated for a short period of 100 ps at 1 bar using
the Berendsen barostat.42 The pressure was maintained at 1
bar using the Parrinello−Rahman barostat43 during sampling.
A time step of 2 fs was used and trajectories were saved every
10 ps. Bonds were constrained using the LINCS algorithm.44

Short-range interactions were truncated at 1.0 nm, and long-
range electrostatics were handled by particle mesh Ewald
(PME) summation.45

■ RESULTS AND DISCUSSION
For this study, three naturally occurring AFPs, shown in Figure
2, were selected to represent several commonly occurring types
of AFPs, covering a diverse set of tertiary structures and a wide
range of measured thermal hysteresis values. To avoid
confusion with different isoforms, the RCSB PDB code
(www.rcsb.org) for each AFP is also listed in Figure 2.
Optimization of the predicted thermal hysteresis, ΔTC, was
performed using the GA outlined in the Methods section. Each
AFP was evolved over 30 generations, and results are presented
in Figure 3A−C. Mutants are referred to by their index in the
form of {gen}.{num}. For example, mutant number 11 from
generation 8 would have an index of 8.11, and index 0.0 is the
native structure.
Maximum observed ΔTC values for mutants of the three

AFPs represent an increase of approximately 700, 400, and 50
percent over the native structure for wfAFP, rQAE, and RiAFP,
respectively. While these are encouraging results, given the
large number of tests (17 mutants per generation and 30

generations give over 500 mutants per AFP) and relatively
short simulation times, these values are likely statistical
outliers.
To provide a more accurate estimate of the expected ΔTC,

structures with high ΔTC across several generations were
selected from each optimization and subjected to longer
simulations (200 ns). The first 100 ns of these simulations
were discarded for equilibration, and the last 100 ns were
divided into 10 blocks of 10 ns each. During this time, the
tertiary structure for rQAE and RiAFP remained stable, with
the α-carbon root-mean-square-deviation (C-α RMSD) with
respect to the starting structures less than 0.3 nm for all
mutants. wfAFP remained semistable, with several mutants
reaching a maximum C-α RMSD of 0.4−0.6 nm. These blocks
were then independently scored using the same fitness
function employed by the GA to obtain error estimates for
the predicted ΔTC. Results are shown in Figure 3D−F and
Table 1.
From the data presented in Figure 3D−F, it is evident that

the GA was successful for rQAE and RiAFP, where the
predicted ΔTC of the optimal mutants had improvements of
0.572 ± 0.11 K (262 ± 50.6%) and 1.33 ± 0.14 K (39.9 ±
4.19%) over the native structures, respectively. However, the
GA failed to provide a statistically improved candidate for
wfAFP. This is likely due to the more unstable nature of wfAFP
as compared to rQAE and RiAFP, quantitatively characterized
by the mean α-carbon root-mean-square-fluctuation (C-α
RMSF). The C-α RMSF was found to be more than twice as
high for the native wfAFP (0.127 ± 0.055 nm) than for the
native rQAE and RiAFP (0.058 ± 0.042, and 0.048 ± 0.036
nm, respectively). This also holds true if we restrict the
calculation to residues in the IBS, where the C-α RMSF is
0.122 ± 0.036, 0.026 ± 0.003, and 0.057 ± 0.030 nm for
wfAFP, rQAE, and RiAFP, respectively. Additionally, wfAFP is

Table 1. Mutations, Properties, and Scores for Selected Mutants in Figure 3D−Fa

results for selected mutants of wfAFP

generation mutant mutations binding residues A (nm2) ± LB (ps) ± LN (ps) ± pred. ΔTC (K) ±

0 0 N/A 13 2.63 0.49 127.98 3.93 110.04 1.11 0.18 0.10

1 4 R36E 13 3.14 0.53 128.26 3.59 115.53 2.10 0.15 0.09

8 11 T1N, A33N, R36E 12 3.16 0.48 122.18 4.42 107.84 1.56 0.16 0.08

20 15 T1N, S3K, K17S, A33N, R36E 14 3.08 0.71 108.51 9.96 112.10 4.76 0.06 0.05

24 2 T1N, S3K, L11C, K17S, A33N, R36E 13 3.12 0.14 118.81 4.57 104.94 1.72 0.17 0.14

results for selected mutants of rQAE

generation mutant mutations binding residues A (nm2) ± LB (ps) ± LN (ps) ± pred. ΔTC (K) ±

0 0 N/A 8 2.15 0.16 124.02 20.56 125.15 3.32 0.22 0.16

1 9 K61L 8 2.20 0.23 141.00 4.47 123.80 3.02 0.39 0.09

2 9 N8L, K61L 9 2.36 0.03 149.13 3.76 122.60 1.72 0.52 0.11

6 9 N8G, Q9L, K61L 8 2.18 0.15 152.23 6.31 132.83 1.02 0.65 0.08

9 9 N8G, Q9L, N14L, L40I, K61L 8 2.10 0.09 161.40 5.33 131.23 1.17 0.79 0.11

12 3 N8G, Q9L, N14L, L40I, Q44D, K61L 8 2.23 0.12 157.04 6.61 129.76 1.83 0.72 0.14

results for selected mutants of RiAFP

generation mutant mutations binding residues A (nm2) ± LB (ps) ± LN (ps) ± pred. ΔTC (K) ±

0 0 N/A 23 6.60 1.28 132.80 3.12 105.26 0.74 3.31 0.68

1 7 G10I 26 7.20 0.25 124.36 4.09 104.57 0.92 3.19 0.33

5 1 G10I, T108A 26 8.47 0.35 132.31 1.65 105.70 2.19 4.26 0.22

7 12 G10I, T108A, T114P 27 7.55 0.51 141.15 1.43 106.61 1.74 4.16 0.33

8 12 G10I, K23P, T108A, T114P 29 8.57 0.78 141.69 6.99 110.88 1.41 4.27 0.36

16 17 G10I, K23P, T108A, T114V 30 8.50 0.27 139.22 1.85 105.48 0.55 4.64 0.14
aMutations are given as a list of mutated residues with the form [Original Residue][Residue Number][New Residue], using the single-letter amino
acid code. Residue numbers begin at zero. Binding residues refers to the number of residues in the IBS. A, LB, and LN are inputs to the neural
network used in the fitness function. Errors (±) are 95% confidence intervals (1.96xSE).
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composed of a single α-helix that can be significantly disturbed
by a single point mutation, indicated by the higher mutant C-α
RMSD (discussed above), while the larger rQAE and RiAFP
are composed of more robust tertiary structures that retain
their three-dimensional structure upon a single point mutation.
We now consider how the GA chose to optimize the three

underlying variables that are fed to the neural network in our
fitness function: (1) the area of the IBS, A, (2) the mean
hydrogen bond lifetime of the solvent near the IBS, LB, and (3)
the mean hydrogen bond lifetime of the solvent near the non-

ice-binding surface, LN. For details concerning the determi-
nation of these variables, please see the Methods section and
our previous work.9 From Figure 4, it is evident that the GA
chooses to optimize different variables for different AFPs. For
example, the GA maximized LB and selected a low A for rQAE,
while a large A and medium LB were selected for RiAFP. This
divergence can most likely be attributed to the differences in
tertiary structures between rQAE and RiAFP; rQAE is more
globular than RiAFP (which has a highly planar IBS), making it
more efficient for the algorithm to optimize the LB of rQAE

Figure 4. Predicted thermal hysteresis, ΔTC, as a function of the three underlying variables used by the neural network (see text for details). Each
point is a mutant produced by the genetic algorithm. Black lines are linear fits to the data. Larger red points are the optimal mutants selected from
the results in Figure 3, with mutant index 24.2, 9.9, and 16.17 for wfAFP, rQAE, and RiAFP, respectively.

Figure 5. (A, B) IBS of native structures for rQAE and RiAFP. Ice-binding surfaces are colored blue, and non-ice-binding surfaces are colored light
red. Water molecules are shown near the IBS, with hydrogen bond networks shown with yellow dashed lines. The dashed circle in (B) indicates the
exposed lysine residue that is mutated in the optimized protein. (C, D) IBS of optimized structures for rQAE and RiAFP. The dashed circle in (C)
indicates the location of a solvent channel formed in the IBS of the optimized protein. (E, F) Overlay of the native (red) and optimized (blue)
secondary/tertiary structures showing that the mutations do not significantly perturb the overall structure of the protein. Visualization is done in
PyMOL.49
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than to completely rearrange a significant number of residues
to achieve a higher A.
Additionally, there also exists a natural competition between

increasing A and maintaining a structured binding surface with
high LB. This is because the likelihood that the best mutation
for increasing A is also the best mutation for increasing LB is
quite small, considering the size of the search space.
Furthermore, mutations that expand the IBS by allowing for
additional residues (which are more likely to have lower LB

than those already in the IBS) to be considered part of the IBS
can be expected to decrease LB while increasing A. The
algorithm must balance these properties to discover structures
that will be scored highest by the fitness function. This balance
is, of course, greatly influenced by the structure of the native
AFP that provides the starting point for the algorithm.
The difference in optimization paths for different AFPs is

also evident in the structure of the optimized AFPs, shown in
Figure 5. Comparing the native and optimized structures for
rQAE, a significant pore is opened in the center of the ice-
binding surface where water molecules can reside. This allows
for much longer hydrogen bond lifetimes, as the location/
orientation of the water molecules is stabilized by the
surrounding protein. This property of encouraging stable
hydrogen bond networks by allowing interior channels of the
AFP to be occupied by the solvent has actually been observed
in a naturally occurring, high-activity AFP known as Maxi,50,51

demonstrating that this is likely a viable route for optimization.
In contrast, the evolution of RiAFP proceeds by expanding

the ice-binding surface. This is in part achieved by removing an
exposed lysine residue in the center of the binding face and
replacing it with a more compact proline residue. This allows
for several additional residues to be included in the now more
planar binding face (see the back left of the ice-binding surface
in Figure 5D). Interestingly, a similar mutation in which a
lysine was removed from a planar IBS was employed by Friis et
al. in their optimization of an insect AFP (similar to RiAFP),
resulting in a significant increase in ΔT.18 This again indicates
that the mutations discovered by the algorithm are likely
feasible pathways for improving antifreeze activity, while the
algorithm also has the benefit of being fully automated,
customizable, and transferable to other AFPs.

The resulting benefit of each mutation performed during
optimization was also analyzed by considering the outcome of
mutations to each possible residue. This was done by
calculating the probability, p(X), that a given mutation from
any original residue to the new residue, X, resulted in an
increase in the predicted ΔTC of more than 0.2 K. Therefore, a
higher p(X) indicates that mutating to residue X is, on average,
more efficient than mutating to a residue with a lower p(X).
Results are shown in Figure 6 for each AFP, but since the
evolution of wfAFP failed to produce any statistically improved
candidate, we will again focus on rQAE and RiAFP.
The residues with the highest p(X) for rQAE and RiAFP are

all nonpolar amino acids, with proline (P) and leucine (L)
both having p(X) ≥ 0.10 for RiAFP. This is likely because the
mean Li for nonpolar residues (141 ± 13 ps) is greater than the
mean Li near polar (128 ± 12 ps) or charged residues (107 ±
7.4 ps) as measured for all rQAE and RiAFP mutants. See the
Methods section for details concerning the calculation of
hydrogen bond lifetimes near protein residues. As a result of
this difference, the algorithm can easily increase LB by mutating
to nonpolar residues. Intriguingly, the charged residues
glutamic acid (E) and lysine (K) also have consistently high
p(X). Since these residues are not compact and do not
encourage long hydrogen bond lifetimes in the solvation shell,
these results likely indicate that glutamic acid and lysine
residues are important for maintaining structural stability in the
simulations. Furthermore, even though lysine has a modest
p(X), it is often replaced by other residues in the highest
performing mutants (see Table 1), suggesting that while it may
provide a small increase in ΔTC during optimization, it is not a
desirable residue to retain in the IBS.
In contrast, mutations to polar amino acids are significantly

less likely to result in an increase in ΔTC, especially for rQAE
where p(X) = 0 for many polar residues. This is somewhat
surprising considering the strong role played by the polar
residue threonine (T) in several AFPs,12,52,53 although
mutations to threonine have been observed to cause a loss
of antifreeze activity.11 One reason for this outcome may be
that, by design, mutations were localized to residues with poor
(low) hydrogen bond lifetimes in their solvation shell, and that
these locations may not benefit from the addition of threonine.
It is worth mentioning that previous work by Midya et al.

Figure 6. Probability, p(X), that mutation from any residue to a specific residue X results in an increase in the predicted ΔTC greater than 0.2 K.
Results are shown for each AFP studied and residues are split by their classification as nonpolar, polar, or charged. While histidine (H) can have
different protonation near physiological pH depending on its environment, it was modeled as neutral (polar) for all simulations. Residues with no
bar have a p(X) = 0. Aromatic groups are not included as no mutations to aromatic residues were made.
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predicts that both polar and nonpolar residues are likely
required for efficient ice binding of a highly active insect AFP,
TmAFP.54 This prediction is not at odds with the data
presented in Figure 6, as our mutants contain at most 6
mutations, and all still retain a significant number of polar
residues on the binding face. Further work would be required
to demonstrate whether a balance of polar/nonpolar residues
on the IBS is a strict requirement for antifreeze activity.
There are several residues that have a p(X) of zero for both

rQAE and RiAFP, i.e., mutation to these residues never
provided a significant increase in ΔTC. These residues are
cysteine (C), histidine (H), and arginine (R), and all of them
are either polar or charged. Additionally, methionine (M) and
aspartic acid (D) have p(X) of zero for RiAFP but not rQAE.
Regardless, these results indicate that, in the future, a more
efficient algorithm may be designed by eliminating mutations
to residues that have a very low likelihood of improving the
expected antifreeze activity, such as cysteine and histidine, and
focusing on mutation to residues that have a high likelihood of
improving antifreeze activity.

■ CONCLUSIONS

In this work, we explored the use of a genetic algorithm to
computationally optimize the predicted activity of three
antifreeze proteins. In two of the three cases, a significantly
improved sequence was designed, suggesting that this method
could be a useful pathway to producing higher activity
antifreeze proteins. Additionally, analysis suggests that for the
proteins studied, there are particular residues that are more
beneficial than others to include in the ice-binding surface of
the antifreeze protein. We hope that this work will encourage
further study in this area and that experimental testing of our in
silico mutants demonstrates improved activity in vitro.
Furthermore, we hope that the design strategy presented
here inspires future theoretical work in the space of protein
sequence optimization, such as how changes in sequence
length or introduction of crossover (which were excluded
here) might impact convergence.
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