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ABSTRACT
We describe a reformulation of the four-site molecular model for chiral phenomena introduced by Latinwo et al. [“Molecular model for
chirality phenomena,” J. Chem. Phys. 145, 154503 (2016)]. The reformulation includes an additional eight-body force that arises from an
explicit configuration-dependent term in the potential energy function, resulting in a coarse-grained energy-conserving force field for molec-
ular dynamics simulations of chirality phenomena. In this model, the coarse-grained interaction energy between two tetramers depends
on their respective chiralities and is controlled by a parameter λ, where λ < 0 favors local configurations involving tetramers of opposite
chirality and λ > 0 gives energetic preference to configurations involving tetramers of the same chirality. We compute the autocorrela-
tion function for a quantitative chirality metric and demonstrate that the multi-body force modifies the interconversion kinetics such
that λ ≠ 0 increases the effective barrier for enantiomer inversion. Our simulations reveal that for λ > 0 and temperatures below a sharply
defined threshold value, this effect is dramatic, giving rise to spontaneous chiral symmetry breaking and locking molecules into their
chiral identity.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0060266

I. INTRODUCTION

Chirality is a crucial aspect of a broad spectrum of biologi-
cal and chemical systems. Many organic and inorganic compounds
feature non-superimposable mirror-image isomers with identical
chemical formulas. Despite sharing a similar structure, these molec-
ular mirror images can exhibit drastically different physiologi-
cal behavior in the human body. For example, the right-handed
(D) enantiomer of the drug thalidomide is a sedative used to
treat morning sickness, whereas the left-handed (L) enantiomer
is teratogenic, the presence of which resulted in a tragic wave
of birth defects in the 1960s.1 Similarly, the L-enantiomer of the
rheumatoid arthritis drug penicillamine is highly toxic,2 and the
L-enantiomer of the anti-tuberculosis compound ethambutol can
lead to impaired vision or blindness.3,4 In addition to numerous
pharmaceutical examples,5 chirality has been documented to play
a role in a variety of applications ranging from optoelectronic
manufacturing,4,6 chiral sensing,6–8 catalysis,9,10 insecticides and

agrochemicals,11,12 and membrane separations.4,13 Enantioselective
chemical production is traditionally achieved in these industries
through asymmetric synthesis10,14 or chirality-based separation,15

since non-engineered chemical reactions typically result in ∼50/50
“racemic” mixtures of left- and right-handed isomers. Therefore,
it is important to develop new tools that can offer molecular-level
insight and guide design principles for directing the chiral state of
the system.

Beyond uses in industry, chiral symmetry breaking is a funda-
mental problem in our understanding of the origin of life.16,17 Life
exhibits chiral features at the molecular and mesoscopic level. The
amino acids that constitute naturally occurring proteins are uni-
formly left-handed (as determined from the two possible arrange-
ments of the four moieties attached to their α-carbon), and their
mirror images are rarely found in nature. Similarly, RNA and DNA
are composed of D-nucleotides. DNA itself is chiral, with its famous
double helix structure existing in the right-handed form. RNA
and DNA lose their ability to self-replicate in artificially created
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heterochiral mixtures,18 and hence, the stereochemistry of organic
macromolecules is critical to their function.

Therefore, a central question is whether the emergence of this
asymmetry from a presumably racemic pre-biotic world is (i) pre-
determined by physical laws or (ii) arising from stochastic pro-
cesses. One hypothesis for scenario (i) is that parity violation in
the weak nuclear force systematically propagated to larger length
scales and gave preference to specific chiral forms.19,20 Another pro-
posed explanation is that certain inorganic materials (e.g., quartz
crystals) asymmetrically adsorb L and D enantiomers, producing
surface enhancement of one over the other.21–23 Furthermore, some
inorganic surfaces can catalyze the oligomerization of biomolecu-
lar building blocks,24 which would give rise to enantiomeric excess
of the resulting biologically relevant oligomer.23 For possibility (ii),
mechanisms for chiral symmetry breaking rely on a combination
of autocatalysis and inhibition to amplify small random imbal-
ances until one isomer dominates over the other and the system
reaches a uniform, enantiopure state.25,26 Recent work by Laurent
et al. showed that complex kinetic networks composed of many chi-
ral species can undergo spontaneous chiral symmetry breaking.27

While theoretical work has explored possible pathways for such
chiral amplification,25,26,28–42 the Soai reaction is the only experi-
mental demonstration of this type of process to date.43–45 Hence,
understanding the specific physical and chemical phenomena that
ultimately led to the prevalence L-amino acids and D-nucleotides
remains an active area of research, including through the develop-
ment of new models for investigating the emergence and ubiquity of
biological homochirality.

As a contribution to improved fundamental understanding of
chirality-driven physical phenomena, including phase separation,
we describe a simple, energy-conserving force field for molecu-
lar dynamics (MD) simulations of chiral systems. Our model, a
four-site flexible molecule that can adopt interconvertible and non-
superimposable mirror-image configurations, is based on the sim-
plest naturally occurring molecule that exhibits molecular handed-
ness, hydrogen peroxide. In future studies, this approach can be
readily extended to examine different types of chiral symmetries
or chain-like molecules with multiple chiral centers. In the present
work, we illustrate the emergence of an eight-body force from
the coarse-grained description for the chirality-dependent interac-
tions and demonstrate that this additional contribution is required
for energy conservation. The eight-body force scales linearly with
the coarse-grained chiral renormalization parameter λ, which
controls whether intermolecular interactions between homochi-
ral pairs are energetically favored (λ > 0) or disfavored (λ < 0).
This eight-body force modifies the kinetics of chiral interconver-
sion, which we explore using the autocorrelation function (ACF)
for a quantitative measure of single-molecule chirality. We contrast
the behavior of the model with and without the eight-body contri-
bution and investigate how the kinetics of chiral interconversion is
affected for different strengths of the bias λ as well as at different
temperatures.

Our results suggest that the eight-body force term always
increases the energy barrier for interconversion between enan-
tiomers, and for systems with λ > 0 below a temperature Tc, this
contribution gives rise to spontaneous chiral symmetry breaking.
Preliminary tests suggest what appears to be incipient phase sepa-
ration below Tc, and for the purposes of our discussion, we refer to

this as a critical temperature, though a detailed investigation of the
model’s phase separation kinetics and thermodynamics is beyond
the scope of the present study. Work is currently in progress in our
research group on these aspects of the model’s behavior and will
be reported separately. An analysis of the form of the multi-body
force reveals that it deforms molecules to drive their chiral identities
toward ones commensurate with the local chiral environment, and
these deformations occur through changes in each molecule’s bond
and dihedral angles. In the present work, we illuminate the details of
this molecular modeling method, its basic properties, and the effect
of the multi-body forces.

The remainder of this paper is structured as follows: in Sec. II,
we provide a review of the molecular chiral model, and in Sec. III,
we derive the forces that arise from the gradient operator acting on
the potential energy function. We find that the force between a pair
of “atomic” sites belonging to two different tetramers can be decom-
posed into two distinct contributions: (a) the familiar Lennard-Jones
(LJ) force with energy pre-factor that depends on the chirality of the
two interacting tetrameric molecules and (b) an additional eight-
body force (henceforth referred to as the “λ-force”), which is our
focus in Sec. III. Section IV provides validation tests and demon-
strates the need to account for the λ-force in order to achieve energy
conservation as well as general features of the model and technical
details related to its implementation. Finally, in Sec. V, we compute
the autocorrelation function of a single-molecule chirality metric at
different temperatures and λ values and show that a non-zero chiral
bias always acts to slow down the kinetics of interconversion when
the λ-force is included. We conclude our discussion in Sec. VI and
offer outlook for potential future studies.

II. REVIEW OF MOLECULAR MODEL
FOR CHIRALITY PHENOMENA

Latinwo et al.46 introduced a coarse-grained potential energy
function for molecules that exist either in a left-handed or in a right-
handed configuration in order to study processes such as chiral sym-
metry breaking and amplification. This simple model is inspired by
substances such as hydrogen peroxide and hydrogen disulfide and
features molecules composed of four sites or “monomers” that lie
along a three-bond backbone (Fig. 1). The shape of the tetramer
molecules is determined by a set of bonded interactions that include
(i) bond stretching, (ii) bond angle deformation, and (iii) dihedral

FIG. 1. Visual representation of molecules in the chiral tetramer model. Molecules
are able to rotate about the dihedral angle and exist in L- (blue) or D- (red)
enantiomer configurations.
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TABLE I. Summary of force parameters used in our tests.

Units ks (kcal/mol Å2) kb (kcal/mol rad2) kd (kcal/mol) b (Å) m (g/mol) ε0 (kcal/mol) σtt (Å)

Real 1000 100.0 2.775 1.18 8.5 0.1554 1.115
Reduced 8003 643.7 17.86 1.0583 1 1 1

angle rotation. The sum of these three contributions gives the total
intramolecular potential energy for a single molecule,

Φ(1)({ri}) =
3

∑
i=1

ks

2
(ri,i+1 − b)2

+
2

∑
i=1

kb

2
(θi −

π
2
)

2
+ kd cos2 ϕ. (1)

Here, ks is the force constant for the harmonic bond with equilib-
rium distance b, kb is the constant for the molecular angle bending,
and kd gives the pre-factor for forces that depend on the dihe-
dral angle. ri,i+1 denotes the separation between the i and i + 1
bonded monomers, θ1 and θ2 are the two bond angles present in the
molecule, and ϕ is the dihedral angle. Note that at mechanical equi-
librium, θ1 = θ2 = π/2, and ϕ = ±π/2. In our simulations, the values
for the harmonic bond constant, molecular weight, and bond length
b are inspired by hydrogen peroxide and written in reduced LJ units
(Table I).46–49 Note that while we use hydrogen peroxide to inform
realistic choices for our parameters, this model is not intended to be
an accurate representation of this substance.

For intermolecular interactions, the potential energy between
monomer j from tetramer α and monomer k from tetramer γ is

Φ(2)jk ({rα
j },{rγ

k}) = εttvLJ(
∣rα

j − rγ
k∣

σtt
), (2)

where νLJ = 4(r−12
jk − r−6

jk )with rjk = ∣rα
j − rγ

k∣/σtt . This is the standard
LJ potential with interaction energy εtt and characteristic length σtt .
The key feature of the chiral molecular potential is that the energy
is rescaled by a renormalization factor that depends on the chiral
identities of the two interacting molecules α and γ, i.e., εtt in Eq. (2)
is written as46

εtt = ε0[1 + λζα
({rα

j })ζ
γ
({rγ

k})]. (3)

Here, ζα and ζγ are measures of the chirality of molecules α and
γ, respectively (defined below), and the parameter λ is a constant
that controls the chiral bias in the system. ε0 is the LJ energy of
interaction between monomers in the absence of chiral bias.

The sign of λ dictates whether this favorable energy rescaling
applies to homochiral or heterochiral intermolecular interactions
(i.e., λ < 0 favors heterochiral interactions and racemic mixtures,
and λ > 0 favors homochiral interactions and an enantiopure state).
Equation (3) is a central aspect of the model, with λ ≠ 0 representing
a coarse-grained energetic favorability for chirality-dependent inter-
actions between molecule pairs. This term is representative of ener-
getic contributions and binding preferences that are not captured
by the LJ potential alone. Based on their experimentally observed
conglomerate (enantiopure) crystal structures, substances exhibiting
behavior commensurate with a positive chiral bias include aspartic
and glutamic acids,50 while serine and histidine map to a negative

chiral bias and form racemic crystals.51 Note that the construction
in Eq. (3) is mathematically similar to the interaction energy for
nearest-neighbor spin pairs in the Ising model,52,53 where the param-
eter λ is the coupling constant, though a critical difference in our
chiral molecular model is that the energy modification in Eq. (3)
couples to the molecules’ internal degrees of freedom.

For the tetramer molecules in this study, the chirality measure
ζα can be defined as

ζα
= ζ(Rα

) = −
rα

12 ⋅ (rα
23 × rα

34)

∣rα
12∣∣r

α
23∣∣r

α
34∣

. (4)

Note that ζα depends on the position vectors of all four monomers
that make up the molecule, Rα

= {rα
1 , rα

2 , rα
3 , rα

4}, with relative vec-
tors defined as rα

12 ≡ rα
1 − rα

2 . The measure Eq. (4) gives ζ = −1 for
L-enantiomers, ζ = +1 for D-enantiomers at mechanical equilib-
rium, ζ = 0 for transition states, and varies between these extremes
as the configuration of the monomers changes with time, ζ ∈ [−1, 1].
Equation (4) is specific to the molecular geometry in this work, and
different types of chiral molecules or chiral centers may require a
different definition for ζ.

III. DERIVATION OF EIGHT-BODY λ-FORCE
BETWEEN TETRAMER PAIRS

We now derive the forces for the chiral model, starting from the
intermolecular potential defined in Sec. II. The interaction energy
for two tetramers α and γ is the sum over all 16 monomer pairs,

Φ(2) =∑
j∈α
∑
k∈γ

Φ(2)jk . (5)

The force acting on monomer i from tetramer α is computed from
the gradient of Eq. (5),

Fα
i ≡ −

∂Φ(2)

∂rα
i
= −∑

j
∑

k

∂Φ(2)jk

∂rα
i

. (6)

Substituting Eq. (2) into Eq. (6) and using ∂vLJ(rjk)/∂rα
i = 0 for

i ≠ j, k, we are left with

Fα
i = Aα

i + Bα
i , (7)

where we have defined

Aα
i = −∑

k
εtt

∂vLJ(rik)

∂rα
i

(8)

and

Bα
i = −(

∂εtt

∂rα
i
)∑

j
∑

k
vLJ(rjk). (9)

J. Chem. Phys. 155, 084105 (2021); doi: 10.1063/5.0060266 155, 084105-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

In the above equations, Aα
i is the LJ force on monomer i with energy

of interaction εtt({Rα
},{Rγ

}) determined from the instantaneous
configurations of the interacting tetramers. The decomposition into
two distinct forces given by Eqs. (7)–(9) is general to any LJ-like
potential with a configuration-dependent energy εtt . Strictly speak-
ing, both Aα

i and Bα
i depend on the configuration of the interact-

ing tetramers, and hence, both are eight-body forces, though we
use the label “eight-body” force only in reference to the non-trivial
force Bα

i .
We now focus on the λ-force contribution Bα

i [Eq. (9)] and
explicitly derive its form for the four-site chiral model. In order
to determine Bα

i , we first find the gradient of the energy factor εtt
evaluated at monomer i from tetramer α,

∂εtt

∂rα
i
= λζγ ∂ζα

∂rα
i

. (10)

Equation (10) depends on which site along the tetramer backbone
we consider. In the following subsections, we look at each of the four
sites separately.

A. First monomer (i = 1)
Using the definition of ζα [Eq. (4)], and applying the gradient

operator, ∇rα
i
= ∂xα

i iα
1 + ∂yα

i jα
1 + ∂zα

i kα
1 , we find that the gradient at

the position of the first monomer (i = 1) is

∇rα
1
ζα
= −

rα
23 × rα

34

∣rα
12∣∣rα

23∣∣rα
34∣
− ζα eα

12

∣rα
12∣

. (11)

In Eq. (11), we have defined the unit vector eα
12 = (rα

1 − rα
2)/∣r

α
1 − rα

2 ∣.
Using Eq. (11), the energy gradient term for the first monomer is
then

∂εtt

∂rα
1
= −λζγ (eα

23 × eα
34)

∣rα
12∣

⋅ (I − eα
12eα

12). (12)

Here, I denotes the identity tensor. Substituting Eq. (12) into Eq. (9)
gives the λ-force acting on the first monomer, Bα

1 . Note that Eq. (12)
applies specifically to our current model, and choosing a different
molecular geometry requires re-deriving ∂ζα

/∂rα
i .

B. Second monomer (i = 2)
The gradient evaluated at the position of the second

monomer is

∇rα
2
ζα
= −

rα
34 × rα

13

∣rα
12∣∣r

α
23∣∣r

α
34∣
+ ζα
(

eα
12

∣rα
12∣
−

eα
23

∣rα
23∣
). (13)

Rearranging Eq. (13) and substituting into Eq. (10) gives

∂εtt

∂rα
2
= λζγ

[
(eα

12 × eα
34)

∣rα
23∣

⋅ (I − eα
23eα

23) +
(eα

23 × eα
34)

∣rα
12∣

⋅ (I − eα
12eα

12)].

(14)
Combining this expression with Eq. (9) gives Bα

2 .

C. Third monomer (i = 3)
For the third monomer, we have

∇rα
3
ζα
= −

rα
12 × rα

24

∣rα
12∣∣r

α
23∣∣r

α
34∣
+ ζα
(

eα
23

∣rα
23∣
−

eα
34

∣rα
34∣
). (15)

Following the same procedure as above, we arrive at the following
expression for the gradient of the energy factor evaluated at the third
monomer,

∂εtt

∂rα
3
= −λζγ

[
(eα

12 × eα
23)

∣rα
34∣

⋅ (I − eα
34eα

34) +
(eα

12 × eα
34)

∣rα
23∣

⋅ (I − eα
23eα

23)].

(16)
Equations (9) and (16) give Bα

3 .

D. Fourth monomer (i = 4)
Finally, the gradient of the chirality measure for the last

monomer is

∇rα
4
ζα
= −

rα
23 × rα

12

∣rα
12∣∣r

α
23∣∣r

α
34∣
+ ζα eα

34

∣rα
34∣

. (17)

Therefore, the gradient of the energy for i = 4 is

∂εtt

∂rα
4
= λζγ (eα

12 × eα
23)

∣rα
34∣

⋅ (I − eα
34eα

34). (18)

Combining Eqs. (9) and (18) gives Bα
4 .

Note that the total force acting on the tetramer due to the λ-
force contributions is zero. To illustrate this, we sum all four forces
for molecule α,

Bα
= Bα

1 + Bα
2 + Bα

3 + Bα
4

= −(
∂εtt

∂rα
1
+
∂εtt

∂rα
2
+
∂εtt

∂rα
3
+
∂εtt

∂rα
4
)∑

j
∑

k
vLJ(rjk). (19)

From Eqs. (12), (14), (16), and (18), we find that

∂εtt

∂rα
1
+
∂εtt

∂rα
2
+
∂εtt

∂rα
3
+
∂εtt

∂rα
4
= 0. (20)

Therefore, the net force between tetramer pairs due to the λ-force Bα

vanishes, and only the “standard” Lennard-Jones contribution Aα is
relevant to the center-of-mass force acting between tetramer pairs.
In other words, the eight-body forces cause molecular deformation,
but not center-of-mass translation.

The λ-force between two tetramers tends to deform the inter-
acting molecules and modify each molecule’s chiral identity through
its bond and dihedral angles, and therefore, this force can be re-
expressed as deformation forces acting on θα

1 , θα
2 , and ϕα. In other

words, there is a distinct λ-force contribution Bα
ij for every bond and

dihedral angle in molecule α, i.e., ∣Bα
12∣∝ sin θα

2 , ∣Bα
23∣∝ sin ϕα, and

∣B34∣∝ sin θα
1 . The proportionality with respect to the sine of bond

and dihedral angles comes from the unit vector cross products in
Eqs. (21)–(23). The fact that the λ-forces can be rewritten in this
fashion is seen by inspection of the final form of Bα

1 , Bα
2 , Bα

3 , and Bα
4 .
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We now rewrite the multi-body λ-forces using this decomposition,
which is more elegant and convenient to implement numerically,
gives additional physical intuition for the nature of the λ-forces, and
illustrates why the net λ-force on each molecule is zero. First, we
consider how the α − γ tetramer pair multi-body λ-force deforms
tetramer α by acting on its bond angle θα

2 in a way that gives rise
to an effective interaction between the 1–2 monomer pair,

Bα
12 = λζγ (eα

23 × eα
34)

∣rα
12∣

⋅ (I − eα
12eα

12)∑
j
∑

k
vLJ(rjk). (21)

Equation (21) is the force on monomer 1, and the force on monomer
2 (which is bonded to monomer 1) is symmetric, Bα

21 = −Bα
12. While

this formulation of the forces superficially appears pairwise, the λ-
force is still fundamentally a multi-body interaction that depends
on the full tetramer configurations. To understand why the multi-
body force can be decomposed into these kinds of interactions,
consider that the force between monomers 1 and 2 in Eq. (21) is
proportional to the cross product of the normalized bond vectors
eα

23 and eα
34, which directly relates to molecule α’s bond angle θα

2 ,
i.e., ∣Bα

12∣∝ sin θα
2 . Hence, the multi-body λ-force affects molecule

α’s chiral identity by acting on the bond angle θα
2 through the force

Bα
12 between monomers 1 and 2.

The λ-force acting on the dihedral angle ϕα results in the
symmetric force between monomers 2 and 3, with force acting on
monomer 2 given by

Bα
23 = −λζγ (eα

12 × eα
34)

∣rα
23∣

⋅ (I − eα
23eα

23)∑
j
∑

k
vLJ(rjk). (22)

Once again, the force on monomer 3 for this pair is equal and
opposite, Bα

32 = −Bα
23.

Finally, the λ-force deformations of the bond angle θα
1 result in

a symmetric interaction between monomers 3 and 4,

Bα
34 = λζγ (eα

12 × eα
23)

∣rα
34∣

⋅ (I − eα
34eα

34)∑
j
∑

k
vLJ(rjk). (23)

As before, we have Bα
43 = −Bα

34. Equations (21)–(23) then summa-
rize the λ-forces, which are the central focus of this paper. Adding
Eqs. (21)–(23) over bonded monomer pairs within a single tetramer
results in the same λ-force for each monomer as in Eq. (9). The
full intermolecular forces are given by the sum of the λ-forces
[Eqs. (21)–(23)] and LJ-like forces [Eq. (8)]. Note that this non-
trivial interaction does not depend on which end of the molecule
we count labels from, and performing the symmetric exchange of
indices i = 1→ 4, i = 2→ 3, i = 3→ 2, and i = 4→ 1 gives identical
force expressions.

To gain additional physical intuition for the λ-forces, we exam-
ine their form more closely. As discussed above, Eqs. (21)–(23)
are proportional to cross products whose magnitudes relate to the
angles between the bond vectors in molecule α, i.e., ∣Bα

12∣∝ sin θα
2 ,

∣Bα
23∣∝ sin ϕα, and ∣B34∣∝ sin θα

1 . Therefore, these forces vanish for
states far from mechanical equilibrium, where θα

1 = θα
2 = π, as well

as for the transition states ϕα
= ±π and ϕα

= 0. They are also zero for
θα

1 = θα
2 = ϕα

= ±π/2, though in this case due to cancellation of terms

[e.g., the terms on the right-hand side of Eq. (11) are equal in magni-
tude but opposite in sign]. The λ-forces are non-zero for all configu-
rations in between these cases, and their effect is to oppose intercon-
version when λ < 0 and the two interacting tetramers have different
chiral identities (i.e., an L-tetramer and a D-tetramer) and to oppose
interconversion when λ > 0 and the two interacting tetramers have
the same chiral identity (i.e., two L-tetramers or two D-tetramers).
In other words, this additional force resists inversion away from
the chiral state imposed on the molecule’s local environment by the
renormalization term λ. For initially racemic systems below some
critical temperature T < Tc, the λ-force drives spontaneous chiral
symmetry breaking. This is demonstrated in Sec. V, where we study
the effect of the λ-force for different values of the chiral bias λ and
show that it always gives slower inversion kinetics for molecules at
equilibrium relative to the case without this force. Note that critical-
ity and the thermodynamics and kinetics of phase separation for this
model are beyond the scope of the current study and will be reported
in future work.

IV. VALIDATION
We have implemented the chiral tetramer model into the

LAMMPS package54,55 and now validate that our approach con-
serves energy by performing MD simulations of 1000 chiral
molecules (4000 monomers) in the microcanonical ensemble. We
choose values for the intermolecular interaction and intramolecular
bond constants in reduced LJ units as summarized in Table I.46–49

These model parameters are used for all tests in this work unless
otherwise noted. The validation is performed with λ = 0.5 for the
chiral renormalization term, since λ = 0.0 gives the trivial case for a
LJ chain. The 1000 tetramers are initialized in a box with dimen-
sions 16.8 × 16.8 × 16.8 and periodic boundaries in the x-, y-,
and z-directions, corresponding to a molecular density of ρ = 0.21.
We choose a time step Δt = 0.001 and equilibrate for 1 × 108

steps using a Nosé–Hoover thermostat with T = 4.0. Following the
initialization, we perform a production run at constant NVE for
another 1 × 108 time steps. The tests described here use eight
processors and feature a large potential cutoff rc = 4.0 to ensure
that molecules have sufficient neighbors to capture the eight-body
effect. Our NVE tests (summarized below) suggest that rc values
smaller than 4.0 give inadequate energy conservation for λ = 0.5
(the maximum λ value considered in this work), and a larger cutoff
is required.

Before discussing the energy conservation properties of this
model, we first illustrate the effect of the chiral renormalization
term λ, which is a central feature of this model and biases sys-
tems toward enantiopure equilibrium states. The visualizations in
Fig. 2 are obtained from trajectories in the NVT ensemble with
ρ = 0.21 and T = 4.0. Here, each sphere represents the center of
mass of a tetramer, with color determined by the chiral identity of
the molecule (e.g., blue spheres are L-enantiomers, and red spheres
are isomers in the D configuration). Figure 2(a) is a visual repre-
sentation of the equilibrium state for a fluid with renormalization
term λ = 0.5. As expected, the positive chiral bias favors homochi-
ral interactions, giving a predominantly L-enantiomer fluid. Note
that a small number of D-enantiomers are present (red spheres), as
expected for a system at finite temperature. Such fluctuations in ζ
away from the equilibrium value become vanishingly rare at lower
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FIG. 2. (a) Visualization of the system for λ = 0.5 and T = 4.0, where the positive
λ value favors a globally enantiopure state. Each sphere represents a tetramer
molecule and is located at its center of mass, with color coding based on whether
the tetramer is in a L (blue) or D (red) configuration. (b) Visualization for λ = −0.5
at the same temperature. Here, the negative chiral bias gives rise to a racemic
mixture.

temperatures. Conversely, the equivalent case with a negative chiral
bias λ = −0.5 (i.e., favoring heterochiral interactions) is illustrated in
Fig. 2(b), giving a racemic mixture of L- and D-enantiomers.

The kinetic, potential, and total system energies for the NVE
validation tests are shown in Fig. 3(a). In order to display these three
energies compactly, we center them at zero and plot the difference
relative to the energy at the start of the production run. As illus-
trated by the black curve in Fig. 3(a), energy is conserved to good
accuracy over the course of the production run, with a mean of
⟨Etot⟩ = 15 502.99 and relative root-mean-square error in the total
energy ⟨ΔE2

⟩
1/2
/⟨E⟩ = 3.1 × 10−5.

To illuminate the effect of the eight-body λ-force derived in
Sec. III, we also perform tests with this force turned off. In other
words, we initialize and run a set of separate simulations where the

intermolecular forces are given by Eq. (8), and we do not include
the λ-contribution Bα

i . Given that Bα
i arises from the gradient of

the potential energy function, these additional tests do not feature
a conservative force field. Latinwo et al. incorrectly overlooked the
λ-force contribution and studied the “unbalanced” force model in
detail in Ref. 46. However, the unbalanced force formulation still
represents a useful model, and it is interpreted as a steady-state,
nonequilibrium system with physical behavior similar to the reac-
tive binary mixture described by Glotzer et al.56,57 In other words,
when the λ-force is not included, the resulting force imbalance acts
as a racemizing force that sustains demixing and gives kinetically
arrested liquid–liquid phase separation. We find that when we use
the unbalanced force formulation in the microcanonical ensemble,
the system exhibits upward drift in the energy with time [red curve,
Fig. 3(b)], as compared to the balanced force model [black curve,
Fig. 3(b)], until the simulation eventually crashes near t ≈ 300. For
the NVT tests in Sec. V, the unbalanced force model works sta-
bly since the thermostat acts as an energy sink that dissipates the
energy drift. We explore the difference in interconversion kinet-
ics between the balanced and unbalanced force models in Sec. V.
Further discussion on the unbalanced force model, its phase behav-
ior, and how its physical properties differ from the balanced force
model is the subject of ongoing work and will be reported in a future
publication.

The kinetic behavior for a selected tetramer is illustrated in
Fig. 3(c), which gives its chiral identity as measured by ζ [Eq. (4)] vs
time. Over the course of the simulation, the molecule flips between
the L (ζ < 0) and D (ζ > 0) states. The magenta curve gives the chi-
ral identity for a tetramer in a fluid with molecules having a dihe-
dral force constant kd = 17.86, and the cyan curve corresponds to
the case when the bond constant is an order of magnitude smaller.
This clearly shows that lowering the energy barrier for interconver-
sion increases the frequency for excursions away from the average

FIG. 3. (a) System potential (red curve),
kinetic (green curve), and total energies
(black curve) as a function of time for
NVE simulation of a tetramer fluid with
λ = 0.5, ρ = 0.21, and average tempera-
ture ⟨T⟩ = 4.0. Note that energies are
not absolute and are centered at zero
for clarity. (b) Total energy vs time for
the balanced (black curve) and unbal-
anced (red curve) force tetramer models.
(c) Chiral identity ζ of a single tetramer
vs time. The two colors denote identical
simulation conditions with different dihe-
dral interaction force constants to illus-
trate how changing the energy barrier
for interconversion affects the frequency
for switching between L and D forms.
An excess of L enantiomers in the initial
configuration biases the system toward
⟨ζ⟩ = −1 for both kd cases.
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system value. For both choices of kd, the system globally adopts
an enantiopure state with preferred chiral identity ⟨ζ(t)⟩ ≈ −1.0.
Note that whether the system equilibrates to ⟨ζ(t)⟩ ≈ −1.0 or ⟨ζ(t)⟩
≈ +1.0 is arbitrary, and both are equally probable assuming an
initial 50/50 mixture of L and D enantiomers. In our work, the
initial pre-equilibration configuration features a 1.6% excess of
L-enantiomers due to the preparation procedure, which is why the
system exhibits preference for the ⟨ζ(t)⟩ ≈ −1.0 equilibrium state
when λ > 0. Figure 3(c) shows that multiple times throughout the
production run, the selected molecule flips its chirality away from
this preferred chiral state due to thermal fluctuations, and these
random inversions are rapidly dissipated. At temperatures below
a critical threshold T < Tc, tetramer chiral identities are strongly
locked-in, with fewer (or even zero) flips due to thermal kicks, and
smaller fluctuations in the chiral measure ζ. This behavior is sim-
ilar to spontaneous magnetization below the critical point in the
Ising model, where broken symmetry persists despite fluctuations
in spins. Section V explores this behavior in detail and highlights
the crucial contribution of the λ-force to capture spontaneous chiral
symmetry breaking.

V. EIGHT-BODY EFFECT ON TETRAMER
INTERCONVERSION KINETICS

To study the inversion kinetics of the tetramer system, we
calculate the autocorrelation function (ACF) for the chirality
measure ζ,

Cζ(Δt) =
⟨ζ(t0 + Δt) ⋅ ζ(t0)⟩

⟨ζ(t0) ⋅ ζ(t0)⟩
. (24)

Here, the brackets denote an ensemble average over all of the
molecules in the system at a given time. Additionally, we compute
an average over multiple independent trajectories to remove statis-
tical noise from a set of NVT simulations with 1000 tetramers at a
reduced density ρ = 0.21. This density was selected to ensure our sys-
tem is in the liquid state and to avoid the formation of a vapor phase.
We consider λ values of −0.5, 0.0, and 0.5 and perform tests with
and without the eight-body λ-force in order to illustrate its effect,

which is pronounced at lower temperatures T < Tc. Note that the
tests without the λ-force do not represent a conservative force field
(as described in Sec. IV), and we include these unbalanced force
results to illustrate the strong effect of the λ-forces. In these cases,
the energy drift due to the absence of the λ-forces is quenched by
application of the thermostat.

Figure 4(a) shows the ACFs for the molecule chiral identities
at T = 4.0. The black dashed curve is the result with no chiral bias
(λ = 0). This represents a simple LJ chain with the bond and dihe-
dral angle parameters specified in Table I. The green curve gives the
λ = +0.5 case that favors homochiral interactions, and the red curve
is the λ = −0.5 case that favors a locally racemic environment. The
curves for the ACFs from runs without the λ-force contribution are
nearly identical to the λ = 0 case (dashed black curve) and are omit-
ted for clarity. For the purposes of our discussion, the dashed black
curve also represents the λ = +0.5 and −0.5 cases when the λ-force is
not included, and the solid curves give the corresponding ACFs for
identical simulation conditions, but also including the λ-force. At
T = 4.0, the system is enantiopure with the choice λ = 0.5, while for
the λ = 0.0 and λ = −0.5 tests, the system is racemic. Chiral configu-
rations without the eight-body force decorrelate at a rate comparable
to that occurring without chiral bias (black dashed curve), while
including the λ-force with λ ≠ 0 results in slower kinetics relative
to the λ = 0 case (solid red and green curves). Importantly, when
λ > 0 and the λ-force is included, chiral configurations at T = 4.0
persist over very long times, giving an approximately constant ACF
value over the times considered. Hence, the effect of the λ-force is
to drive spontaneous chiral symmetry breaking and lock molecules
into a configuration aligned with the energetically favorable chiral
state. This “locked-in” effect disappears at higher temperatures [e.g.,
T = 6.0, Fig. 4(b)], where the system is racemic for both λ = +0.5 and
−0.5. The λ-force is therefore a crucial component of this model and
drives behavior that appears analogous to spontaneous magnetiza-
tion below the critical temperature in the Ising model, with the sign
of the coupling constant (in our case, the parameter λ) determining
whether we bias toward enantiopure or racemic systems.

Why does a positive value of λ give a larger energy barrier
for inversion than a negative one? First consider an enantiopure

FIG. 4. (a) Autocorrelation functions for the chirality measure ζ at T = 4.0. The dashed curve is the ACF for λ = 0.0. ACFs for the case without the λ-force are omitted for
clarity and are nearly identical to the λ = 0.0 case. Solid curves are ACFs with the λ-force. (b) Same as in (a), but for T = 6.0.
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fluid with λ > 0, where all molecules are in the L-configuration. If
we focus on a local region in the fluid containing six molecules
and flip molecule α into the D configuration, where α is one of
the six selected molecules, all five remaining neighbors will exert
λ-forces that act to reverse molecule α’s flip. Therefore, flipping
the chiral identity of molecule α from L to D results in five ener-
getically unfavorable interactions for the enantiopure case. Now
suppose we have a racemic fluid with λ < 0, and we instead exam-
ine a local region where we have three L-enantiomers and three
D-enantiomers. If we flip the identity of L-enantiomer α so that
it exists in the D-configuration instead, molecule α now experi-
ences more favorable energetic interactions with the two remaining
L-enantiomers, and less favorable interactions with the three other
D-enantiomers. Therefore, we again have more energetically unfa-
vorable interactions (3) than favorable ones (2), though this mix of
more and less favorable interactions results in a smaller energy bar-
rier for chiral interconversion relative to the enantiopure scenario.
Hence, λ ≠ 0 will always increase the energy barrier for intercon-
version, and this effect is more pronounced for positive chiral bias
λ > 0.

We conclude our examination of the chiral tetramer model by
studying the temperature effect on chiral interconversion for the
λ ≠ 0 cases. To this end, we perform a set of tests across a num-
ber of temperatures and then fit an exponential with the form
A exp(−t/⟨tinv⟩) to the ACFs in order to extract an average tetramer
inversion time ⟨tinv⟩. Figure 5 shows ⟨tinv⟩ as a function of tempera-
ture for λ = −0.5, 0.0, and +0.2. Figure 5 illustrates how λ ≠ 0 always
results in slower kinetics, with both positive (green curve) and neg-
ative (red curve) chiral biases giving larger times than the bias-
free case (black dashed curve). As expected, the time scale for chi-
ral interconversion decreases monotonically with temperature. For
λ = −0.5, a higher temperature is required to give comparable inter-
conversion times when compared to the λ = 0.0 case, a reflection
of how the λ-forces increase the energy barrier for chiral identity

FIG. 5. Average tetramer inversion time vs temperature. Note that all tests with
λ ≠ 0 exhibit a modest increase in the inversion time and hence slower kinetics
relative to the λ = 0 case. This effect becomes dramatic for enantiopure systems,
and the circle marker denotes the lowest temperature where it was possible to
extract an inversion time for the λ > 0 case.

inversion. This effect is modest for temperatures above Tc (Fig. 5)
and substantial for λ > 0 and T < Tc, in which case we were unable
to extract interconversion times since enantiopure systems exhibit
locked-in molecules with an approximately constant ACF [see
Fig. 4(a), green curve], and hence, an exponential fit was not pos-
sible. Therefore, the curve for λ = 0.2 in Fig. 5 does not extend below
T = 4.0 (denoted by the circle marker) since spontaneous chiral
symmetry breaking was observed below this temperature.

VI. CONCLUSION
In this work, we described an energy-conserving force field for

studying chirality phenomena inspired by simple substances, such as
hydrogen peroxide and hydrogen disulfide. The model is composed
of Lennard-Jones chains with four monomer units. Bond angle and
dihedral angle force constants are chosen such that the molecules
can exist in either a left-handed or a right-handed configuration, and
energetic preference for racemic or enantiopure fluids is introduced
through a coarse-grained parameter λ. From this molecular poten-
tial, we derived an eight-body λ-force that emerges, in addition to
the Lennard-Jones-like intermolecular forces in the system, due to
the gradient operator acting on the chiral renormalization term. To
illustrate the influence of this non-trivial force, we calculated auto-
correlation functions for a single-molecule chirality measure and
demonstrated that the λ-force acts to oppose chiral interconversion
at equilibrium, giving rise to spontaneous chiral symmetry breaking
below a sharply defined temperature T < Tc. Finally, we quantified
the influence of temperature on the tetramer interconversion kinet-
ics when λ ≠ 0 and showed that the λ-force effect is most significant
for positive chiral bias and below Tc.

The model offers a simplified and coarse-grained strategy for
investigating phenomena such as chiral amplification and the nucle-
ation and growth of enantiopure phases. Our approach can be gener-
alized in future work to include chiral centers with different geome-
tries or bond numbers, as well as longer Lennard-Jones chains with
one or more chiral centers, extending our coarse-grained modeling
approach to capture a broader set of molecules where additional
energetic contributions (e.g., hydrogen bonding) can play a role in
influencing chirality. Generalizing our model to larger molecules
opens a pathway for mapping to a much broader spectrum of chi-
ral substances, since the possibility for chiral features in a molecule
increases with the number of atoms that make up the molecule.27

Another interesting potential direction is to investigate solid phase
behavior of the tetrameric model presented here, since exploring
the conditions that give rise to conglomerate and racemate crys-
tal structures is relevant to enantioselective chemical production
applications. Previous attempts by Latinwo et al. to crystallize the
unbalanced force chiral tetramer model using direct MD simula-
tions were unsuccessful,46 and crystallization in general is difficult
to study using MD.58 As a first-pass at resolving this issue, Latinwo
et al. obtained inherent structures from isochoric MD simulations
of a two-tetramer system.46 Building on this previous study, one
intriguing possibility is to explore alternate strategies (e.g., genetic
algorithms) to find the ground state configurations of the chiral
molecular model and use those optimized crystal structures as start-
ing points for our solid-phase MD tests to explore the solid-phase
structures formed by the balanced force chiral tetramer model. This
type of study would offer a foundation for finding the stable lattices
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for the tetrameric molecules for different choices of the chiral renor-
malization term, and investigate under what conditions (e.g., tem-
perature and pressure) they form conglomerate crystals vs racemate
ones.
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