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ABSTRACT
Liquid–liquid phase separation of fluids exhibiting interconversion between alternative states has been proposed as an underlying mechanism
for fluid polyamorphism and may be of relevance to the protein function and intracellular organization. However, molecular-level insight
into the interplay between competing forces that can drive or restrict phase separation in interconverting fluids remains elusive. Here, we
utilize an off-lattice model of enantiomers with tunable chiral interconversion and interaction properties to elucidate the physics underlying
the stabilization and tunability of phase separation in fluids with interconverting states. We show that introducing an imbalance in the
intermolecular forces between two enantiomers results in nonequilibrium, arrested phase separation into microdomains. We also find that
in the equilibrium case, when all interaction forces are conservative, the growth of the phase domain is restricted only by the system size. In
this case, we observe phase amplification, in which one of the two alternative phases grows at the expense of the other. These findings provide
novel insights on how the interplay between dynamics and thermodynamics defines the equilibrium and steady-state morphologies of phase
transitions in fluids with interconverting molecular or supramolecular states.
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I. INTRODUCTION

Chirality is ubiquitous in nature, and understanding how chi-
ral molecules interact and self-assemble is important to fundamental
problems in chemistry, biology, and physics as well as for practical
applications.1–4

Many biological systems are chiral at different levels of orga-
nization, including the monomers that constitute proteins, nucleic
acids, and membranes, as well as the mesoscopic and macroscopic
structures that they form, such as the DNA double helix, plant ten-
dril helices, and human appendages.2,3 From a practical point of
view, chirality also plays a key role in many industrial processes.5–7

The active ingredients of many drugs are chiral molecules, and their
different enantiomers can exhibit significant differences in activity,
absorption, selectivity, and toxicology.8–10 In addition, engineering

the chirality of inorganic materials has recently attracted a great deal
of attention in chiral sensing, catalysis, and advanced optical device
technologies.11–13 Molecular level insight on chiral preference and
phase behavior is thus desirable to guide synthesis and processing
techniques for this rich array of potential technological applications.

While chiral molecules are commonly synthesized as racemic
mixtures (equal proportions of both enantiomers), the molecules
of life are comprised of asymmetric building blocks composed of
only one of the two possible enantiomers of a given chiral pair (e.g.,
L-amino acids in proteins and D-deoxyribose in nucleic acids).1,2

This is a distinguishing feature of life. Consequently, chiral sym-
metry preferences found in nature have long been a subject of
investigation.2,14–24 While many studies have yielded useful insights,
the question of how biological homochirality arose in nature, includ-
ing whether it was predefined or random, remains an area of much
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TABLE I. Parameters for the chiral model.a

ks kb kd b

Actual 196 kcal/mol Å2 193 kcal/mol 0.003–7.76 kcal/mol 3.7 Å
Reduced 8003 643.7 0.001–25.86 1.0583

aThroughout the paper, distances are expressed in units of σtt = 3.5 Å [see Eq. (3)], energies in units of ϵ0 = 0.3 kcal/mol [see
Eq. (4)], temperatures in units of ϵ0/k = 150.9 K (k is Boltzmann’s constant), pressures in units of ϵ0σ−3

tt = 486 bars, densities in
units of σ−3

tt = 0.023 Å−3 , and time in units of σtt
√

m∗/ϵ0 = 0.3124 ps, where m∗ = 1 g/mol. The mass of a monomer was set to
8.5m∗ , yielding a molecular weight of 34 g/mol.

current activity.25–33 Studies of the origin of biological homochirality
often involve the search for common principles that seek to explain
how a small chiral imbalance can be amplified and subsequently
transmitted, giving rise to symmetry breaking.3 In this regard, gain-
ing a fundamental understanding of systems where the chirality of a
single molecule influences the phase behavior at larger length scales
is of significant importance.

Chiral states are not static in nature, and often the individual
molecules of different chiralities may interconvert. Interconversion
between alternative molecular states of systems exhibiting phase sep-
aration is a ubiquitous phenomenon that has been previously found
in many condensed matter systems.34–47 In this work, we study the
interplay between chiral interconversion kinetics and phase behav-
ior in the liquid phase of a three-dimensional, off-lattice, flexible
tetramer model.48 This model consists of chiral tetramer molecules
with a tunable interconversion rate between the two enantiomeric
forms. It also includes a pair potential energy function with a tun-
able chiral bias parameter that can favor either locally racemic or
heterochiral interactions. We consider two formulations of the chiral
model—one with energy conservation and another one with energy
dissipation.

The conserved-force formulation was introduced recently by
Petsev et al.,49 but we use different numerical values for the model
parameters (see Table I). In equilibrium, when all interaction forces
are balanced, the growth of the phase domain is restricted only by
the size of the system. In this case, we observe the phenomenon
of phase amplification (phase bullying), in which one of the two
alternative phases grows at the expense of the other.48,50 The dissi-
pative formulation considers an imbalance of intermolecular forces
resulting from not applying the gradient operator to the chirality-
dependent term in the potential energy function.48 It corresponds to
a nonequilibrium system, in which the imbalance in intermolecular
forces facilitates racemization. This racemizing force competes with
the equilibrium interconversion and diffusion. At infinite times,
this competition leads to the formation of steady-state arrested
microphase domains.

The rest of this paper is organized as follows. In Sec. II, we
describe the tetramer model and introduce the model parameters
that we use to tune chiral interactions and interconversion kinet-
ics. In Secs. III A and III B, we discuss our results on the conserved
and dissipative force formulations of the chiral model, respectively.
We show how the interplay between spinodal decomposition and
interconversion affects phase separation behavior in the two for-
mulations of the chiral model. In Sec. IV, we provide concluding
remarks and suggest some possible directions for future inquiry.
Appendixes A–E provide the details on the theoretical description
of the computational results.

II. MODEL AND METHODS
This simple chiral tetramer model, inspired by the small-

est known chiral molecule in nature, hydrogen peroxide,51–53 was
introduced by Latinwo et al.48 and subsequently reformulated
by introducing an additional eight-body force that produces an
energy-conserving force field.49 A tetramer of the chiral model is
composed of four monomers along a three-bond backbone (Fig. 12).
The instantaneous state of a tetramer is specified by the location
of monomers along the backbone at r1, r2, r3, and r4. Specifically,
molecules feature left-handed (A-type) and right-handed (B-type)
configurations and achiral transition states (Fig. 12). The shape of
the molecule is determined by the intramolecular potential energy
function that includes contributions from bond stretching, bond
angle deformation, and dihedral angle rotation and is given by

Φ(1)({ri}) =
3

∑
i=1

ks

2
(ri,i+1 − b)2

+
2

∑
i=1

kb

2
(Θi −

π
2
)

2
+ kd cos2 ϕ, (1)

where ri,i+1 is the instantaneous distance between sites i and i + 1,
b represents the equilibrium bond length, Θi and ϕ are the bond
and dihedral angles, and ks, kb, and kd are the force constants for
bond stretching, angle bending, and dihedral motion, respectively.
The dihedral force constant kd controls the rigidity of the dihe-
dral angle of a tetramer and determines the rate of interconversion
between a pair of mirror image configurations. The chiral model
parameters are given in Table I. The model’s behavior is only a func-
tion of dimensionless (reduced) variables. The parameters in Table I
are suggested physical constants for translating reduced units (e.g.,
P∗ = Pσ3

tt/ϵ0) into actual physical quantities (e.g., P = P∗ϵ0/σ3
tt).

In order to monitor the chirality and control the intermolecu-
lar interactions between tetramer pairs, we define a scalar chirality
measure, −1 ≤ ζ ≤ 1,

ζ(r1, r2, r3, r4) =
r12 ⋅ (r23 × r34)

∣r12∥r23∥r34∣
, (2)

where, for each tetramer, the chirality of the enantiomer is deter-
mined by the sign of ζ. This measure attains its lower and upper
limits for the mirror image left-handed (A-type) and right-handed
(B-type) configurations and goes to zero for the achiral transition
states illustrated in Fig. 12 (see Appendix A).
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The model’s intermolecular potential energy function between
two molecules α and γ is given by

Φ(2)({rα
i },{rγ

j }) =
4

∑
i,j=1

ϵtt(ζα, ζγ
)υ
⎛
⎜
⎝

∣rα
i − rγ

j ∣

σtt

⎞
⎟
⎠

, (3)

where the double sum runs over each site on each tetramer, σtt
is the pair potential distance parameter that specifies the range of
the site–site interactions, υ is the 12-6 Lennard-Jones function, and
ϵtt is the strength of the interaction energy between tetramers. The
interaction energy term ϵtt can be tuned to favor/disfavor homochi-
ral/heterochiral interactions between tetramers α and γ and is given
by

ϵtt(ζα, ζγ
) = ϵ0[1 + λζ(rα

i=1,2,3,4)ζ(r
γ
i=1,2,3,4)], (4)

where λ is the chirality renormalization parameter such that
λ < 0 favors heterochiral interactions between tetramers α and γ
(i.e., lower energy when α and γ have opposite chiralities), λ > 0
favors homochiral interactions between tetramers α and γ (i.e., lower
energy when α and γ have the same chirality), and λ = 0 represents
a bias-free scenario.48 We note that while its numerical value is an
adjustable model parameter, the chirality renormalization parame-
ter effectively represents the local binding preferences of real chiral
molecules. For instance, both aspartic acid and glutamic acid dis-
play homochiral bias (λ > 0) evident from their enantiopure crystal
structures,54 while both serine and histidine exhibit heterochiral bias
(λ < 0) evident from their racemic crystal structures.55

The two formulations of the chiral model differ in the forces
that stem from the intermolecular potential defined in Eq. (3). In the
first formulation,48 only the Lennard-Jones force on monomers with
interaction energy ϵtt is considered. However, the gradient opera-
tor that yields the forces corresponding to the pair potential defined
in Eq. (3) applies rigorously to the entire argument inside the dou-
ble summation. Hence, this model introduces dissipation through
a non-conservative force. In the second formulation,49 the gradi-
ent properly operates on the Lennard-Jones and on the chirality-
dependent energy pre-factor, producing a coarse-grained energy-
conserving force field. That both models are coarse-grained follows
from the fact that the interaction energy between two tetramers
depends explicitly on their respective chiralities, a tetramer-level (as
opposed to site-level) quantity.

III. RESULTS AND DISCUSSION
Computational results for the two formulations of the chiral

model, with conservative and dissipative intermolecular forces, are
presented in this section. The time evolution of both formulations
is described based on a generalized Cahn–Hilliard theoretical model
of phase separation, which includes the molecular interconversion
of species. The model is a mean field approach, which is accurate
away from the critical point.

A. Chiral model with conservative intermolecular
forces

In Fig. 1, the time dependence of the dihedral angle of a single
tetramer in a racemic mixture of 1000 tetramers, at different tem-
peratures and for a range of values of the dihedral force constant,
is shown for the chiral model with conservative forces. It can be

FIG. 1. Time dependence of the instantaneous dihedral angle of a typical tetramer
in a racemic mixture at P = 0.1 for the conservative-force formulation of the model,
at several values of T and kd . (a) T = 0.6, (b) T = 1.7, and (c) T = 2.3, with
kd = 5 (green), kd = 9.86 (orange), and kd = 19.86 (purple). (d) Behavior of the
dihedral angle at a very low value of the dihedral constant, kd = 0.001.

seen that the enantiomers do not interconvert within the simula-
tion times sampled here [Figs. 1(a)–1(c)]. Interconversion between
the two enantiomorphs is achieved only at much lower kd values [kd
= 0.001 in Fig. 1(d)].

When a binary mixture with equal concentrations of intercon-
verting molecules is quenched from a high temperature to a low
temperature, below the critical temperature of demixing, there are
two processes that may occur. Either the system may phase sepa-
rate, through a process known as spinodal decomposition,56 or one
of the two alternative phases will grow at the expense of the other,
a process known as phase amplification.50 The chiral model with
conservative intermolecular forces always undergoes phase ampli-
fication below the critical demixing temperature. This is because in
a system where molecules can interconvert, the number of molecules
of each type (chirally distinct enantiomers in the present case) is
not a conserved quantity, and hence, the system minimizes its free
energy by avoiding the energetic penalty associated with the forma-
tion of an interface, and one of the two alternative phases grows at
the expense of the other. Which of the two phases grows is of course
a stochastic event.

The above considerations apply strictly only at true thermody-
namic equilibrium. From a numerical point of view, it is important
to understand that the “stiffness” of the force constant for the dihe-
dral angle, kd, determines the ease with which such equilibrium can
be attained. The mean frequency with which an individual molecule
is able to switch its chirality varies in the opposite direction to any kd
variation. Thus, below the critical temperature for demixing, and for
small enough values of kd, interconversion occurs frequently and the
system is able to attain true equilibrium, resulting in phase amplifi-
cation. On the other hand, for sufficiently large values of kd, inter-
conversion is increasingly rare, the system is under diffusive control,
and phase separation, rather than amplification, occurs on practical
time scales accessible to simulation, even if the system is under the
action of conservative forces.
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The mixed diffusion and interconversion dynamics of the chi-
ral model can be described through a Cahn–Hilliard theoretical
model of phase separation, which includes interconversion between
species.50 According to this model, the dynamics of such a system is
characterized by a growth rate (see Appendix B 1 and Ref. 57) of the
form

ω(q) = −ΔT(LR2
0 +Mq2

)(1 − ξ2q2
), (5)

where q is the wave number (=2π/r), R0 is the size of the tetramer
(adopted here as R0 = 1 in reduced units), ΔT = T/Tc − 1 is the dis-
tance to the critical temperature of demixing (negative when the
system is in the unstable region), and M and L are the diffusion and
interconversion Onsager kinetic coefficients, respectively. ξ2 is the
square of the correlation length of mesoscopic concentration fluctu-
ations, which diverge at the spinodal as ξ2

∼ 1/(−ΔT), in the mean
field approximation. The self-diffusion (mobility) coefficient is given
by M ≈ kT/6πηR0 (where η is the shear viscosity). The interconver-
sion Onsager kinetic coefficient, L, depends on the strength of the
rigidity spring constant, kd, such that it becomes zero in the limit
when kd →∞ and diverges when kd → 0. Therefore, for large val-
ues of kd (M ≫ L), phase separation is expected, while for very small
values of kd (L≫M), phase amplification is predicted.

Figure 2 shows the phase diagram of the chiral model in the
case when kd = 0.001 (L≫M) and interconversion dynamics con-
trols the phase behavior of the system. The pressure dependence of
the critical temperature is empirically described by

Tc(P) = Tc(P = 0) +
αP

1 + P
, (6)

where Tc(P = 0) = 2.19 and α = 2.43. We point out that although
kd primarily determines the interconversion rate, it also affects the
system’s equilibrium thermodynamics. For example, the total pair
interaction energy shows a small but non-zero dependence on kd
at otherwise identical thermodynamic conditions (Appendix C).
Accordingly, one expects the critical temperature to depend on kd.
This effect is at the limit of detectability, and for numerical purposes,

FIG. 2. Phase diagram showing chiral phase amplification for the chiral model with
conservative intermolecular forces, heterochiral bias parameter λ = 0.5, and rigid-
ity spring constant kd = 0.001. The circles on the solid curve are the computational
data for the critical temperature of equilibrium phase separation, and the curve is
the fit of Eq. (6). The images show the snapshots of the equilibrium states for
the pressures P = 0.1, P = 1, P = 5, and P = 10 below the critical temperature
and at P = 1 above the critical temperature. The triangles show the prediction of
the critical temperature from the extrapolation of the chiral model with dissipative
intermolecular forces to the limit kd →∞ (see Sec. III B).

kd can be considered as controlling interconversion kinetics while
having at most a modest effect on the system’s thermodynamics.

As shown in Fig. 2, where λ = 0.5, above the critical tempera-
ture, a homogeneous mixture of A- and B-enantiomers is observed
throughout the simulation box. The apparent mesoscopic inho-
mogenities shown by the snapshot in Fig. 2 the critical temperature
are attributed to the growing correlation length of concentration
fluctuations in the critical region. Below Tc, phase amplification, in
which one phase grows at the expense of the other, occurs. Note
that by quenching the racemic mixture below Tc, due to the effect of
phase amplification,50 the system equilibrates arbitrarily to either A-
or B-type enriched enantiomer phases as illustrated in Fig. 2, thereby
establishing a chiral preference.

B. Chiral model with dissipative intermolecular forces
Dissipative intermolecular forces prevent the chiral model from

relaxing to an equilibrium state; instead, this system evolves into a
nonequilibrium steady state. This effect can be accounted for by a
modification in the growth rate formula, Eq. (5), where the energy
dissipation causes forced racemization of species. This forced racem-
ization competes with the inherent equilibrium interconversion.

We first studied the phase behavior of the dissipative chiral
model in the absence of an explicit energetic bias for homochiral
interactions (λ = 0). Figure 3 shows the pairwise tetramer–tetramer
center of mass radial distribution profiles g(r) for a bias-free sys-
tem of 1000 tetramers at t = 106 after starting from a homo-
geneous racemic configuration. While complete phase separation
is not observed on the time scale of the simulations, the partial
radial distribution profiles illustrate the spontaneous enhancement
of homochiral interactions in the tetramer model at P = 10 and T
= 1.2, illustrated by the sharp first peaks of g(r) profiles for A–A and
B–B tetramer pairs. Nevertheless, without an explicit bias parame-
ter, the enhancement of homochiral interactions is observed only at
very high pressures and low temperatures, where diffusion and chi-
ral interconversion kinetics are slow. Consequently, in this study,
we employ a homochiral bias parameter that energetically favors
homochiral interactions (λ = 0.5) to study the liquid–liquid phase
separation (LLPS) of the chiral system.

Figure 4(a) depicts the strong kd dependence of chiral intercon-
version kinetics by showing the temporal evolution of the dihedral

FIG. 3. Pairwise local structure in the absence of an explicit energetic bias at kd
= 25.86 for the dissipative-force formulation of the chiral model. Tetramer–tetramer
center of mass radial distribution functions for A–A (green), B–B (blue), and A–B
(red) pairs indicate (a) mixing at low pressure (P = 0.1) and high temperature (T
= 2.6) and (b) local homochiral bias at high pressure (P = 10) and low temperature
(T = 1.2). The inset shows the overlap between the green and blue curves.
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FIG. 4. Interconversion and racemization kinetics of the dissipative-force formula-
tion of the chiral model. Temporal evolution of (a) a single tetramer in a racemic
mixture, with dihedral force constant (from top to bottom) kd = 5 (green), kd = 9.86
(orange), and kd = 19.86 (purple) at P = 0.1, T (left to right) = 0.6, 1.2, and 1.7 and
(b) the total enantiomeric excess [see Eq. (7)] of an initially enantiopure system,
with dihedral force constant (from left to right) kd = 5 (green), kd = 9.86 (orange)
and kd = 19.86 (purple) at P = 0.1 and T = 0.6, 1.2, and 1.7.

angle of a single tetramer in a racemic mixture of 1000 tetramers. At
high kd and low T, the tetramer persists longer in the vicinity of the
stable enantiomorphs (ϕ ≈ −90○ for A-type and ϕ ≈ 90○ for B-type
tetramers). In particular at kd = 19.86 and T = 0.6, it reaches the limit
at which no interconversion is observed within the simulation time
(τobs). In this limit of slow interconversion, where the characteris-
tic interconversion time of a tetramer τINC, defined as the average
time required for a tetramer to switch chirality, is much longer than
the total simulation time τobs, the system behaves thermodynami-
cally as a binary mixture of enantiomers that do not interconvert. In
contrast, at low kd and high T, the tetramer interconverts between
its two stable enantiomorphs very rapidly. At these conditions, the
achiral transition states (ϕ ∼ −180○, 0○, 180○ for cis and trans config-
urations, respectively) also become more accessible. In this opposite
limit of very fast interconversion, the system can be treated ther-
modynamically as a single-component fluid since the characteristic
interconversion time τINC is much shorter than the total simulation
time τobs.

Comparing the interconversion kinetics of the dissipative force
formulation of the chiral model [Fig. 4(a)] with the conservative
force formulation (Fig. 1), one can see that dissipation lowers the
barrier to enantiomer racemization, thereby causing the chiral inter-
conversion rate to increase. The increase in the interconversion
kinetics in the dissipative formulation reflects the absence of the
additional force contribution arising, in the conservative case, from
applying the spatial gradient operator to the chirality-dependent
characteristic energy ϵtt .

Next, to investigate the effect of the interconversion rate on
the racemization kinetics, we study the time-dependent behavior
of the average chirality [the total enantiomeric excess (EE)] of
the tetramer system, starting from an enantiopure configuration
[Fig. 4(b)]. The total enantiomeric excess (EE) for the bulk tetramer
system is defined by

Total EE =
NA −NB

NA +NB
, (7)

where NA and NB are the number of A- and B-type tetramers,
respectively. At low kd and high T, systems that start from enan-
tiopure configurations (total EE = 1) tend rapidly toward racemic
mixtures with vanishing average chirality, consistent with the cor-
responding tetramer interconversion kinetics profiles. Conversely,
the total EE of high kd and low T systems remains constant within
τobs, demonstrating that these systems can be treated as non-
interconverting binary mixtures [Fig. 4(b), kd = 19.86 and T = 0.6
and 1.2].

In order to understand the growth of the spatial correlation
of enantiomorphs as a function of time, we compute a time- and
position-dependent order parameter ee(r, t) given by

ee(r, t) =
NA(r, t) −NB(r, t)
NA(r, t) +NB(r, t)

. (8)

Equation (8) applies to the case where the molecule at r = 0
is an A enantiomorph. If instead a B molecule is at r = 0, the
numerator changes to NB(r, t) −NA(r, t). This order parameter is
inspired by Cahn–Hilliard theory,58 where ee(r, t) defines the length
scale dependent ordering process in a phase-separating binary mix-
ture when quenched below the coexistence and spinodal lines.
The physical significance of the order parameter is as follows: The
order parameter approaches unity when the neighbors of an enan-
tiomorph at a distance r are of the same type as the molecule at
the origin, signifying compositional inhomogeneity (and possibly
phase separation) at the length scale r. When the enantiomorphs
are homogenously mixed, ee(r, t) decays to zero. We compute the
spatial correlation of ee(r, t) using

C(r, t) =
⟨ee(r′, t)ee(r′ + r, t)⟩ − ⟨ee(r′, t)⟩⟨ee(r′ + r, t)⟩
⟨ee(r′, t)ee(r′, t)⟩ − ⟨ee(r′, t)⟩⟨ee(r′ + r, t)⟩

. (9)

Figure 5 shows the temporal evolution of the C(r, t) profiles for
a homogeneously mixed racemic mixture of 1000 particles with kd
= 11.86, quenched from T = 2.6 to T = 0.8. The distance R at which
C(r, t) first decays to zero (r = R) gives the average domain size,
hence the characteristic length scale of the phase separation. The
two enantiomorphs A and B are marked as green and blue tetramers,
respectively. Initially, the spatial correlation function C(r, t) fluctu-
ates around zero, signifying that the enantiomorphs are homoge-
neously mixed before the quench, R(t = 0) = 0. After the quench,
the tetramers interconvert and diffuse in such a way that local enan-
tiopure configurations start to be favored. At early times (t = 150),
the correlation length R is small, indicating the formation of small
enantiomorph clusters. At later stages (t = 300), phase separation
proceeds rapidly as these small domains merge. The rapid phase sep-
aration process slows down after t = 300, and coarsening of the A-
and B-rich phases takes over. This final stage completes when the
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FIG. 5. Phase separation kinetics of the dissipative-force formulation of the chi-
ral model. Temporal evolution of phase separation depicted by the instantaneous
spatial correlation profiles and representative snapshots for a racemic mixture (kd
= 9.86, T = 0.8, and P = 0.1).

rough edges of the interface between the two enantiomorph phases
are smoothed (t = 4000).

In Fig. 6, we illustrate kinetically arrested liquid–liquid phase
separation for the dissipative-force formulation of the chiral model
at the scale of the simulation system (wave number, q = 2π/ℓ, where
ℓ is the length of the simulation box). In particular, starting from a
homogeneous racemic mixture of enantiomers, we study the steady-
state behavior of the tetramer system upon quenching to a temper-
ature and pressure of interest. Figure 6(a) shows the representative
local enantiomeric excess profiles for phase-separated (kd = 19.86
and T = 1) and homogeneously mixed systems (kd = 19.86 and T
= 2) that have reached steady-state. Figure 6(b) shows the apparent
onset temperature of liquid–liquid phase separation (T∗) defined as
the temperature where the growing steady-state domain size, R∞,
reaches the size of the simulation box, Rmax ∼ ℓ. This temperature
increases with the rigidity of the dihedral angle of the tetramers.
Phase separation can be considered fully developed below the onset
temperature. However, interconversion frustrates complete phase
separation above the onset temperature. As illustrated by the sim-
ulation snapshots of Fig. 6(b), above T∗, we observe phase separated
domains of smaller sizes R∞ < Rmax.

The kd dependence of the temporal evolution of an equimolar
mixture of enantiomorphs as the system moves from a homoge-
neous mixture toward phase separation is illustrated in Figs. 7(a)
and 7(b). In particular, Figs. 7(a) and 7(b) depict R(t) normalized
by the maximum phase separation length scale Rmax (i.e., when the
domain growth is restricted by the finite size ℓ of the system) for
short [Fig. 7(a)] and long [Fig. 7(b)] time scales. When R(t) reaches

FIG. 6. Chirality-induced liquid–liquid phase separation with explicit bias that favors
homochiral interactions (λ = 0.5) in the dissipative-force formulation. (a) Local
enantiomeric excess profiles as a function of distance normal to the planar inter-
face z = 0 for a fully phase separated system (R∞ = Rmax) (left) and a system
with small enantiomorph clusters (R∞ < Rmax) (right). (b) Onset temperature, T∗,
for liquid–liquid phase separation at the length scale of the simulation box as a
function of dihedral angle force constant, kd , at P = 0.1. The colored points repre-
sent the conditions for the snapshots of the chiral system above, at, and below T∗.
The dashed line is given as a guide for T∗. The gray lane illustrates the uncertainty
in the definition of T∗ ≈ ±0.1.

Rmax, the mixture is fully separated at the scale of the simulation box
and the domains stop growing. The dashed curves indicate the theo-
retical prediction for the domain growth if it would not be restricted
by the size of the simulation box (see below and Appendix D). At
kd = 19.86, corresponding to a relatively rigid dihedral angle spring
constant, the time of phase separation τLLPS, defined as the time
when R(t)/Rmax = 1, is about 800 [see Fig. 7(a)]. When kd = 9.86,
the time required for full phase separation increases to τLLPS = 4000.

Figure 7(b) illustrates the infinite time limit of the dependence
of the steady-state domain length, R(t →∞) = R∞ ∝ kd, on the
dihedral force constant of the tetramer model at P = 0.1 when the
system is quenched from T = 2.6 to T = 0.8. This dependence is con-
sistent with the result presented in the inset of Fig. 8(b), where R∞
is depicted as proportional to kd. It is shown that below kd = 25.86,
the domain growth saturates at a certain steady-state value below
Rmax, which is shown by the smaller tetramer inhomogeneities in
Fig. 8(a). The emergence of such smaller domain sizes suggests that
the growth of the domains at these conditions is restricted by the
dissipation in the intermolecular interaction forces, not by the finite
length scale of the simulation box. As the interconversion Onsager
kinetic coefficient, L, is inversely related to the characteristic time of
interconversion, τINC, we note that the data can be well described
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FIG. 7. Growth of the domain size R(t) in the dissipative-force formulation of the
chiral model (a) for short growth times and (b) long growth times for dihedral force
constants kd = 5 (green), kd = 9.86 (orange), and kd = 19.86 (purple) at P = 0.1
and T = 0.8. R(t)/Rmax = 1 corresponds to the length scale of the simulation box.
The size of a phase domain is restricted by this length scale, and thus, the dashed
curves correspond to predictions of the domain growth that could be observed if it
would not be restricted by the size of the simulation box. The open circles are com-
putational data, while the solid and dashed curves are obtained from the maximum
of the time-dependent structure factor for the domain growth—see Appendix D and
Ref. 57. The steady-state limit of the size of a phase domain, R∞, is proportional
to the magnitude of the dihedral force constant.

by 1/τINC = a1/R2
∞ + a2/R4

∞ [solid line in Fig. 8(b)], consistent with
the kinetics of the domain growth presented in Fig. 7(b). When kd
= 25.86, the system reaches the onset of phase separation where the
enantiomers completely phase separate at the size of the simulation
box upon reaching equilibrium (R∞ = Rmax). Since R∞ ∝ kd and the
interconversion rate is related to the kinetic Onsager coefficient as
L = 1/τINC, in which the term of order 1/R4

∞ is negligible (for all
R∞ > 1) in the first order approximation, L is given as

L =
1

τINC
≈M

T2

k2
d

, (10)

where the squared temperature dependence comes from the natu-
ral coupling between dihedral angle rotation and thermal energy
in an equilibrium ensemble. Furthermore, the assumption L∝M
provides a good fit to simulation data (see Fig. 8) and implies
that enantiomer interconversion is linked to rotational mobility
(the latter being proportional to translational mobility through the
Stokes–Einstein and Debye–Stokes–Einstein equations).

The generalized Cahn–Hilliard model with interconversion of
species, introduced in the discussion of Eq. (5), can be adapted to
the dissipative chiral model by introducing an imbalance of chemical
potentials, which produces nonequilibrium forced racemization (see
Appendix B 2 and Ref. 57 for details). As a result, the form of the
growth rate for the dissipative formulation of the chiral model is

ω̃(q) = −L(T̂ + q2
) −MΔTq2

(1 − ξ2q2
), (11)

FIG. 8. Change in compositional heterogeneity with chiral interconversion kinetics
at T = 1.7 and P = 0.1 in the dissipative-force formulation. (a) Steady-state snap-
shots of chiral liquid systems at various dihedral force constants (kd ). (b) Steady-
state domain size as a function of interconversion rate, 1/τINC. The solid line is
the approximation given by 1/τINC = a1/R2

∞
+ a2/R4

∞
, where a1 = 4.6 × 10−3

and a2 = 3.8 × 10−4. In the first-order approximation, this follows from Eqs. (10)
and (12). The inset shows the linear correlation between R∞ and kd . The colored
points highlight the results corresponding to the three dihedral force constants for
which the domain growth is shown in Fig. 7.

where T̂ = T/Tc and L is given by Eq. (10). It is seen that the only
difference between Eqs. (5) and (11) is that the interconversion
Onsager kinetic coefficient, L, is decoupled from ΔT. This equation
is illustrated in Fig. 9, in which the effect of dissipation can be seen
in the downward shift of the growth rate curve. We note that, in this
form, this growth rate formula resembles the one introduced in the
nonequilibrium lattice model of Glotzer et al., in which forced inter-
conversion is decoupled from equilibrium phase separation.43,44

Glotzer and co-workers showed that phase separation driven by
spinodal decomposition can be kinetically arrested at a certain scale
due to the suppression of the growth of low wave-number inhomo-
geneities. Our computational results for the dissipative force formu-
lation of the chiral model confirm the assessments made by Lefever
et al.,46,47 and more recently, Lamorgese and Mauri,45 who argued
that the results of Glotzer et al.43,44 are limited to nonequilibrium
conditions, where a source of forced interconversion, which inhibits
the relaxation of the system to equilibrium, leads to the steady-state
phenomenon of arrested phase separation into microdomains.

One can predict the size of the steady-state arrested domains
from the condition that the growth rate becomes zero at a nonzero
wave number, q

−
,57 which is inversely proportional to the size of the

domain, q
−
∝ 1/R∞. Solving Eq. (11) for this wave number in the

first order approximation (T2
/k2

d ≪ 1) gives

q2
− =

L
−Deff

≈
T2

k2
d(−ΔT̂)

, (12)
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FIG. 9. Growth rate, given by Eq. (11), at constant temperature for dihedral force
constants: kd = 5 (green), kd = 9.86 (orange), and kd = 19.86 (purple), where
T = 1.8, Tc = 2.3, M = 0.8, and L is calculated from Eq. (10). The red-dashed
line corresponds to the inverse maximum size of the phase domain 1/Rmax ≈ q∗

∼ 1/ℓ. Here, we adopt q∗ = 0.11 as obtained from the onset of phase separation
on the length scale of the simulation box. The existence of a non-zero q

−
> q∗

indicates the formation of steady-state microdomains.

where Deff = (MΔT + L)/T̂ is the effective mutual diffusion coeffi-
cient and ΔT̂ = ΔT/T̂ = 1 − Tc/T. Indeed, as shown in the steady-
state limit of Fig. 7(b) and in the inset of Fig. 8(b), R∞ is proportional
to kd as predicted by Eq. (12). Equation (12) illustrates the physics of
microphase separation: the competition between racemization and
negative diffusion.

Within our simulations, we observed a finite size effect, in
which the small size of the simulation box limited the size of the
steady-state microdomains, such that, computationally, it would
appear as if complete phase separation was occurring. Such an effect
may also be predicted from the growth rate formula and characteris-
tic size, Eqs. (11) and (12). For certain temperatures (at constant kd),
the characteristic wavelength, q

−
, reaches the characteristic wave-

length of the simulation box, q∗ (which is related to the size of
the simulation box through Rmax ∼ 1/q∗); hence, phase separation
is observed on the length scale of the computation box. Since q

−
is

cut off at q∗, the temperature corresponding to the cutoff (T∗) char-
acterizes the onset of the observed phase separation. The effect of
this cutoff is consistent with what is illustrated in Fig. 7(b), where
(for kd = 9.86 and kd = 19.86) the computational data show that the
steady-state domain size stops growing when the system reaches the
size of the simulation box.

In order to further elucidate the kinetics of phase separation, we
next consider the correlations between the characteristic intercon-
version time of a tetramer τINC, the characteristic phase separation
time τLLPS, and the characteristic molecular self-diffusion time τD,
given by

τD =
R2

0

Deff
, (13)

where R0 is the radius of the tetramer’s first solvation shell based
on the site–site radial distribution function and Deff is the effective
(kd-dependent) self-diffusion coefficient computed from the slope
of the time dependence of the mean-square displacement of all
tetramers in the simulation box (Fig. 10). The circles correspond to
temperatures below the onset of phase separation. Figure 10 demon-
strates a strong coupling between the characteristic time of molec-
ular diffusivity τD, the characteristic time of phase separation τLLPS,
and the characteristic time of interconversion τINC.

FIG. 10. Temperature dependence of the characteristic time scales in the
dissipative-force formulation of the chiral model for dihedral force constants: kd
= 5 (green), kd = 9.86 (orange), and kd = 19.86 (purple) at P = 0.1. (a) Charac-
teristic time for liquid–liquid phase separation at the length scale of the simulation
box, q = q∗. The curves are τLLPS ∝ 1/ω̃(q∗), where ω̃(q) is given by Eq. (11)
where it was found that q∗ = 0.15 and Tc = 2.35. The condition τLLPS →∞ corre-
sponds to T = T∗. (b) Characteristic times for chiral interconversion. τINC ∝ 1/L,
and the curves are given by Eq. (E1). (c) Characteristic self-diffusion times, and
the curves are given by Eq. (14). The parameters of Eqs. (11), (E1), and (14) used
for the fits are given in Appendix E.

In the two phase region, the growth rate formula, Eq. (11),
describes the characteristic times of liquid–liquid phase separa-
tion (LLPS) on the length scale of the simulation box. As seen in
Fig. 10(a), the time of LLPS becomes infinite when the microdomain
sizes reach the size of the simulation box, q

−
= q∗. As indicated

in Fig. 10, this scenario corresponds to T = T∗. The time of LLPS
affected by interconversion is defined through Eq. (11) as τLLPS
= aLLPS/ω̃(q∗), where the amplitude aLLPS = 0.34, in the region
where q

−
< q∗ (or, equivalently, where R∞ > ℓ) as illustrated in

Fig. 10(a) (see Appendix E for details).
The interconversion time in the two phase region (T < T∗), as

shown in Fig. 10(b), is well-described by the extended version of
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Eq. (10) [Eq. (E1)] in which the next order, k4
d term, is included. In

addition, the self-diffusion coefficient affected by interconversion is
theoretically predicted from the coefficient of q2 in ω̃(q) as given
by Eq. (B8) (see also Appendix E) such that the effective diffusion
coefficient Deff = (MΔT + L)/T̂, and Eq. (13) reads

τD =
R2

0

(MΔT + L)/T̂
. (14)

The self-diffusion time shown in Fig. 10(c) exhibits a crossover from
the inverse mobility, τD ∝ T̂/MΔT (at large kd), to the interconver-
sion time, τD ∝ T̂/L (at small kd).

The asymptotic limit of τLLPS indicates the onset temperature,
T∗, where phase separation occurs on the length scale of the sim-
ulation box. The onset temperature as a function of dihedral angle
force constant, kd, is depicted in Fig. 11(a). The onset temperature
is numerically calculated from ω(q = q∗) = 0, given by Eq. (11). In
the first order approximation, this solution is given by Eq. (12) if
q
−
= q∗ and T = T∗. As depicted in Fig. 11(a), the onset of arrested

phase separation on the scale of the simulation box also depends
on pressure. Physically, this originates from the density-dependent
energetic bias toward homochiral interactions (Fig. 3), represented
phenomenologically by the introduction of λ > 0 in the model. Ther-
modynamically, this pressure dependence of T∗ can be attributed to

FIG. 11. Dihedral force constant dependence of the onset temperature of phase
separation on the length scale of the simulation box in the dissipative-force formu-
lation chiral model for P = 1.0 (red circles), P = 0.5 (blue circles), and P = 0.1
(black circles). The curves are numerically calculated from the first solution of
ω̃ = 0, given by Eq. (11), when q

−
= q∗ = 0.11 ≈ 1/Rmax ∼ 1/ℓ, T = T∗, and

Tc(P = 1.0) = 3.45, Tc(P = 0.5) = 2.91, and Tc(P = 0.1) = 2.3 for different
pressures (a) and in rescaled coordinates (b). The triangles, shown in (b), are
obtained from the asymptotic limits of the time of liquid–liquid phase separation,
τLLPS →∞, as shown in Fig. 10(a) for q∗ = 0.15 and Tc = 2.35.

the underlying pressure dependence of the critical temperature of
the liquid–liquid transition in the thermodynamic limit (Tc), at infi-
nite kd, due to the compressibility of the tetramer model. The values
for the critical temperature for three different pressures are given in
the caption of Fig. 11(a).

Rescaling the onset temperature by Tc(P) gives the universal
function of kd depicted in Fig. 11(b). We also show in Fig. 11(b) the
predictions of T∗ obtained for three selected values of kd through the
asymptotic limits of τLLPS →∞ as illustrated in Fig. 10(a). The pre-
dictions of T∗ are just above the observed onset temperature because
they correspond to slightly higher values of q∗ and Tc (0.15 vs 0.11
and 2.35 vs 2.30, respectively). This difference can be attributed to
uncertainty in obtaining the onset of phase separation on the scale
of the simulation box. These values, however, are in good agreement
with the computational T∗ data obtained from the onset of phase
separation.

As predicted from the growth rate factor, both conservative and
dissipative force formulations will become identical in the limit of an
infinitely rigid spring constant (kd →∞) or when the kinetic inter-
conversion Onsager coefficient goes to zero (L→ 0). We confirm
this prediction by extrapolating the critical temperatures shown in
Fig. 11(a) to kd →∞ and comparing Tc(P) to the ones obtained
from the conservative force formulation. Remarkably, this pressure
dependence of the critical temperature for the conservative-force
formulation of the chiral model is fully consistent with the predic-
tion obtained from the dissipative-force formulation as shown in
Fig. 2. This is evidence for the consistency of our computational data
for these two alternative formulations of the chiral model.

IV. CONCLUSION
The computational study of a three-dimensional off-lattice

model of enantiomers with tunable chiral-interconversion kinet-
ics reveals that arrested liquid–liquid phase separation into
microdomains is observed when the intermolecular forces are not
fully balanced, thus generating dissipation of energy, which converts
this model into a nonequilibrium steady-state model. This imbal-
ance acts as a racemizing force that causes the arrest of the phase
domain growth. In the conserved formulation, when the forces
are balanced, the phenomenon of phase amplification, when one
phase grows at the expense of the other, emerges, and the phase
domain growth is only restricted by the system size. From a numer-
ical point of view, when the dihedral force constant kd increases,
the kinetics of interconversion slow down correspondingly, causing
phase amplification to slow down and making it accordingly more
difficult to observe the phenomenon on practical simulation times.
In the limit of kd →∞, the system would undergo the usual phase
separation.50

The physics driving amplification originates from the fact that
molecules can interconvert, and “species” (in this case, molecules
of types A and B) are not conserved. This provides the system
with a mechanism for avoiding the energetically unfavorable forma-
tion of an interface between A-rich and B-rich phases, namely, by
committing (randomly, of course) to one or the other choice.

This work can be extended to further investigate the role of
the chiral bias parameter, λ, on interconversion and phase sep-
aration behavior. The tetramer model can also be generalized to
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consider the nonzero enthalpy of interconversion where the inter-
conversion rates for A → B and B → A could be different; thus,
the equilibrium concentration of the enantiomers would be a func-
tion of temperature. Generalization of the approach developed here
for the particular case of an interconvertible chiral model could sig-
nificantly improve the fundamental understanding of the nature of
phase behavior in a broad range of systems including polyamor-
phic liquids59,60 and nonequilibrium phase separation of proteins
into microdomains.61–64 Examples of such possible generalizations
include molecules whose local environment can fluctuate between
(low-density, low-energy) and (high-density, high-energy) config-
urations (e.g., tetrahedral liquids, such as water or silicon), and
proteins undergoing reversible structural fluctuations.
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APPENDIX A: MOLECULAR SIMULATION DETAILS

We conducted the simulations using a modified version of the
molecular dynamics (MD) package Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) for the conservative force
formulation.49 The modified version takes into account the addi-
tional, multi-body forces49 arising from the explicit chirality depen-
dence of the interaction energy term in the intermolecular potential
energy function [Eqs. (3) and (4)]. MD simulations were performed
in an isothermal-isobaric ensemble. The temperature and pres-
sure were controlled using Nosé–Hoover thermostats and barostats,
respectively. Periodic boundary conditions were applied in three
directions. The spherical cutoff for pair interactions was set to 3.5σtt
for the energy-conserving model and 3σtt for the energy-dissipative
model. A time step of 0.0005 t was used, in which t is time in reduced
units.

APPENDIX B: THE PHASE DOMAIN GROWTH RATE
1. Conservative-force formulation of the chiral model

When a binary mixture of two non-interconverting species is
quenched from a high temperature to a low temperature, below the
critical point of demixing, and below the limit of compositional sta-
bility (spinodal curve), phase separation occurs through a process
known as spinodal decomposition.56 By accounting for the Ising-like

interconversion of alternative molecular states in the conservative-
force formulation of the chiral model, Cahn–Hilliard’s theory of
spinodal decomposition may be generalized to describe the hybrid
diffusion and Ising-like interconversion dynamics. Consequently,
the fluctuations of the order parameter for both components of the
hybrid dynamics are not local and characterized by the same corre-
lation length. This is performed through the introduction of inter-
conversion dynamics into the temporal evolution of the concentra-
tion of one of the enantiomer species, cA, toward equilibrium. As a
result, in the conservative-force formulation, the temporal evolution
is described by

∂ĉA

∂t
=M∇2μ − Lμ, (B1)

where M and L are the diffusion and interconversion Onsager
kinetic coefficients, respectively, and μ is the chemical potential dif-
ference between the two alternative species A and B, μ = μA − μB,
where μ = 0 in equilibrium. The reduced concentration of enan-
tiomer species A, ĉA, is related to the physical concentration through
ĉA = 2(cA − 1/2). In the case when the chirality renormalization
parameter λ produces a bias toward homochiral (λ > 0) or heterochi-
ral (λ < 0) interactions, the interconversion dynamics is described
through the same chemical-potential difference, μ, as in the dif-
fusion term of Eq. (B1). As a result, these two terms contain
the same bulk and interfacial (nonlocal) contributions to the free
energy. The chemical-potential difference is determined through a
Landau–Ginzburg free energy functional of the form

F(ĉA) = ∫ ( f0(ĉA) +
1
2

R2
0∣∇ĉA∣

2
)dV , (B2)

where the first term represents the thermodynamic “bulk” free
energy density and the second term represents the contribution to
the total free energy due to concentration inhomogeneities. In the
second term, R0 is the characteristic length scale of intermolecu-
lar interactions adopted as the size of a tetramer molecule (R0 = 1
in reduced units). In the symmetric binary-lattice (regular solu-
tion) model formulated in the mean field approximation,59 f0 can
be expressed through the Gibbs energy of mixing, ΔGmix, as

f0 =
ΔGmix

kT
= [cA ln cA + (1 − cA) ln(1 − cA)] + acA(1 − cA), (B3)

where the term in brackets is the ideal entropy of mixing and the last
term is the enthalpy of mixing. In the chiral model, a ≈ ρλ, where ρ is
the dimensionless density and λ is the chiral bias parameter. Expand-
ing f0 in the vicinity of the critical point, where Tc = a/2 and ĉA = 0,
in the lowest approximation f0 = (1/2)ΔTĉ2

A, where the reduced dis-
tance to the critical point ΔT = T/Tc − 1. Therefore, the chemical
potential is found from the variational derivative of the free energy
functional with respect to the concentration of A-type enantiomers,
as

μ =
δF
δcA
=
∂ f0

∂ĉA
−∇

2ĉA ≈ ΔTĉA −∇
2ĉA. (B4)

Substituting Eq. (B4) into Eq. (B1), the characteristic growth rate of
the inhomogeneities, also referred to as the “amplification factor,”56

may be analytically determined with the use of Fourier analysis to
give

ω(q) = −ΔT(L +Mq2
)(1 − ξ2q2

), (B5)
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where ξ is the correlation length of concentration fluctuations; in the
mean field approximation, ξ2

∝ 1/(−ΔT).57 In the absence of inter-
conversion (L = 0), Eq. (B5) reduces to the classical Cahn–Hilliard
theory of spinodal decomposition.56

2. Dissipative-force formulation of the chiral model
In the dissipative-force formulation of the chiral model, a sink

of energy arises due to an imbalance in intermolecular forces, which
changes the chemical potential associated with the interconversion
dynamics in the temporal evolution of the concentration, given by
Eq. (B1). Specifically, the imbalance in intermolecular forces alters
the Gibbs energy of mixing, ΔGmix = ΔHmix − TΔSmix, by effectively
canceling the enthalpy of mixing.57 Therefore, in this formulation,
the nonequilibrium free energy (f̃ 0) is given by

f̃ 0 =
ΔG̃mix

kT
= cA ln cA + (1 − cA) ln(1 − cA), (B6)

in which just the entropic contribution to the free energy remains.
This result is a first order approximation valid only close to ther-
modynamic equilibrium.45 Thus, the energy dissipation forces the
system into a “racemized” homogeneous state, which competes with
the temporal evolution of the concentration toward thermodynamic
equilibrium. Expanding the nonequilibrium free energy in the vicin-
ity of the critical point to first order, we obtain f̃ 0 ≈ −(1/2)T̂ĉ2

A,
where T̂ = T/Tc. Therefore, since the imbalance in forces only affects
the interconversion dynamics, the temporal evolution of the concen-
tration of species A, Eq. (B1), is modified to include a nonequilib-
rium chemical potential, μ̃ ≈ −T̂ĉA −∇

2ĉA, and as such is given by

∂ĉA

∂t
=M∇2μ − Lμ̃, (B7)

where the first term is the equilibrium diffusion dynamics, unaf-
fected by the imbalance in forces, and the second term is the
nonequilibrium interconversion dynamics. The Fourier analysis of
Eq. (B7) gives the growth rate for the dissipative-force formulation
of the chiral system in the form

ω̃(q) = −LT̂ − (MΔT + L)q2
−Mq4, (B8)

which is an alternative form of Eq. (11), given in the main text,
through the use of the mean field correlation length, ξ2

= −1/ΔT.57

APPENDIX C: DEPENDENCE OF PAIR INTERACTION
ENERGY ON DIHEDRAL FORCE CONSTANT

Dependence of the total pair interaction energy on the dihedral
force constant for the chiral model with conservative intermolecular
forces at kd = 0.01 (blue) and kd = 30 (orange) (Fig. 13).

APPENDIX D: STRUCTURE FACTOR AND DOMAIN
SIZE TEMPORAL EVOLUTION

The domain growth is determined through the time-dependent
structure factor for the chiral system, S(q, t). It is well-known that
the classical Cahn–Hilliard theory is only valid for the early stages
of spinodal decomposition.65 To accurately describe the behavior
of systems in the late stages of spinodal decomposition, and even-
tually, the crossover into the coarsening regime, as reported by

FIG. 12. Molecular representation and relevant geometrical features of tetramer
molecules. Molecules exist in left-handed (A-type, green), right-handed (B-type,
blue), or achiral (cis- or trans-, red) configurations.

Langer et al.66 and Binder et al.,67 two key alterations must be made
to Cahn–Hilliard theory. First, concentration fluctuations, in the
Ornstein-Zernike approximation,67 are introduced into the time-
dependent structure factor,68 and second, the inverse susceptibility,
∂2 f0/∂ĉ2

A, must go to zero when the system reaches the spinodal.
Adopting these changes into the time-dependent structure factor
gives

S(q, t) =
Mq2
+ L

−ω̃(q)
(1 − e2ω̃(q)t

), (D1)

where ΔT in ω̃, given by Eq. (B8), becomes time dependent and is
represented as

ΔT(t) = ΔT(t = 0)e−t/τ , (D2)

in which τ is a parameter that determines the transition from the
early stages of spinodal decomposition to the coarsening regime.

FIG. 13. Dependence of the total pair interaction energy on the dihedral force
constant for the chiral model with conservative intermolecular forces at kd = 0.01
(blue) and kd = 30 (orange). The system consists of 1000 tetramers at T = 5, P
= 1, and ⟨EE⟩ = 0. The black lines are moving averages over time windows of
duration t = 200.
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FIG. 14. Structure factor as given by Eq. (D1) for T = 0.8, Tc = 2.32, kd = 9.86,
P = 0.1, τ = 1100, M given by the Einstein–Stokes relation, with T0 = 1.2 and
amplitude coefficient b = 10−3, and L given by Eq. (10). Over time the maximum of
S(q, t), indicated by the dotted line, shifts to the left until qm ∝ q

−
, but even in the

t →∞ limit, the maximum never reaches zero wavenumber, thus corresponding
to the formation of steady-state microdomains.

The domain size is determined from the characteristic
wavenumber which corresponds to the maximum of the time-
dependent structure factor. For instance, Fig. 14 shows the time
evolution of the structure factor corresponding to kd = 9.86 (whose
time-dependent domain size is shown in Fig. 7). As illustrated, the
maximum moves to the left until qm ∝ q

−
, and if continued into

the steady-state limit (when t →∞) the structure factor will never
shift to zero wavenumber, indicating the formation of steady-state
microdomains. The time evolution of the domain size [as presented
in Figs. 7(a) and 7(b)] was determined from numerically calculating
the time-dependent wave number corresponding to the maximum
of the structure factor.57

APPENDIX E: CHARACTERISTIC TIME SCALES
IN THE DISSIPATIVE-FORCE FORMULATION
OF THE CHIRAL MODEL

The characteristic time of liquid–liquid phase separation
(τLLPS), interconversion (τINC), and molecular self-diffusion (τD) is
well described through the generalized Cahn–Hilliard theory. The
interconversion Onsager kinetic coefficient, L, is given through an
extended version of Eq. (10) (given in the main manuscript) of the
form

L =
1

τINC
= bM(T0, T)

T2

k2
d
(1 + c

T2

k2
d
), (E1)

in which b and c are constants. The mobility, M, is given through
the Stokes–Einstein relation that M = kT/6πηR0, where the viscosity
of the system is assumed to be η = eT0/T , in which the characteristic
temperature, T0, was also adjusted to better describe the behavior of
each dihedral constant, kd, at low temperatures.

The characteristic time of liquid–liquid phase separation
(LLPS) in the dissipative-force formulation of the chiral model can
be determined from the region where q

−
< q∗. In this region, the

finite size of the system limits the size of the microdomains that
may form, which is computationally observed as “complete” phase
separation. Therefore, the characteristic LLPS time is found as τLLPS
= aLLPS/ω̃(q∗), where the amplitude aLLPS = 0.34 and Tc = 2.35. In
the fit, presented in Fig. 10(a), q∗ is adjusted such that τLLPS →∞

when the temperature reaches T∗, the onset of phase separation
on the scale of the simulation box. In addition, the characteris-
tic temperature T0 was slightly different for the three different
dihedral constants: T0 = 2.2(kd = 5), T0 = 1.925(kd = 9.86), and T0
= 1.2(kd = 19.86).

The characteristic interconversion time, τINC, of a tetramer
is shown in Fig. 10(b). It is described by Eq. (E1), for which the
constants were found to be T0 = 0.36, b = 29.4, and c = 526.6.

Equation (B8) introduces an effective molecular self-diffusion
coefficient, by the slope of the amplification factor at small wave
numbers, which modifies the growth of the phase domain. This
property is given by the coefficient of the q2 term in Eq. (B8), which
reads as Deff = (MΔT + L)/T̂. As a result, the characteristic time
of molecular self-diffusion [Fig. 10(c)] is found from τD = aD/Deff,
where aD is an amplitude coefficient of the order R2

0, determined
from the fit to be 0.94. In addition, the characteristic temperature T0
was found to be somewhat different for the three different dihedral
constants: T0 = 3.4(kd = 5), T0 = 4.8(kd = 9.86), and T0 = 7.0(kd
= 19.86).
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