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ABSTRACT: The study of hard-particle packings is of funda-
mental importance in physics, chemistry, cell biology, and discrete
geometry. Much of the previous work on hard-particle packings
concerns their densest possible arrangements. By contrast, we
examine kinetic effects inevitably present in both numerical and
experimental packing protocols. Specifically, we determine how
changing the compression/shear rate of a two-dimensional packing
of noncircular particles causes it to deviate from its densest
possible configuration, which is always periodic. The adaptive
shrinking cell (ASC) optimization scheme maximizes the packing
fraction of a hard-particle packing by first applying random
translations and rotations to the particles and then isotropically
compressing and shearing the simulation box repeatedly until a possibly jammed state is reached. We use a stochastic
implementation of the ASC optimization scheme to mimic different effective time scales by varying the number of particle moves
between compressions/shears. We generate dense, effectively jammed, monodisperse, two-dimensional packings of obtuse scalene
triangle, rhombus, curved triangle, lens, and “ice cream cone” (a semicircle grafted onto an isosceles triangle) shaped particles, with a
wide range of packing fractions and degrees of order. To quantify these kinetic effects, we introduce the kinetic frustration index K,
which measures the deviation of a packing from its maximum possible packing fraction. To investigate how kinetics affect short- and
long-range ordering in these packings, we compute their spectral densities χ̃V(k) and characterize their contact networks. We find
that kinetic effects are most significant when the particles have greater asphericity, less curvature, and less rotational symmetry. This
work may be relevant to the design of laboratory packing protocols.

1. INTRODUCTION

Dense hard-particle packings have been employed to model the
behavior of simple liquids, glasses, and crystalline states of
matter,1−4 heterogeneousmaterials,3 granular media,5 biological
systems,6−8 and many other physical phenomena (see also refs 9
and 10). A hard-particle packing is a collection of non-

overlapping objects in d-dimensional Euclidean space d. The
packing fraction ϕ is the fraction of space these particles occupy.
A considerable amount of work on such packings in both
two9−14 and three dimensions9−11,15−19 concerns ordered
packings.
Sufficiently slow compression protocols tend to produce the

densest packings, which are periodic in low space dimen-
sions.9−11 Increasing the compression rate can result in defective
crystalline, polycrystalline, and even glassy states,9 including
maximally random jammed (MRJ) states.20 Qualitatively, MRJ
packings are maximally disordered and mechanically rigid
systems that can be used to emulate structural glasses.9,20

Such packings are known to be hyperuniform, meaning their

infinite-wavelength density fluctuations are anomalously sup-
pressed compared to those in typical disordered systems.21−23

Disorder can occur in dense, jammed monodisperse sphere

packings in 3 as a result of geometrical f rustration. A packing is
geometrically frustrated if the local densest packing arrangement
is incompatible with the global densest packing arrangement.
These sphere packings are geometrically frustrated because the
densest local arrangement, which is tetrahedral, cannot
optimally fill the space3,24 and thus is inconsistent with the
global densest arrangements, the FCC lattice, and its stacking
variants.25 Monodisperse packings of many other particle shapes
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in 3 are known to have MRJ states including ellipsoids,26

superballs,27 the Platonic solids,28 and truncated tetrahedra.29

Monodisperse circular disks in2 lack geometrical frustration
because their densest local packing is consistent with the densest
global packing, which is the triangular lattice.3 As a result, use of
garden-variety compression algorithms produces dense packings
that are polycrystalline with a probability of nearly unity.30

Bidisperse disks and superdisks in 2, however, are known to
form disordered, jammed packings.31−33

Packings of particles in two dimensions are of particular
interest because of their ability to model thin films,34 single-layer
molecular adsorption onto flat substrates,35,36 and two-dimen-
sional biological systems like epithelial cells.37,38 Character-
ization of kinetic effects in such packings can aid in the design of
experiments involving packings at interfaces, for example, using
Langmuir−Blodgett troughs to synthesize monolayers39,40 or to
verify the results of experimental two-dimensional packings.41

It is important to obtain a more complete understanding of
kinetic effects due to their ubiquity in numerical and
experimental hard-particle packing protocols. Specifically, we
examine the extent to which kinetic effects cause deviations, in
packing fraction and order, with respect to the corresponding
densest possible configuration of a two-dimensional mono-
disperse hard-particle packing as a function of the particle shape.
In this work, we use a stochastic search implementation of the

adaptive shrinking cell (ASC) optimization scheme14,16,42,43 to
generate dense packings of convex, noncircular objects. In this
algorithm, the packing fraction is maximized by sequentially
applying random translations and rotations to hard particles in a
periodic fundamental cell, which is subsequently isotropically
compressed (or dilated) and sheared. These steps are repeated
until the increase in packing fraction is less than a small
numerical tolerance, at which point the packing is considered
effectively jammed (within some tolerance). We mimic different
effective time scales to examine kinetic effects using this
implementation by modulating the number of particle moves
between compression/shear steps. We determine how the
degree of rotational symmetry of a particular shape, curvature,
and asphericity impact packing kinetics by studying packings of
rhombi, obtuse scalene triangles, lenses, curved triangles,14 and
so-called “ice cream cones”.
To contrast with geometrical frustration, we introduce the

idea of kinetic f rustration, which is the deviation of a packing
from its densest possible configuration caused by the
compression rate. We characterize the degree of kinetic
frustration using the kinetic f rustration index K (defined in
section 2.2), which measures the deviation of a packing from its
maximum possible packing fraction. We determine the effect of
asphericity, curvature, and rotational symmetry on K. To
quantify the degree of short- and long-range translational and
orientational order in these packings, we compute their spectral
densities χ̃V(k) (defined in section 2.4). The spectral density is
the Fourier transform of the autocovariance of the phase
indicator function and can be obtained from scattering
experiments.3,44 We also determine the type and number of
contacts in each packing to within a small numerical tolerance
(see section 2.5) and determine the resulting contact network.
We use the contact networks to determine how the average
number of constraints on each particle ZC (see section 2.3) and
the fraction of particles that can freely move within cages of the
jammed backbone, or rattlers, vary as a function of compression
rate and particle shape. We expect the examination of such

kinetic effects on this large collection of shapes to be relevant to
the design of experimental packing protocols.
The rest of the paper is organized as follows. Section 2

contains the background pertaining to and the mathematical
definitions of the methods used to produce and characterize the
dense particle packings. Section 2.5 describes the ASC scheme
and its adaptation used here to generate particle packings with
different compression rates. Section 2.6 defines the noncircular
particle shapes considered in this work as well as information
about the densest packings for shapes that do not tile the plane.
In section 3, we present results for the kinetic frustration and
degree of order/disorder in the final packings. We then offer
conclusions and plans for future research in section 4.

2. COMPUTATIONAL DETAILS

2.1. Packings. Here, we give the pertinent definitions
following closely refs 9 and 14. A lattice Λ in d is a subgroup
comprising integer linear combinations of a set of d vectors, {p1,
p2, ..., pd}, which are a basis ford. This, in the physical sciences
and engineering, is termed a Bravais lattice. A packing, P, is a
collection of nonoverlapping particles ind. If all members of P
are translates of each other, where the vectors of translation form
a lattice, P is known as a Bravais lattice (or, simply, lattice)
packing. More generally, if P can be decomposed into a set of N
≥ 1 distinct lattice packings all with the same lattice vectors, P is
said to be a periodic packing with an N-particle basis. A periodic
packing with a two-particle basis of particular importance is the
double lattice packing, examples of which are given in section
2.6.2. A packing P is a double lattice packing if P can be
decomposed into two lattice packings, P0 and P1, such that an
inversion around some point in the space interchanges P0 and P1.
For each of these periodic packings, there is an associated
fundamental cell F, parallelotopic in shape, defined by the lattice
matrixΛ = {p1, p2, ..., pd} containing allN particle centroids. The
packing fraction, ϕ, is the fraction of space that the particles
cover. For a monodisperse periodic packing with an N-particle
basis ϕ is given by

ϕ =
Nv

FVol( )
1

(1)

where v1 is the volume of a single d-dimensional particle and
Vol(F) is the d-dimensional volume of the fundamental cell.

2.2. Kinetic Frustration. The focus of this work is the
characterization of dense hard-particle packings generated by
using packing protocols with different compression rates.
Kinetic frustration is the deviation of a packing from its densest
possible configuration caused by the compression rate. To
quantify this, we define the kinetic frustration index K:

ϕ
ϕ

= −K 1
max (2)

where ϕmax is the maximum possible packing fraction associated
with a given packing. Larger values of K indicate larger
deviations from the maximum possible packing fraction.
Knowledge of K as a function of particle shape and compression
rate may be relevant to the design of laboratory packing
protocols. Additionally, we compute the spectral density
(defined below) of each packing to quantify the degree of
short- and long-range ordering and determine how ordering is
correlated to K.
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2.3. Jamming Categories and Isostaticity. Jammed hard-
particle packings are those in which mechanical stability of a
specific type is conferred to the packing via interparticle
contacts.9 Three broad and mathematically precise jamming
categories can be distinguished based on the nature of the
mechanical stability conferred, which in order of increasing
stability are as follows:9,45 (1) Local jamming: no individual
particle can be moved while holding all other particles fixed. (2)
Collective jamming: the packing is locally jammed, and no
collective motion of a finite subset of particles is possible. (3)
Strict jamming: the packing is collectively jammed, and all
volume-nonincreasing deformations are disallowed by the
impenetrability constraint. A special jammed state is the
maximally random jammed (MRJ) state, which is defined as
themost disordered configuration (as measured by a set of scalar
order metrics) subject to a particular jamming category.20 Such
packings are known to possess hyperuniform density fluctua-
tions.22,46−48

Jammed packings are also characterized by the number of
constraints imposed by interparticle contacts relative to the
number of degrees of freedom (DOF) in the packing. In hard
disk or ellipse packings, for example, each interparticle contact
occurs at a single point and corresponds to a single constraint.
Faceted particles can have contacts at more than a single point,
e.g., edge-to-edge contacts or face-to-face contacts, which
impose additional constraints by blocking rotations and must
be weighted accordingly when counting the number of
constraints.49 MRJ sphere packings in 3, for example, are
known to be isostatic,50−53 meaning that total number of
constraints is equal to the number of DOF in the system. The
number of constraints required for isostaticity will depend on
the particle shape, jamming category, and boundary conditions.
For example, an isostatic strictly jammed disk packing in 2

under periodic boundary conditions must have 2N + 1
constraints, where N is the number of particles.52 In the
infinite-particle-number limit, the average number of constraints
per particle ZC in an isostatic packing is equal to twice the
number of degrees of freedom per particle f (i.e., ZC = 2f).9,28

Packings with more constraints than isostatic ones are
hyperstatic, and those having fewer constraints are hypostatic.
While MRJ sphere packings in three dimensions50−53 and MRJ
disk packings in two dimensions30 are isostatic, this is not
generally true of all MRJ packings. In particular, certain
aspherical particles with smooth boundaries, like ellipsoids,26

superellipsoids,54 and superballs,27 have hypostatic MRJ
packings. In the two-dimensional packings considered herein,
edge-to-edge contacts impose two constraints on each particle,
and all other contact types (e.g., vertex-to-edge) impose one
constraint on each particle.
In practice, jammed hard-particle packings produced via

simulations or experiments contain a small concentration of
rattlers, which are not jammed but are locally imprisoned by
neighboring jammed particles.9,20 None of the three jamming
definitions above permit the presence of rattlers. Nevertheless, it
is the significant majority of hard particles that confers rigidity to
the packing, and in any case, the rattlers could be removed (in
computer simulations) without disrupting the remaining
jammed particles.9 The rattler f raction, ϕR, is greatest in sphere
packings in any dimension and is significantly decreased when
rotational degrees of freedom are introduced27 or the spatial
dimension is decreased.30 Atkinson et al.55 have shown that
removal of rattlers from MRJ packings results in a nonhyperuni-

form packing, meaning that the subset of jammed particles alone
is far from hyperuniform. In this work we consider packings that
do not have their rattlers removed.

2.4. Spectral Density. A hard-particle packing can be
modeled as a two-phase heterogeneous medium, where the
matrix phase 1 is the void space between the particles and the
particle phase 2 is the space occupied by the particles, such that

∪ = ⊂V d
1 2 .56 The (micro)structure of the packing can

be fully characterized by a countably infinite set of n-point
probability functions Sn

(i), defined by3

∏= ⟨ ⟩
=

S x x x( , ..., ) ( )n
i

n
j

n
i

n
( )

1
1

( )

(3)

where i( ) is the indicator function for phase i:

l
moo
n
oo=

∈
x

x
( )

1,

0, else
i i( )

(4)

The function Sn
(i) gives the probability of finding n points at

positions x1, ..., xn in phase i. In what follows, we drop the
superscript i and restrict our discussion to 2.
For statistically homogeneous media, Sn(x1, ..., xn) is

translationally invariant and, in particular, the one-point
correlation function is independent of position and equal to
the packing fraction

ϕ=S x( )1 (5)

while the two-point correlation function S2(r) depends on the
displacement vector r ≡ x2 − x1. The corresponding two-point
autocovariance function χV(r)

3,57,58 is obtained by subtracting
the long-range behavior from S2(r):

χ ϕ= −Sr r( ) ( )V 2
2

(6)

The nonnegative spectral density, χ̃V(k), is defined as the Fourier
transform of χV(r),

3 i.e.


∫χ χ∼ = − ·k r k( ) ( )e dV V

ik r
d (7)

A hyperuniform packing is one in which χ̃V(k)→ 0 as k→ 0.59

Because of the rigidity of MRJ packings and the presence of a
well-defined contact network, Torquato and Stillinger con-
jectured that any strictly jammed and saturated packing is
hyperuniform.21 A saturated packing is one in which there is no
space available to add another particle of the same kind to the
packing. Subsequently, Zachary et al.46−48 have shown that MRJ
packings of hard particles with shape and size distributions
possess vanishing infinite-wavelength local-volume-fraction
fluctuations and signature quasi-long-range (QLR) pair correla-
tions. These QLR correlations are manifested by a linear scaling
in the small-wavenumber region of χ̃V(k), i.e., χ̃V(k) ∼ k as k→
0.
In the present work, we consider packings of N hard particles

within a fundamental cell under periodic boundary conditions.
Under these conditions, we can express the spectral density
χ̃V(k) of a finite hard-particle packing as

47

χ∼ =
|∑ − ̃ |

≠= i m

V
k

kr k R
k( )

exp( ) ( ; )
( 0)V

j
N

j j1
2

(8)

where {rj} denotes the set of particle centroids, Rj denotes all of
the geometrical parameters of the particle shape, V is the volume
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of the simulation box (fundamental cell), and m̃(k;Ri) is the
Fourier transform of the particle indicator function defined as

l
moo
n
oo=m

i
r R

r
( ; )

1, is in particle

0, otherwisei
(9)

The shape of the fundamental cell, defined by the lattice vectors
{pi}, restricts the wavevectors such that k·pi = 2πn ∀ i, where

∈n . Visualization of the spectral densities allows us to
examine the degree of short- and long-range translational and
orientational order in the packings. Instead of computing
m̃(k;Ri) for each particle shape, we take the Fourier transform of
a square pixelization of the packing, requiring only m̃ k R( ; )i for
a square (see, e.g., ref 60). The angular-averaged spectral
densities in this work are ensemble-averaged over 50
configurations. Accompanying two-dimensional spectral den-
sities are for a single, representative configuration to account for
important orientational information in anisotropic packings,
which may be lost upon angular averaging.
2.5. Adaptive Shrinking Cell (ASC) Optimization

Scheme. The Torquato−Jiao ASC scheme generates dense
hard-particle packings in a periodic fundamental cell by
translating and rotating the particles while simultaneously
shrinking and deforming the boundary of the fundamental cell.
This process can be formally stated as follows:14

ϕ θ θ θ θ− Λr r r rminimize ( , , , ..., ; , , , ..., ; )N N
p p p p
1 2 3 1 2 3

(10)

∩ ⊆ Γ ∪ Γ ∀ = ≠S S i j N i jsuch that ( ) ( ) , 1, 2, 3, ..., ,i j i j

whereN is the number of particles, ri
p and θi denote the position

and orientation of particle i, respectively, Si is the closed set in2

associated with particle i, and Γi is the boundary of the set Si.
This optimization scheme can be solved by using either
stochastic14,16,42 or linear programming43 techniques. This
work uses the Monte Carlo implementation described in ref 14.
The stochastic implementation of this scheme in 2 uses a

periodic parallelogrammatic fundamental cell. All N particle
centroids are given in lattice coordinates, which are relative
coordinates with respect to the lattice vectors, i.e., ri

p ∈ [0, 1)2.
The particle orientations are specified by a rotation of a given
angle, i.e., θi ∈ [0, 2π). Given an initial configuration, the
stochastic searchmethod uses an iterative process to increase the
packing fraction by using the following steps, shown schemati-
cally in Figure 1: (1) “Random moves”: Random rotations or
translations are applied to the particles. These moves are only
accepted if the resulting configuration satisfies the nonoverlap

constraints. (2) “Random strains”: A random strain comprising a
deformation and dilation or compression is applied to the
simulation box. This strain will either increase or decrease the
area of the fundamental cell with some specified probability,
corresponding to uphill or downhill moves, respectively.
During the “randommoves” step, a trial translation or rotation

with a prescribed maximum magnitude is applied to each of the
N particles a set number of times. A trial move is accepted if the
new particle position does not overlap any of the other particles
or their periodic images. Otherwise, the particle is returned to its
previous position or orientation. The maximum magnitude of
these trial movements is steadily decreased throughout the
execution of the algorithm by reducing this maximum by some
constant ratio when the number of moves accepted per “random
move” step falls significantly below 50%.
During the “random strains” step, the simulation box is both

deformed and compressed or dilated simultaneously such that
the area of the box decreases on average, while ensuring the
nonoverlap constraint remains satisfied. These strains effect
collective motions on the particles because the centroid
positions of the particles are defined in terms of the lattice
vectors. The maximum magnitude of a trial strain and the
maximum number of trials are prescribed. The first trial that
does not violate the nonoverlap constraints is accepted. After
each unsuccessful trial, the maximum magnitude of the strain is
decreased until either a trial is accepted or themaximumnumber
of trials has been attempted. When either of these conditions is
met, we return to the first step of the scheme and the maximum
magnitude of the strain is reset to the value from the beginning of
the step.
The linear programming solution to the ASC scheme was

designed to produce the inherent structure associated with an
initial, unjammed, sphere packing.43 An inherent structure is a
minimum in the energy landscape.61,62 For packings, this
corresponds to a mechanically rigid and locally maximally dense
configuration.43,63 These inherent structures vary in their
packing fraction and degree of order, and the number of
possible inherent structures increases with N. The linear
programming solution given by Torquato and Jiao in ref 43
guarantees with a high probability the generation of a jammed
sphere packing across dimensions for d ≥ 2, with a wide variety
of packing fractions and degrees of order. An inherent structure
is highly dependent on its initial configuration, and thus unusual
initial configurations in principle allow one to obtain unusual
inherent structures.
In the present work we apply the ASC scheme to

monodisperse packings of 504 particles. To minimize the effect
of the initial conditions, we use a random sequential addition
process3 to place particles in a square box with random
orientations such that the initial ϕ is several orders of magnitude
smaller than ϕmax. Simulations are terminated when ϕ increases
less than 10−10 over the course of 100 “random strain” steps, at
which point it is assumed ϕ has reached a local maximum. To
impose different effective time scales (compression rates), we
use “slow”, “medium”, and “fast” compression schedules, in
which there are 1000, 100, and 10 trial moves per particle in the
“random moves” step, respectively. The three schedules have
identical movement and strain magnitudes and move strictly
downhill (i.e., no “random strain” step increases the area of the
simulation box). To generate the contact network, we take the
dense output from the procedure above and use a fourth
“contact generation” schedule withmuch smaller movement and
compression/shear magnitudes. This fourth schedule is

Figure 1. Schematic of a single step of the ASC optimization scheme.
(a) The initial configuration of the four particles. (b) Two trial moves: a
rejected rotation due to violation of the nonoverlapping constraints and
an accepted translation. (c) The result of an accepted trial deformation
and compression of the packing.
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terminated when the interparticle distances (excluding rattlers)
are smaller than 10−10D0 for particle shapes composed of arcs
and 6 × 10−10D0 for particle shapes containing flat edges, where
D0 is the largest distance from the particle centroid to its
boundary, at which point the packing is considered effectively
jammed. We use a coarser tolerance for faceted particles due to
the increased computational cost associated with the additional
rotational constraints imposed by flat edges as jamming is
approached. Kinetic frustration and contact network results for
each combination of particle shape (see section 2.6) and
compression schedule are averaged over three configurations.
2.6. Particle Shapes. Here, we mathematically define the

particle shapes studied in this work. Additionally, we state the
maximum packing fractions ϕmax of these shapes, which are
required to compute the kinetic frustration index K (cf. eq 2), as
well as relevant geometrical properties. One such property is the
asphericity γ defined as16,42

γ =
r

r
smallest bounding circle

largest inscribable circle (11)

We examine obtuse scalene triangles, rhombi, and curved
triangles. Each of these shapes has a known ϕmax. We also study
lenses and “ice cream cones”. To our knowledge the ϕmax of
these shapes is unknown.
2.6.1. Shape Definitions. Rhombi. A rhombus is a quadri-

lateral with four equal sides, an example of which is given in
Figure 2a. The angle θRh ∈ (0°, 90°], generating rhombi that
interpolate between a thin line and a square. Rhombi have D2
symmetry, except for in the square limit, where they have D4
symmetry. We generate packings of rhombi with θRh = {30, 40,
50, 60, 70, 80}, which have γ = {3.86, 2.92, 2.37, 2.00, 1.74,
1.56}, respectively. ϕmax = 1 for all rhombi.
Obtuse Scalene Triangles. An obtuse scalene triangle (OST)

has three unequal sides and one angle greater than 90°, an
example of which is given in Figure 2b.We base ourOSTs on the

f irst candidate from ref 64, which has angles of 18.6°, 45°, and
116.4°. Here, we chose that the ratio of the lengths of sides C1
and C2 is 2.216, as they are in the obtuse f irst candidate and vary
θOST ∈ (90°, 180°). All OST have C1 symmetry. All simulations
containing OSTs are enantiopure, except for those in section 4.
We generate packings of OSTs with θOST = {100, 110, 120, 130,
140} which have γ = {3.44, 3.89, 4.51, 5.37, 6.73}, respectively.
ϕmax = 1 for all OSTs.

Curved Triangles. A curved triangle (CT) is the convex
intersection of three congruent circles placed at the vertices of an
equilateral triangle,14 an example of which is given in Figure 2c.
CTs are characterized by a curvature parameter, κ, given by

κ =
r
r
0

(12)

where r0 is the circumradius of the CT and r is the radius of the
overlapping circles. Thus, CTs interpolate between a circle at κ =
1 and an equilateral triangle at κ = 0. At κ = 1/√3 the particle
shape is the same as the well-known Reuleaux triangle.65 CTs
have D3 symmetry. We generate packings of CTs with κ = {1/5,
7/20, 1/2, 1/√3, 13/20, 4/5} which have γ = {1.74, 1.58, 1.43,
1.37, 1.30, 1.18}, respectively. CTs do not tile the plane, and
their ϕmax is given in ref 14.

Lenses. A lens is the intersection of two congruent circles, an
example of which is given in Figure 2d. Lenses are characterized
by an aspect ratio, α, given by

α = a
b (13)

where a is the minor axis and b is the major axis. Lenses have D2
symmetry, except in the case of the α = 1 limit, where the circle
has O(2) symmetry.We generate packings of lenses with α = {4/
5, 2/3, 1/2, 1/3, 1/5} which have γ = {1.25, 1.5, 2, 3, 5},
respectively. The ϕmax of lenses is, to our knowledge,
undetermined. We give the putative ϕmax and corresponding
structure in section 2.6.2.

Figure 2. Geometrical properties of the (a) rhombi, (b) obtuse scalene triangles, (c) curved triangles, (d) lenses, (e) ice cream cones, and (f) bowties
examined in this work. Shapes (a)−(e) are the convex bodies examined in themain body of this work, and object (f) is a concave body discussed briefly
in section 4. Objects (a), (b), and (f) tile the plane, while (c)−(e) do not. Only (b) is chiral, and racemic mixtures of this object are discussed briefly in
section 4.
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Ice Cream Cones. An “ice cream cone” (ICC) is an isosceles
triangle with a semicircle grafted onto its base, an example of
which is given in Figure 2e. The diameter of this semicircle is
equal to the length of the base of this isosceles triangle, and the
union of the two regions is convex. The angle θICC ∈ (0°, 180°],
generating ICCs that interpolate between an infinitely tall
isosceles triangle in the θICC → 0° limit and a semicircle when
θICC = 180°. ICCs have D1 symmetry. We generate packings of
ICCs with θICC = {30°, 60°, 90°, 120°, 150°, 180°} with γ =
{2.43, 1.5, 1.21, 1.37, 1.60, 2}, respectively. The ϕmax of ICC is,
to our knowledge, undetermined. We give the putative ϕmax and
corresponding structures in section 2.6.2.
Bowties. “Bowties” are rectangles with congruent isosceles

triangles taken out of both long sides such that the resulting
shape is an irregular hexagon; this is illustrated in Figure 2f.
Bowties are not discussed in the main body of this work due to
our focus on convex shapes but have their kinetics discussed
briefly in section 4. We characterize bowties with a thickness
parameter β, given by

β =
w
w

in

out (14)

In principle, the aspect ratio of the bowtie can be arbitrary, but
here we choose it such that h = √3wout. Thus, the bowties
interpolate between a rectangle when β = 1 and two equilateral
triangles attached at a vertex when β = 0. All bowties herein have
D2 symmetry, and ϕmax = 1.
2.6.2. Putative Densest Packings. Here, we follow the

procedure given in ref 14 to generate dense periodic packings of
lenses and ICC to inform analytical predictions for the ϕmax of
these shapes and the corresponding structures. We present the
smallest periodic repeat units, or fundamental bases, of these
dense packings, as well as the analytically determined ϕmax as a
function of the relevant geometrical parameter (α for lenses,
θICC for ICC).
Lenses. The putative densest arrangement of lenses is

consistent with Fejes Tot́h’s theorem that the densest packing
of a centrally symmetric convex particle is a lattice packing.13

Figure 3 shows the fundamental basis for lenses with α = 0.5.
The analytically derived ϕmax for lenses is given in Figure 4. The
ϕmax has a maximum of 2√2/3 in the α→ 0 limit and decreases
monotonically as a function of α. We find that this packing is
consistent with the triangular lattice in the limit of α = 1 (circles)
with ϕmax = π√3/6 .

Ice Cream Cones. The putative densest packings of ICCs are
consistent with the conjecture that noncentrally symmetric
objects have their maximum densities realized in a two-particle
basis double lattice packing (defined in section 2.1).66 We have
found two distinct packing behaviors, which we name “type 1”
and “type 2” packings, both of which are consistent with the
theorem due to Kuperberg and Kuperberg66 stating that each
two-dimensional convex body admits a double lattice packing
withϕ >√3/2 . Type 1 packings are densest for ICCs with large
θICC, and type 2 packings are densest for ICCs with small θICC.
The fundamental bases of both packing types are shown in

Figure 5. Figure 6 shows ϕmax for all values of θICC. In type 1
packings, ϕmax does not vary monotonically, and in the

Figure 3. Fundamental basis of the putative densest α = 0.5 lens
packing.

Figure 4. Putative maximum packing fractionϕmax as a function of α for
the dense packings of lenses.

Figure 5. Fundamental bases for (a) a type 1 (θICC = 120°) ice cream
cone packing and (b) a type 2 (θICC = 60°) ice cream cone packing.

Figure 6. Putative maximum packing fraction ϕmax as a function of θICC
for both types of dense ice cream cone packings.
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semicircle limit (θICC → 180°), ϕ = 0.935931, a value that is
consistent with the exact result given in ref 67, namely

ϕ π=
+

=π3 5 tan
0.9359311...

10 (15)

This level of agreement with the theoretical prediction is a
testament to the efficacy of the ASC scheme to produce the
densest jammed packing. Moreover, in type 2 packings ϕmax
decreases monotonically with θICC and reaches unity in the limit
of θICC → 0.

3. RESULTS AND DISCUSSION
Here, we use the stochastic solution to the ASC scheme and the
three compression schedules described in section 2.5 to generate
dense monodisperse packings of the shapes described in section
2.6. We then characterize the kinetic frustration, degree of short-
and long-range order via the spectral density, and contact
networks in these packings as a function of particle shape and
compression rate.
3.1. Kinetic Frustration.The kinetic frustration indexK as a

function of the particle shape and compression rate is given in
Figure 7, which shows that K increases as the compression rate
increases, regardless of particle shape. Three shape properties

that have a demonstrable effect on K are rotational symmetry,
curvature, and asphericity γ.

3.1.1. Symmetry. The packings of OST, which are the least
symmetric particles studied here, tend to have a larger K than
other packings (see Figure 7b). This can be directly contrasted
with the results for the packings of rhombi, which have 2-fold
rotational symmetry (see Figure 7a) and tend to have much
lower values of K. Comparison of CT and lens results (see
Figures 7c and 7d, respectively) indicates curved shapes with
similar γ have similar K, despite having different degrees of
rotational symmetry. Thus, increased rotational symmetry
reduces the kinetic frustration of polygonal particle shapes but
does not significantly affect curved particle shapes.

3.1.2. Curvature. Directly comparing packings of curved
(e.g., Figure 7d) and faceted shapes (e.g., Figure 7a) shows that
for shapes with similar γ K is lower in packings of curved shapes.
This is also evident in CT packings (see Figure 7c), where
smaller κ (particle curvature) tends to result in larger K. This is
not observed in slowly compressed CT packings in the κ → 0
limit due to the emergence of 6-fold orientational order (see
section 3.2). In ICC packings, K increases faster as θICC deviates
from 90° toward 0° than it does as θICC deviates from 90° toward
180° (see Figure 7e). This behavior is attributed to the fraction

Figure 7.Kinetic frustration indexK for (a) rhombi as a function of θRh, (b)OST as a function of θOST, (c) CT as a function of κ, (d) lenses as a function
of α, and (e) ICC as a function of θICC.
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of the shape perimeter that is curved going to zero as θICC goes to
0°.
3.1.3. Asphericity. Rhombus and lens packings show an

increase in K as γ increases, indicating that greater asphericity
results in greater kinetic frustration. This trend can also be
observed in Figure 7e, where both γ and K increase as θICC
deviates from 90°. Rapidly compressed OST packings also
exhibit this behavior (see Figure 7b), but more slowly
compressed OST packings do not due to the emergence of 2-
fold orientational order (see section 3.2).
3.2. Spectral Density. Through visualization of the spectral

density we characterize the short- and long-range translational
and orientational order in the packings produced through the
ASC scheme as a function of compression rate and particle
shape. Here, we examine both two-dimensional and angular
averaged χ̃V(k).
There does not appear to be significant short-range

translational order in any of the OST packings, shown by the
lack of distinct peaks in the angular-averaged spectral densities in
Figure 8. Broad peaks close to the origin indicate that there are
large-scale density fluctuations in these OST packings, which
diminish in intensity as kD increases. Short-range nematic (2-
fold) orientational order in OST packings increases as θOST
increases and as the compression rate decreases. This behavior is
exemplified by the nonradially symmetric two-dimensional
spectral density in Figure 8b, which is lost upon angular
averaging.
In rhombus packings, the degree of short-range translational

order increases with the value of θRh. The two-dimensional
spectral density in the center panel of Figure 9c indicates short-
and long-ranged translational and nematic orientational order.
However, the large fluctuations in the distances between defects

results in an angular-averaged spectral density that appears to
lack translational order (see right panel of Figure 9c). Otherwise,
as θRh increases, the spectral densities begin to exhibit peaks. The
high scattering intensity near the origin in the right panels of
Figure 9 indicates large-scale density fluctuations that decrease
in intensity as kD increases. In the right panel of Figure 9b there
is a peak at kD∼ 6, which corresponds to density fluctuations on
the order of the size of a single rhombus. Slowly compressed
packings of rhombi exhibit short-range nematic orientational
order (see center panels of Figures 9a and 9c), which is lost upon
angular averaging. As the compression rate increases, the
packings becomemore isotropic (see center panel of Figure 9b).
We also observe that these packings are polycrystalline, and
slowly compressed rhombi with small γ tend to exhibit point-like
defects, while larger compression rates and γ result in grain
boundary-like defects.
All CT packings exhibit a significant degree of short-range

translational order, shown by the peaks in the right panels of
Figure 10. The first peak in the right panels of Figure 10
corresponds to a length scale associated with the distance
between neighboring voids between the particles. In right panel
of (c) of Figure 10 the split second peak corresponds to length
scales associated with the height of the CT and the side length of
the CT. Short-range 6-fold orientational order that is lost upon
angular averaging emerges when the packings are compressed
more slowly (see center panels of Figures 10a and 10c), while
fast compressions can result in isotropic packings (see center
panel of Figure 10b). As κ increases, the 6-fold orientational
order increases in range, shown by the sharpening of the Bragg
peaks in the center panel of Figure 10c.
Packings of ICC with θICC = 90° have short-range

translational and 6-fold orientational order that is lost upon

Figure 8. Example representative configurations (left), corresponding two-dimensional (center), and angular averaged spectral densities (right)
χ̃V(k)/D

2 vs dimensionless wavenumber kD from OST packings: (a) θOST = 100°OST compressed using the fast schedule and (b) θOST = 140°OST
compressed using the slow schedule, where D is the circumradius of the particle.
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angular averaging at all compression rates (see Figure 11b). The
first peak in the corresponding angular-averaged spectral density
corresponds to distance associated with neighboring voids. As
θICC deviates from 90°, the spectral densities become isotropic
and exhibit less short-range translational order, which is shown
by the disappearance of the peaks in the right panels of Figures
11a and 11c. The broad peaks in these figures are associated with
the greater asphericity of the particle shape, resulting in more
widely distributed distances between neighboring voids. The
sharpness of the peak in the right panel of Figure 11a compared
to that of the right-hand panel of Figure 11c indicates greater
translational order in the θICC → 180° limit than the θICC → 0°
limit. Inspection of the left panel of Figure 11a shows that at
largeϕ semicircles do not form circular dimers which could then
pack in a triangular lattice, as one may first surmise, suggesting
these objects may possess a rich equilibrium phase behavior.
Lens packings with α > 0.5 exhibit an increase in short-range

6-fold orientational order, which increases in range as the

compression rate decreases, shown by the well-defined peaks in
the angular-averaged spectral density in right panel of Figure
12a. As α decreases, the degree of short-range 6-fold
orientational order decreases, shown by the broadening of the
peaks in Figure 12b. In these two figures, the first peaks
correspond to nearest-neighbor void distances. For α close to
zero, the packings exhibit short-range nematic orientational
order (see the center panel of Figure 12c). The 6-fold (in Figure
12a,b) and nematic (in Figure 12c) orientational order in these
packings is lost upon angular averaging. The corresponding
angular-averaged spectral density shows large-scale density
fluctuations, which do not decrease in intensity until a length
scale associated with the minor axis of the lens.
It is worth noting that rapidly compressed packings of lenses

with α = 0.5 have isotropic spectral densities that exhibit little
short-range translational order (see Figure 13). The peak in the
angular-averaged spectral density is associated with the nearest-
neighbor void distances and is broadened due to the

Figure 9. Example representative configurations (left), corresponding two-dimensional (center), and angular averaged spectral densities (right)
spectral densities χ̃V(k)/D

2 vs dimensionless wavenumber kD from rhombus packings: (a) θRh = 30° rhombi compressed using the fast schedule, (b)
θRh = 80° rhombi compressed using the fast schedule, and (c) θRh = 80° rhombi compressed using the slow schedule, whereD is the circumradius of the
particle.
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orientational disorder in the packing and the anisotropy of the
particle shape. In addition, χ̃V(k) becomes nearly zero (≈0.001),
i.e., nearly hyperuniform,55 as k approaches 0, implying a
suppression of long-wavelength density fluctuations. This
indicates lenses with α = 0.5 are a reasonable candidate for a
particle shape that readily forms monodisperse disordered
jammed packings, an area of current interest.30 In three
dimensions, the phase diagrams of oblate ellipsoids and lenses
are known to closely resemble each other but begin to differ in
the hard-sphere limit and for ϕ in the crystalline solid range.68

The phase diagram for hard ellipses in ref 69 can thus potentially
be used to predict the translational and orientational order in a
jammed lens packing by determining if a given α should result in
a plastic-to-solid, isotropic-to-solid, or nematic-to-solid phase
transition. In addition, studying the structural changes of these
dense packings upon decompression can allow one to
qualitatively characterize the equilibrium melting properties of
such particles.70

Thus, we find that slower compression rates tend to result in
longer-range translational and orientational order.Moreover, we
find that packings with large K (see section 3.1) tend to exhibit
less short-range translational and orientational order.

3.3. Contact Statistics. In each of the packings produced by
using the ASC scheme, we count the number of each type of
contact to determine the contact networks and rattler fraction
ϕR. We then examine how the average number of constraints per
particle ZC and rattler fraction ϕR change as a function of the
particle shape and compression rate.
Figure 14 shows that lens and CT packings are hypostatic, and

ZC decreases as the compression rate increases. We also observe
that ZC decreases in rapidly compressed packings of lenses with
small α and CT with small κ because of their larger asphericities
γ (see Figure 14). Figure 15 demonstrates that ϕR in these
packings tends to increase as the packing is compressed more
rapidly and as γ decreases.
Figure 16 shows the trends in ZC and ϕR as a function of θOST.

We find that slowly compressed OST packings are nearly

Figure 10. Example representative configurations (left), corresponding two-dimensional (center), and angular averaged spectral densities (right)
densities χ̃V(k)/D

2 vs dimensionless wavenumber kD fromCT packings: (a) κ = 0.35 CT compressed using the slow compression schedule, (b) κ = 0.5
CT compressed using the fast compression schedule, and (c) Reuleaux triangles (κ = 1/√3 ) compressed using the slow compression schedule, where
D is the circumradius of the particle.
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isostatic, while all other OST packings are hypostatic. OST
packings have greater ZC than packings of curved objects, which
is attributed to the edge-to-edge contacts only present in
packings of faceted particles. Additionally, we see that ϕR
increases as the packings are compressed more rapidly and as
γ decreases.
Thus, we find that ZC tends to increase as the compression

rate decreases and γ increases. Moreover, ϕR tends to increase as
the compression rate increases and as γ decreases.

4. CONCLUSIONS

Kinetic effects are ubiquitous in both numerical and
experimental hard-particle packing protocols. We have studied
these effects by varying the compression rate used to produce
monodisperse packings of convex, noncircular hard particles in
two dimensions. In particular, we used the ASC scheme to
generate dense, effectively jammed packings of rhombus, obtuse
scalene triangle, lens, curved triangle, and ice cream cone shaped

particles with a wide range of packing fractions and degrees of
order. To characterize the kinetic effects on these packings, we
defined the kinetic frustration index K which quantifies the
deviation of a packing from its maximum possible packing
fraction. In addition, we characterized the degree of short- and
long-range order in the packings using the spectral density. We
also determined the type and number of contacts in the packings
to examine the trends in ZC and ϕR.
Regardless of particle shape, K increases as the compression

rate increases. We found that a higher order of rotational
symmetry, smaller γ, and more curvature all reduce K. Packings
with largeK tend to have reduced short-range translational order
and are more likely to be isotropic. Additionally, slower
compression rates tend to result in packings with a greater
degree of short-range translational and orientational order. We
also found that ZC increases as the γ increases and as the
compression rate decreases. Moreover, ϕR increases as γ
decreases and as the compression rate increases.

Figure 11. Example representative configurations (left), corresponding two-dimensional (center), and angular averaged spectral densities (right)
spectral densities χ̃V(k)/D

2 vs dimensionless wavenumber kD from ICC packings: (a) θICC = 180° ICC compressed using the fast compression
schedule, (b) θICC = 90° ICC compressed using the medium compression schedule, and (c) θICC = 30° ICC compressed using the fast compression
schedule, where D is the circumradius of the particle.
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Rapidly compressed lens-shaped particles with α = 0.5 have
spectral densities that indicate short-range translational order,
isotropy, and suppressed long-wavelength density fluctuations.
As such, these lenses are a promising candidate for a two-
dimensional shape that readily forms monodisperse disordered
jammed packings, a current area of interest.30 Closer inspection
of lenses with α∼ 0.5 is warranted in future work to determine if
this particle shape can readily generate MRJ-like packings.
Our findings on the relationship between K and compression

rate may aid in the design of laboratory packing protocols. It is
desirable, however, to extend these results to three-dimensional
particle shapes so that they are applicable to a wider variety of
physical systems. Future work in this area should also include the
study of kinetic effects in packings in closed containers as well as
packings with size and shape polydispersity. Additionally, it is of
interest to determine the equilibrium phase behavior of these
families of particle shapes away from the jamming point.
Furthermore, because such hard particle packings can be viewed
as two-phase materials, the physical properties (e.g., con-

ductivity and elastic moduli) of these packings should also be
studied. Additional interparticle forces can also be applied to this
set of noncircular convex hard particle shapes, e.g., dipolar
forces, to design a broader class of packing arrangements (see,
e.g. refs 71 and 72).
Obvious nontrivial extensions of the present work include a

closer examination of concave two-dimensional shapes and
chiral mixtures of particles. To preliminarily examine the extent
to which kinetic frustration is affected by particle concavity, we
have measured K for packings of concave bowtie-shaped
particles (see Figure 2f) produced by using the three
compression schedules given in section 2.5. Figure 17 shows
the behavior of K as a function of thickness β for these packings.
We find that a greater difference between the particle volume
and the volume of its convex hull results in greater K. It is also
noteworthy that bowties with small β have the highest values of
K observed herein. This indicates concave particle shapes tend
to more easily generate packings with large K. Thus, such
particle shapes may allow for the generation of effectively

Figure 12. Example representative configurations (left), corresponding two-dimensional (center), and angular averaged spectral densities (right)
spectral densities χ̃V(k)/D

2 vs dimensionless wavenumber kD from lens packings: (a) α = 0.8 lenses compressed using the slow compression schedule,
(b) α = 0.666... lenses compressed using the medium compression schedule, and (c) α = 0.2 lenses compressed using the slow compression schedule,
where D is the circumradius of the particle.
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jammed packings with small packing fractions, which warrants
further examination.
Moreover, because of the wide range of enantioselectivities in

the synthesis of chiral molecules,73 it is of interest to determine
the effect of enantioenrichment on packing kinetics. Here, we
preliminarily consider dense packings of enantiopure (a system
containing only one type ofmirror image) and racemic (a system

Figure 13. A representative configuration (top), the corresponding
two-dimensional (middle), and the angular averaged (bottom) spectral
density χ̃V(k)/D

2 vs dimensionless wavenumber kD for a rapidly
compressed packing of α = 0.5 lenses, where D is the circumradius of
the particle.

Figure 14. Average number of constraints per particle ZC in the
packings of lenses and CT (ignoring rattlers) as a function of (a) α and
(b) κ.

Figure 15. Rattler fraction ϕR in the packings of lenses and CT as a
function of (a) α and (b) κ.

Figure 16. (a) Average number of constraints per particle ZC (ignoring
rattlers) and (b) rattler fraction ϕR in the OST packings as a function of
θICC.
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containing an equal amount of both mirror images) packings of
OST with θOST = 100°. Table 1 compares the values of the
kinetic frustration index K for these two types of packings. We
find that packings of racemic mixtures of OSTs have a higher K

than the analogous enantiopure packings. Further studies of the
effects of chirality on kinetic frustration include the study of K as
a function of enantioenrichment as well as the examination of
other chiral particle shapes.
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