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Dense, disordered packings of particles are useful models of low-temperature amorphous phases of matter,
biological systems, granular media, and colloidal systems. The study of dense packings of nonspherical particles
enables one to ascertain how rotational degrees of freedom affect packing behavior. Here, we study superballs,
a large family of deformations of the sphere, defined in three dimensions by |x1|2p + |x2|2p + |x3|2p � 1, where
p ∈ (0, ∞) is a deformation parameter indicating to what extent the shape deviates from a sphere. As p increases
from the sphere point (p = 1), the superball tends to a cuboidal shape and approaches a cube in the p → ∞ limit.
As p → 0.5, it approaches an octahedron, becomes a concave body with octahedral symmetry for p < 0.5, and
approaches a three-dimensional cross in the limit p → 0. Previous characterization of superball packings has
shown that they have a maximally random jammed (MRJ) state, whose properties (e.g., packing fraction φ,
average contact number Z̄) vary nonanalytically as p diverges from unity. Here, we use an event-driven molecular
dynamics algorithm to produce MRJ superball packings with 0.85 � p � 1.50. To supplement the previous
work on such packings, we characterize their large-scale structure by examining the behaviors of their structure
factors S(Q) and spectral densities χ̃V (Q), as the wave number Q tends to zero, and find that these packings are
effectively hyperuniform for all values of p examined. We show that the mean width w̄ is a useful length scale
to make distances dimensionless in order to compare systematically superballs of different shape. Moreover, we
compute the complementary cumulative pore-size distribution F (δ) and find that the pore sizes tend to decrease
as |1 − p| increases. From F (δ), we estimate how the fluid permeability, mean survival time, and principal
diffusion relaxation time vary as a function of p. Additionally, we compute the diffusion “spreadability” S(t )
[Torquato, Phys. Rev. E 104, 054102 (2021)] of these packings and find that the long-time power-law scaling
indicates these packings are hyperuniform with a small-Q power law scaling of the spectral density χ̃V (Q) ∼ Qα

with an exponent α that ranges from 0.64 at the sphere point to 0.32 at p = 1.50, and decreases as |1 − p|
increases. Each of the structural characteristics computed here exhibits an extremum at the sphere point and
varies nonanalytically as p departs the sphere point. We find the nonanalytic behavior in φ on either side of the
sphere point is nearly linear, and determine that the rattler fraction φR decreases rapidly as |1 − p| increases.
Our results can be used to help inform the design of colloidal or granular materials with targeted densities and
transport properties.
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I. INTRODUCTION

A particle packing is a collection of nonoverlapping bodies
in d-dimensional Euclidean space Rd . The packing fraction
φ is the fraction of Rd covered by these bodies. Dense pack-
ings have been used to model physical phenomena in a wide
variety of contexts including condensed and soft matter
physics [1–4], materials science [3,5], and biology [6–8],
among many others (see Refs. [9] and [10]). A jammed pack-
ing is one in which each particle is contacted by its neighbors
such that mechanical stability of a particular type is con-
ferred to the packing [9]. Such systems grant insight into the
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structure and bulk properties of crystals, glasses, and granular
media [9,11].

Jammed packings can be organized into three mathemati-
cally precise categories based on the nature of the mechanical
stability conferred, which in order of increasing stability are
as follows [9,12]: (1) Local jamming: no individual parti-
cle can be moved while holding all other particles fixed.
(2) Collective jamming: the packing is locally jammed, and
no collective motion of a finite subset of particles is possible.
(3) Strict jamming: the packing is collectively jammed and
all volume-nonincreasing deformations are disallowed by the
impenetrability constraint.

A jammed state of particular interest is the maximally
random jammed (MRJ) state. Such packings are the most
disordered configuration (as measured by a set of scalar or-
der metrics) subject to a particular jamming category, and
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can be viewed as prototypical glasses because of their max-
imal disorder and mechanical rigidity [9,13]. Moreover, these
packings are hyperuniform, meaning their infinite-wavelength
density fluctuations are anomalously suppressed compared
to those in typical disordered systems [14–16]. Numerical
simulations in R3 have produced, to a very good approxima-
tion, monodisperse MRJ packings of several particle shapes
including spheres [13], ellipsoids [17], superballs [18], the
Platonic solids [19], and truncated tetrahedra [20]. While MRJ
sphere packings have been characterized extensively [15,21–
25], other shapes are less well understood due to their relative
mathematical complexity.

MRJ packings of spheres in R3 are isostatic [24,26], mean-
ing that the total number of interparticle contacts (constraints)
is equal to the number of degrees of freedom in the system
and that all of the constraints are linearly independent. In
such packings, it is thus implied that the average number of
contacts per particle Z̄ is equal to twice the number of degrees
of freedom per particle (i.e., Z̄ = 2 f ) in the thermodynamic
limit, which has been verified to a high numerical accuracy
[24,26]. Additionally, analyses approximating the nonaffine
elastic response of disordered solids have shown the isostatic-
ity of jammed sphere packings (see, e.g., Ref. [27]). While,
e.g., spheres, polyhedra [19,28], and lenses [29] have isostatic
MRJ packings, this is not a general signature of the MRJ
state. In particular, certain aspherical particles with smooth
boundaries, e.g., ellipsoids [17], superellipsoids [30], and su-
perballs [18] have hypostatic MRJ packings, meaning that
Z̄ < 2 f . Using second- and higher-order jamming analyses,
Donev et al. [31] have rigorously shown that if the curvature
of nonspherical particles at their contact points is considered,
then hypostatic packings of nonspherical particles can indeed
be jammed.

In practice, disordered jammed packings of monodisperse
spheres and nearly-spherical particles produced via simula-
tion or experiment contain a small concentration of rattlers
(�3% of particles [9,10]), which are unjammed particles lo-
cally imprisoned by their jammed neighbors [9,13]. Jamming
precludes the existence of rattlers [9,12]. Nevertheless, it is
the significant majority of particles that confers rigidity to
the packing, and in any case, the rattlers could be removed
(in computer simulations) without disrupting the remaining
jammed particles [9,10]. The rattler fraction φR is greatest in
packings of spherically symmetric particles (∼2.5% in R3),
decreases in packings of particles with rotational degrees of
freedom [32] (vanishing in the case of sufficiently aspherical
particles [18,31]), and increases in lower spatial dimensions
(∼3.5% in R2) [33]. Atkinson et al. [34] have shown that
removing rattlers from MRJ packings results in a nonhype-
runiform packing, meaning the subset of jammed particles
alone is not hyperuniform.

Torquato and Stillinger [14] suggested that certain defect-
free, strictly jammed packings of identical spheres are
hyperuniform. Specifically, they conjectured that any strictly
jammed, saturated, infinite packing of identical spheres is
hyperuniform. A saturated packing is one in which there is
insufficient space to add another particle of the same type to
the packing. The conjecture excludes packings that contain
rattlers because they are by definition not strictly jammed
(see above). Nonetheless, such packings are effectively

p→∞p→ 00.2 = p0 p = 0.40 p = 0.50 p = 1.00

FIG. 1. Superballs with different values of the deformation
parameter p.

hyperuniform [15,35–40]. The Torquato-Stillinger conjecture
is supported by recent theoretical considerations involving
free-volume theory [41] and numerical investigations [42]
involving large-scale correlations in three-dimensional sphere
packings at jamming. One expects this conjecture to extend
to certain defect-free strictly jammed packings of nonspher-
ical particles. Zachary et al. [35,39,40] have shown that
two-dimensional MRJ packings of polydisperse and/or non-
spherical particles are effectively hyperuniform with respect
to the spectral density, the proper spectral measure for pack-
ings of polydisperse or noncircular particles. Here, we use the
spectral density to show that MRJ packings of nonspherical
particles in three dimensions are effectively hyperuniform.

It is fundamentally and practically important to un-
derstand the packing behavior of nonspherical particles
[17,19,28,32,43–47]. In particular, this allows us to better
understand real granular media and low-temperature states
of matter. Supramolecular chemistry of organic compounds,
which attain a wide range of symmetry groups [48], can also
be modeled using particles with the same symmetry.

Studies of the dense packings of superballs in two and three
dimensions were introduced by Jiao, Stillinger, and Torquato
[18,49,50] to ascertain the effect of deforming from a sphere
and the resulting rotational degrees of freedom. Superballs in
Rd are a family of centrally symmetric shapes with d equal
semiaxes, defined by the inequality

|x1|2p + |x2|2p + · · · + |xd |2p � 1, (1)

where xi(i = 1, . . . , d ) are Cartesian coordinates and p � 0
is the deformation parameter, which indicates the extent to
which the shape is deformed away from the d-dimensional
sphere (p = 1). Henceforth, the term superball will refer to
the three-dimensional object, while superdisk will refer to the
two-dimensional object. As p increases from unity superballs
attain cubic symmetry, becoming a cube in the limit of p →
∞, and as p decreases attain octahedral symmetry (see Fig. 1)
becoming an octahedron at p = 0.5, concave at p < 0.5, and
a three-dimensional cross in the p → 0 limit.

A superball breaks the rotational symmetry of a sphere
differently from an ellipsoid [18]. In the direct vicinity of
the sphere point, the superball attains either cubic (p > 1)
or octahedral (p < 1) symmetry, while ellipsoids are simply
affine transformations of the sphere. Far from the sphere
point, the asphericity [19,28], defined as the ratio of the radii
of the circumsphere and insphere of a nonspherical particle,
can increase without limit as the aspect ratio a grows for
ellipsoids, while it is always bounded and close to unity for
convex superballs (i.e., p � 0.5). These unique geometric
properties of superballs result in rich phase behavior [51–53],
including a multitude of crystalline phases, plastic crys-
talline phases, and complex melting transitions. Moreover,
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novel inorganic synthetic methods allow for the production of
superball-shaped colloids [54–56]. Thus, the results presented
herein can be used to inform the design of disordered colloidal
materials with desired properties using such particles.

Previous theoretical studies of superball and superdisk
packings include the determination of their densest known
packings for all values of p, which are Bravais lattices with
symmetries consistent with those native to the superball
[50], as well as their phase behavior (see above). Moreover,
Jiao et al. have studied the properties of MRJ superball pack-
ings [18]. In particular, they found that φ and Z̄ increase
rapidly and nonanalytically as the superballs become more
aspherical (i.e., as |1 − p| increases), while φR decreases,
which is attributed to the symmetry breaking as |1 − p| in-
creases from 0. This increase in φ is a result of the superball
shape becoming more efficient at filling space as p deviates
from unity. Ellipsoids, however, have a critical aspect ratio
a∗ [17] at which φ is maximized and thereafter begins to
decrease due to very elongated or plate-like ellipsoids having
strong exclusion-volume effects in orientationally disordered
packings (see, e.g., Ref. [44]), which causes the MRJ packing
fraction to decrease. A comparison of the ellipsoid and super-
ball MRJ packing fractions as a function of the scaled mean
width (see Secs. II C, III C) is given in Fig. 6. These observa-
tions are consistent with the notion that packings of particles
with rotational degrees of freedom tend to have larger φ and
smaller φR. The nonanalyticity around p = 1 is also observed
in optimal superball and superdisk packings [49,50]. By con-
trast, the densest known ellipsoid packings have a smooth
increase in φ as a deviates from unity [57]. They also show
that MRJ superball packings are highly hypostatic, meaning
Z̄ is much less than 2 f , which requires nontrivially correlated
local arrangements of particles. These so-called “nongeneric”
local configurations, in which a particle has fewer contacts
than average, are counter-intuitively not rare. This property of
superballs stands in contrast to ellipsoid packings, which are
slightly hypostatic, meaning Z̄ is only slightly less than 2 f .

Similar nonanalytic behavior is also observed in MRJ
packings of bidisperse superdisks in which there are equimo-
lar amounts of superdisks with a size ratio of 1.4 [18]. To
our knowledge, however, monodisperse MRJ superdisk pack-
ings for p �= 1 have not been observed. Monodisperse disks
in R2 lack geometrical frustration, i.e., the densest local
packing arrangement is compatible with the global densest
packing arrangement (the triangular lattice). As a result, typi-
cal packing algorithms generate polycrystalline disk packings
with a probability of nearly unity [33]. Thus, the defini-
tion of random close packing (RCP), which identifies the
most probable packings as the most disordered, misleadingly
identifies these polycrystalline packings as the RCP state, a
dubious proposition for the MRJ state [9,58]. Atkinson et al.
[33] produced MRJ-like disk packings using the Torquato-
Jiao sequential linear programming algorithm [59], which are
isostatic and qualitatively distinct from commonly observed
polycrystalline packings.

Herein, we aim to build on the foundational study
of MRJ superballs by Jiao et al. [18]. We use the
Donev-Torquato-Stillinger (DTS) algorithm [60,61], which
employs event-driven molecular dynamics to produce dense
packings of centrally symmetric objects (more details in

Sec. III A), to produce large MRJ superball packings with
0.85 � p � 1.50. We show that these packings are effectively
hyperuniform and compute the structure factor S(Q) and
spectral density χ̃V (Q) and examine the small-Q power-law
scaling given by:

χ̃V (Q) ∼ Qα, (2)

where Q is the wave number and α > 0 is the hyperunifor-
mity scaling exponent, which are defined in Sec. II A. The
structure factor and spectral density (mathematically defined
in Sec. II A) are related to the Fourier transforms of the pair
correlation function g2(r) and autocovariance of the phase
indicator function χV (r), respectively, and can be obtained
via scattering experiments [3,62]. Using χ̃V (Q), we compute
the spreadability S (t ) and find the long-time scaling indicates
these packings are hyperuniform with α ∈ (0.32, 0.64), which
decreases as |1 − p| increases [63]. We additionally compute
the complementary cumulative pore-size distribution F (δ),
and find that pore sizes tend to be smaller as |1 − p| increases.
We also note that each packing is saturated. From F (δ), we are
able to estimate the fluid permeability k, mean survival time
τ , and principal diffusion relaxation time T1. We observe that
k, τ , and T1 have maxima at p = 1 and decrease as |1 − p|
increases. By producing MRJ packings with |1 − p| closer
to zero than in previous work, we determine that φ increases
nearly linearly for sufficiently small values of |1 − p|. We also
characterize φR as a function of p, which decreases rapidly
and nonanalytically as p diverges from unity. We expect these
results to be useful in the design of disordered colloidal mate-
rials with desired properties.

The rest of the paper is organized as follows. Section II
contains the pertinent background and mathematical defi-
nitions. Section III describes the methods used to produce
and characterize the MRJ superball packings. In Sec. IV we
present results from the structural characterization of said
packings and in Sec. V we present their transport proper-
ties. We then offer conclusions and potential future studies
in Sec. VI.

II. BACKGROUND AND DEFINITIONS

A. Structure factor and spectral density

A system comprising point particles in Rd can be
completely characterized by a set of n-particle probability
density functions ρn(r1, . . . , rn) ∀ n � 1, which are propor-
tional to the probability of finding n particles at the positions
r1, . . . , rn. For statistically homogeneous systems, ρ1(r1) =
ρ, where ρ is the number density, and ρ2(r1, r2) = ρ2g2(r),
where r = r2 − r1 and g2(r) is the pair correlation function. If
the system is also statistically isotropic, g2(r) = g2(r), where
r = ‖r‖. The ensemble-averaged structure factor S(Q) is de-
fined as

S(Q) = 1 + ρh̃(Q), (3)

where h̃(Q) is the Fourier transform of the total correlation
function h(r) = g2(r) − 1, and Q is a wave vector.

For single periodic configurations with N point particles
with positions rN = (r1, . . . , rN ) within a fundamental cell F
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of a lattice �, the scattering intensity S(Q) is given by

S(Q) =
∣∣∑N

i=1 exp(−iQ · ri )
∣∣2

N
. (4)

In the thermodynamic limit, an ensemble of N-particle con-
figurations in F is related to S(Q) by

lim
N,VF →∞

〈S(Q)〉 = (2π )dρδ(Q) + S(Q), (5)

where VF is the volume of the fundamental cell and δ is
the Dirac delta function [16]. For finite N simulations under
periodic boundary conditions, Eq. (4) is used to compute S(Q)
directly by averaging over configurations. Here, we compute
the angular-averaged S(Q) by applying Eq. (4) to the superball
centroids.

Packings can be interpreted as two-phase heterogeneous
media, where the matrix phase V1 is the void (pore) space
between the particles, and the particle phase V2 is the space
occupied by the particles, such that V1 ∪ V2 = V ⊂ Rd [29].
The packing microstructure can be fully characterized by a
countably infinite set of n-point probability functions S(i)

n ,
defined by [3]

S(i)
n (x1, . . . , xn) =

〈
n∏

j=1

I (i)(xn)

〉
,

where I (i) is the indicator function for phase i:

I (i)(x) =
{

1, x ∈ Vi

0, else. (6)

The function S(i)
n gives the probability of finding n points

at positions x1, . . . , xn in phase i. In what follows, we drop
the superscript i, and restrict our discussion to the particle
phase V2.

For statistically homogeneous media, Sn(x1, . . . , xn) is
translationally invariant and, in particular, the one-point cor-
relation function is independent of position and equal to the
packing fraction

S1(x) = φ, (7)

while the two-point correlation function S2(r) depends on
the displacement vector r ≡ x2 − x1. The corresponding two-
point autocovariance function χV (r) [3,64,65] is obtained by
subtracting the long-range behavior from S2(r):

χV (r) = S2(r) − φ2 (8)

The nonnegative spectral density χ̃V (Q) is defined as the
Fourier transform of χV (r) [3], i.e.,

χ̃V (Q) =
∫
Rd

χV (r)e−iQ·rdr. (9)

For a monodisperse packing of particles � with arbitrary
shape, it is known that [3,66,67]

χ̃V (Q) = ρ|m̃(Q; R)|2S(Q), (10)

where R denotes the geometrical parameters of the particle
shape and m̃(Q; R) is the Fourier transform of the particle
indicator function (form factor) defined as

m(r; R) =
{

1, r is in R
0, otherwise, (11)

where r is a vector measured with respect to the particle
centroid.

For single finite configurations of N identical hard particles
under periodic boundary conditions, χ̃V (Q) can be expressed
as [40]

χ̃V (Q) =
∣∣∑N

j=1 exp(−iQ · r j )m̃(Q; R j )
∣∣2

VF

(Q �= 0),

(12)

where {r j} denotes the set of particle centroids and R j denotes
the jth particle. Moreover, for such systems φ is given by

φ = Nv1

VF
, (13)

where v1 is the volume of a single particle.
To our knowledge, m̃(Q; R) has not been computed for

superballs. To circumvent this issue, we create a cubic vox-
elization of the packings using an efficient method (described
in Sec. III B) and apply Eq. (12) to the result, requiring only
m̃(Q; R) for the cube. We then compute the angular-averaged
χ̃V (Q) by applying Eq. (12) to the voxelized packings. Addi-
tionally, approximations of m̃(Q; R) for the superballs used
in this work, computed using this voxelization procedure, are
given in the Supplemental Material [68].

In this paper, we consider both the angular-averaged struc-
ture factor of the superball centroids and the angular-averaged
spectral density. The spectral density takes into account the
structure and orientation of the particle volume, information,
which is lost when only considering S(Q). Superballs (for
p �= 1) are nonspherical, thus requiring the use of χ̃V (Q) to
fully characterize the density fluctuations in their packings. A
more detailed discussion of the importance of computing the
spectral density is given in Sec. IV D and Refs. [35,39,40].

A system has hyperuniform local-number-density fluctu-
ations if as Q → 0, S(Q) → 0, while it has hyperuniform
local-volume-fraction fluctuations if as Q → 0, χ̃V (Q) →
0 [16]. Spectral densities that approach the origin with
the power-law form given in Eq. (2) can be divided into
three different classes based on their hyperuniformity scaling
exponent α [67]:

χ̃V (Q) ∼ Qα

⎧⎨
⎩

α > 1, Class I
α = 1, Class II
α < 1, Class III.

(14)

Classes I and III are the strongest and weakest forms of hype-
runiformity, respectively. Such classes apply analogously to
structure factors that approach the origin with a power-law
form [14,69,70]. Moreover, a system is deemed to be “effec-
tively hyperuniform” (i.e., that a system is, for all intents and
purposes, hyperuniform) when the hyperuniformity index H ,
defined as [71],

H = χ̃V (0)

χ̃V (Qpeak )
, (15)

where χ̃V (Qpeak ) is the largest peak of the spectral density,
is less than about 10−2 [71]. Equation (15) is exact in the
infinite system limit, but a numerical extrapolation is required
for numerical simulations due to finite system sizes.
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B. Pore-size distribution and transport properties

1. Pore-size distribution

We characterize the void space in the superball packings
by the distribution of their pore sizes δ, i.e., the maximum
radius of a spherical pore that can be assigned to a random
point in the void space such that the pore lies entirely in the
void space. The probability density function P(δ) of the pore
sizes, also known as the “pore-size distribution” [3,72], is
normalized

∫ ∞
0 P(δ)dδ = 1 and has units of inverse length.

For a randomly selected point in the void space, P(δ)dδ is
the probability that the shortest distance to the nearest void-
particle interface is between δ and δ + dδ.

Equivalently, one can use the complementary cumulative
pore-size distribution function F (δ) defined as

F (δ) =
∫ ∞

δ

P(r)dr, (16)

which can be interpreted as the fraction of void space that
can admit a pore with a radius greater than δ. By definition,
F (0) = 1, F (∞) = 0, and F (δ) is unitless. With F (δ), we can
compute the mean pore size 〈δ〉 and the second moment 〈δ2〉
of P(δ) using [3]:

〈δ〉 =
∫ ∞

0
F (δ)dδ, (17)

〈δ2〉 = 2
∫ ∞

0
F (δ)δdδ. (18)

These two quantities can be interpreted as characteristic
length scales of the matrix phase and used to compute the
transport properties of heterogeneous media [3].

2. Fluid permeability

Darcy’s law, which describes the slow flow of an incom-
pressible viscous fluid through a porous medium, defines the
fluid permeability k, and can be rigorously derived via ho-
mogenization theory [73]. The quantity k has dimensions of
(length)2 and can be interpreted as an effective pore channel
area of the dynamically connected part of the pore space
[3]. Using the solutions of the unsteady Stokes equations for
the fluid velocity vector field, Avellaneda and Torquato [74]
derived the following relationship between k, the formation
factor F of the porous medium, and a length scale L that is
determined by the eigenvalues of the Stokes operator:

k = L2

F , (19)

where L is a certain weighted sum of the viscous relaxation
times 
n (i.e., inversely proportional to the eigenvalues of
the Stokes operator), and F = σ1/σe where σe is the effective
conductivity of a porous medium with a conducting fluid of
conductivity σ1 and a perfectly insulating solid phase. Quali-
tatively, F quantifies the “windiness” of the entire void space
and is a monotonically decreasing function of the porosity
[75]. Note, L in Eq. (19) absorbs a factor of 8 compared to
the definition given in Ref. [73], specifically, L = L/8.

The theoretical prediction of k is a difficult problem be-
cause it is nontrivial to estimate L. Recently, Torquato [75]
proposed that, for well-connected pore spaces, L2 can be

approximated by 〈δ2〉,

k ≈ 〈δ2〉
F , (20)

which was verified by Torquato [75] for BCC, equilibrium,
and stealthy sphere packings and by Klatt et al. [76] for
a number of other ordered and disordered sphere systems.
Additionally, to approximate F , we use a tight lower bound
derived by Torquato [77] for any porous medium in R3 that
accounts for up to four-point information. To an excellent ap-
proximation, the four-point parameter vanishes for a class of
ordered and disordered dispersions of particles, thus yielding
the accurate estimate

F ≈ 2 + φ − (1 − φ)ζ2

(1 − φ)(2 − ζ2)
, (21)

where ζ2 ∈ (0, 1] is a three-point microstructural parame-
ter, which is a weighted integral involving Si for i = 1, 2, 3.
This approximation is in excellent agreement with simulations
of a variety of ordered and disordered sphere dispersions
[77–82]. In the ζ2 = 0 case, Eq. (21) reduces to the well-
known Hashin-Shtrikman lower bound on F [3,83].

3. Mean survival time and principal diffusion relaxation time

Another set of material descriptors concern the diffusion
of a species through a pore space with a diffusion coefficient
D that reacts at the pore-solid interface with a reaction rate
κ . The diffusion controlled-limit is reached as κ → ∞, while
taking κ → 0 corresponds to a perfectly reflective interface.
One related quantity of interest is the mean survival time τ ,
or the average lifetime of the diffusing species before reacting
with the interface. Additionally, the principal relaxation time
T1 is associated with the time-dependent decay of an initially
uniform concentration field of the diffusing particles [3], and
is also pertinent to the description of viscous flow in porous
media [84].

Using variational principles, Torquato and Avellaneda [84]
derived the following upper bounds on τ and T1 in terms
of lower-order moments of the pore-size probability density
function

τ � 〈δ〉2

D + (1 − φ)

κs
, (22)

T1 � 〈δ2〉
D + 3(1 − φ)〈δ〉2

4κs〈δ2〉 , (23)

where s is the specific surface of the medium. In this paper,
we only consider the diffusion-controlled limit.

4. Spreadability

Recent work [63] has revealed that the time-dependent
spreadability is a powerful new dynamic-based figure of merit
to probe and classify the spectrum of possible microstructures
of two-phase media across length scales. Consider the time-
dependent problem describing the mass transfer of a solute
between two phases and assume that the solute is initially
only present in one phase, specifically the particle phase, and
both phases have the same D. The fraction of total solute
present in the void space as a function of time S (t ), is termed
the spreadability because it is a measure of the spreadability
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of diffusion information as a function of time. Qualitatively,
given two different two-phase systems at some time t , the
one with a larger value of S (t ) spreads diffusion information
more rapidly. Recently, Torqauto has shown that the excess
spreadability S (∞) − S (t ) can be expressed in Fourier space
in any dimension d as [63]:

S (∞) − S (t ) = dωd

(2π )dφ

∫ ∞

0
Qd−1 χ̃V (Q) exp[−Q2Dt]dk,

(24)
where ωd is the volume of a d-dimensional unit sphere:

ωd = πd/2

�(1 + d/2)
. (25)

Consider the particular case of two-phase media with
χ̃V (Q) that obeys a power-law scaling in the Q → 0 limit:

lim
Q→0

χ̃V (Q) = B|Q�|α, (26)

where B is a positive dimensionless constant, � repre-
sents some characteristic microscopic length scale, and α ∈
(−d,∞). Such media can then be classified by their value
of α, in particular if α > 0, the medium is hyperuniform; if
α = 0, it is a typical nonhyperuniform disordered medium;
and if α < 0, it is antihyperuniform, meaning χ̃V (Q) diverges
at the origin. The long-time behavior of the excess spreadabil-
ity for this class of media can be written as [63],

S (∞) − S (t ) ∼ 1/t (d+α)/2 (27)

Thus, hyperuniform two-phase media have a decay rate faster
than 1/t d/2 at large t . Here, we use Eq. (24) to compute
S (∞) − S (t ) for the superball packings.

C. Mean width

We will show that the mean width w̄ is a useful means
to make distances dimensionless when comparing superballs
with different values of p. The mean width w̄ is a Minkowski
functional with dimensions of length [64]. Consider a convex
d-dimensional body trapped between two parallel (d − 1)-
dimensional hyperplanes. The “width” of the convex body
w(n) in the direction n is the distance between the closest
pair of parallel hyperplanes that do not intersect the body. The
average of w(n) such that n is uniformly distributed over the
unit (hyper)sphere in Rd is w̄ [64,85].

III. ALGORITHMIC AND EXPERIMENTAL DETAILS

A. Donev-Torquato-Stillinger algorithm

We use an event-driven molecular dynamics simula-
tion developed by Donev, Torquato, and Stillinger [60,61]
(henceforth referred to as the DTS algorithm) to generate
MRJ packings of superballs. This algorithm generalizes the
Lubachevsky-Stillinger (LS) sphere packing algorithm [86]
to accommodate other centrally symmetric convex particles,
e.g, ellipsoids and superballs. Initial conditions are produced
by randomly distributing randomly oriented particles, without
overlap, in a cubic periodic simulation box (fundamental cell).
In this paper, we choose φinitial = 0.2. Particles are then as-
signed random translational and rotational velocities, and their
motions are followed as they collide elastically and expand

(a) (b)

FIG. 2. Illustrative configurations of MRJ packings of superballs
with N = 250 for two different values of the deformation parameter:
(a) p = 0.85, (b) p = 1.5.

uniformly with an expansion rate γ . Eventually, a jammed
state with a diverging collision rate is reached, as is a local
maximum in φ. To enforce randomness in our packings, we
use an initially large expansion rate [γ ∈ (0.05, 0.005) up
to a dimensionless pressure P = 106] to avoid following the
equilibrium branch of the phase diagram, which leads to crys-
tallization. As the jamming point is approached, we decrease
the expansion rate (γ ∼ 0.001) to ensure a truly jammed pack-
ing with a well-defined contact network is produced. Previous
work on spheres [24], ellipsoids [17], and superballs [18]
indicates that this is a reliable method to produce MRJ-like
packings. Illustrative examples of the packings produced are
shown in Fig. 2. We find that using initial expansion rates
larger than γ = 0.05 causes the initial expansion step to termi-
nate far from the jamming point. This allows the configuration
much more space to rearrange during the second, slower
expansion step, which tends to result in configurations with
larger φ and Z̄ , which indicates they are not representative of
the MRJ state.

In this paper, we study superballs with p ∈ [0.85, 1.5]. For
p < 0.85 the resulting superballs are polyhedronlike, which
causes numerical instability in the algorithm. While previ-
ous work [18] uses values of p up to 3, we find that our
larger system sizes (N = 5000 compared to N = 1000) are
unable to produce high-quality MRJ packings in a feasible
amount of time. For packings with N = 5000, 1000 the ter-
minal pressure is P = 1014. The results for φ, Z̄ , and φR

for p �= 0.975, 1, 1.025, 1.05 are averaged over 50 N = 5000
configurations, and over 10 N = 5000 configurations for p =
0.975, 1.025, 1.05. For packings of spheres with N > 1000,
the DTS algorithm is known to take an impractical amount of
time to produce high-quality contact networks [15], so for the
φ, Z̄, and φR of spheres we use 10 N = 1000 configurations.
Particles are considered to be in contact if they are less than
a distance of 10−10D apart, where D is the length of one of
the superball’s major axes. For F (δ), 1 000 000 pore sizes
are computed in each of 10 N = 5000 configurations. The
results for S(Q) and χ̃V (Q) are averaged over 50 N = 5000
configurations.

B. Voxelization

Here, we present a procedure by which we voxelize a
packing of superballs in a cubic fundamental cell, allowing
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us to easily compute certain properties of these packings,
such as χ̃V (Q) and F (δ). To do so, we leverage the superel-
lipsoid shape function given in Refs. [31,87]. The following
assumes a monodisperse superball packing in R3, but an anal-
ogous procedure can be carried out for polydisperse packings,
packings in R2, or packings of superellipsoids [so long as
value of p for each coordinate is equal, cf. Eq. (1)], with
appropriate modifications.

First, we divide a cube with the same dimensions as the
simulation box into M × M × M cubic voxels, where in-
creasing M results in a higher-resolution packing. For each
superball in the packing, we then carry out the following
steps. Let

O−1 =
⎛
⎝1/(Rε) 0 0

0 1/(Rε) 0
0 0 1/(Rε)

⎞
⎠ (28)

be a matrix that describes a sphere that has a radius R equal to
the major semiaxes of the superball and ε is a small parameter
that scales the superballs such that φ of the voxelization better
matches the true value of φ [88]. Then, using the location of
the centroid in the simulation box, we find the corresponding
voxel, which contains it, and check all voxels within a cubic
neighborhood around this voxel such that the entire superball
is contained within the neighborhood. To determine if a par-
ticular voxel should be filled or not, we evaluate

ξ (r) = g
[
ξ̃ (r̃)

] − 1 (29)

where r̃ = O−1Q(r − r0) is the relative position rotated and
scaled according to the orientation and shape of the superball,
where Q is a rotational matrix describing the orientation of
the superball, r is the location of the voxel, and r0 is the
location of the centroid of the superball. For single exponent
superballs, we have

g(x) = x1/p (30)

and

ξ̃ (r̃) = eT f (r̃) (31)

where e is (1,1,1), and f (x) = |x|2p. If ξ (r) < 0 then the
superball overlaps the voxel and we set its value to 1 (filled),
else we set its value to 0 (empty).

To compute χ̃V (Q), we apply Eq. (12) to the result of the
above procedure, which is effectively a packing of cubes. For
each of the N = 5000 packings used to compute χ̃V (Q), we
produce a voxelization with a resolution of 300 × 300 × 300
voxels. To compute F (δ), we use a procedure very similar to
the one given in Ref. [89]. In brief, we choose a random point
in the void space of the packing, determine the voxel it lies
in, and compute the distance to the nearest filled voxel. To
do this quickly, we precompute a list of vectors ν = (n, n, n),
where n ∈ N0, in order of increasing magnitude, then check
the voxels by iterating through this list and adding the vector
ν to the index of the starting voxel until a filled voxel is found.
For each of the N = 5000 packings used to compute F (δ), we
produce a voxelization with a resolution of 500 × 500 × 500
voxels.

0.1 1 10 100 1000 10000

p

0.8

1

1.2

1.4

w

cube

sphere

octahedron

105 106

FIG. 3. Mean width w̄ [defined by Eq. (32)] as a function of
deformation parameter p of a superball with unit-length axes, with
attention called to the octahedron (p = 0.5), sphere (p = 1.0), and
cube (p → ∞) cases.

C. Mean width details

To account for the differences in particle geometry as
p changes, we scale distances by the mean width w̄. To our
knowledge, there is no known analytical formula for w̄ of the
superball. Thus, we create a polygonal mesh to approximate
the surface of the superball and use [90]

w̄ = 1

4π

∑
i

liθi, (32)

where li is the length of the ith edge of the mesh, and θi

is the angle between the normals of the faces, which meet
at the ith edge, which exactly computes w̄ for any convex
polyhedron. Figure 3 shows w̄ for superballs over a wide
range of p using this approximation. To demonstrate the ef-
fectiveness of this approach, we note that w̄ can be computed
exactly for octahedra, spheres, and cubes, which given a unit
diameter are 3

π
√

2
arccos(1/3), 1, and 3/2, respectively. Using

the approximation above, we find that the octahedron and
sphere cases (p = 0.5, 1.0) agree up to 4 decimal places, and
that the nearly cubic superball (p = 106) value agrees up to
6 decimal places, all of which are slightly smaller than the
expected value. We note that when Q is scaled by w̄ the
principal peaks of both S(Q) and χ̃V (Q) become very closely
clustered (see Sec. IV D), indicating that this is a reasonable
choice of scale. Scaling by other, seemingly sensible, length
scales, such as the major axis length of the superballs results
in a larger distribution of principal peak positions, and as such
are not the proper choice (see Supplemental Material [68]).

IV. STRUCTURAL CHARACTERISTICS OF MRJ
SUPERBALL PACKINGS

A. Rattler fraction

We carefully examine φR in superball packings, the results
of which are shown in Fig. 4. Previously, it was stated that
the rattler fraction decreases as |1 − p| increases, and nearly
vanishes for p > 2.75 [18]. Such a decrease in φR was also
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FIG. 4. The percentage rattler fraction φR of MRJ superball
packings as a function of deformation parameter p.

observed in ellipsoid packings as a was increased [17]. The
present findings are consistent with that notion. We find that
sphere packings have the largest φR, which decreases rapidly
and monotonically as |1 − p| increases. We expect that φR

will vanish in the p → ∞ limit. Thus, for the majority of
values of p, the dense disordered superball packings cannot
be regarded to be idealized MRJ states (for reasons noted in
Introduction), but can be regarded to be good approximations
of MRJ packings given the small concentration of rattlers.
The introduction of rotational degrees of freedom results in
a decrease in φR due to the increased number of contacts
required for jamming, as well as an increased difficulty in
forming the isotropic cages needed to house rattlers [18].

B. Packing fraction

Figure 5 shows φ for MRJ superball packings as a func-
tion of p. The sharp, nonanalytic increase we observe as
|1 − p| increases is due chiefly to the breaking of the spherical
symmetry of the particle. Nonspherical particles can more
efficiently cover space by orienting themselves such that their
protuberances occupy open spaces that spheres would be un-
able to. In previous work [18], the closest values of p to
the sphere point studied were p = 0.95 and 1.10. To better

0.8 1 1.2 1.4

p

0.64

0.66

0.68

0.7

0.72

FIG. 5. The packing fraction φ of MRJ superball packings as a
function of deformation parameter p.
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Scaled Mean Width

0.64

0.66

0.68

0.7

0.72

Superballs

Prolate

Oblate

FIG. 6. Packing fraction φ for superballs, oblate, and prolate
spheroids [31] as a function of their scaled mean widths. Superball
mean widths are scaled by the length of their major axes, while the
spheroid mean widths are scaled by the length of their two equivalent
major axes. The ratios of the semiaxes for the prolate spheroids are
1:1:a, and 1:a:a for oblate spheroids, where a is the aspect ratio.

characterize the cusp at the sphere point, we produce packings
with p = 0.975, 1.025, and 1.05, and use a linear regression to
fit this data. We find that the slope for p < 1 is –0.2084 (coef-
ficient of determination R2 = 0.9984) and 0.207 (R2 = 1) for
p > 1, showing that the increase in φ as |1 − p| increases is
very nearly linear. The qualitative behavior of φ observed here
is otherwise consistent with previous findings [18].

In Fig. 6 we compare φ for MRJ packings of superballs
for 0.85 � p � 1.50 and prolate and oblate spheroids as a
function of the scaled mean width (see Ref. [85] for spheroid
mean width formulas). Notably, for superballs, φ varies lin-
early (slope of –0.6402, R2 > 0.99 for p � 1, slope of 0.5579,
R2 > 0.99 for p � 1) over the entire range of mean widths
considered. The packing fraction of MRJ oblate spheroid
packings also increases roughly linearly, and more rapidly
than superballs, as the scaled mean width decreases. By con-
trast, φ for MRJ prolate spheroid packings increases quickly
and then begins to plateau as the scaled mean width increases
because of the increased effect of the anisotropic exclusion
volume of such deformed spheroids [17]. For the range of
scaled mean widths considered in Fig. 6, the spheroids have
larger φ because they require more contacts per particle than
superballs to achieve mechanical stability, which requires a
denser packing of particles [17].

C. Average contact number

Much like with φ and φR, Z̄ also exhibits the characteristic
“cusp” at p = 1, but unlike φ, does not have linear growth
in its vicinity. Figure 7 shows Z̄ as a function of p in the
MRJ superball packings. Note that rattlers are ignored when
computing Z̄ . The values of Z̄ increase sharply for small
values of |1 − p|, then begin to plateau for large values of
p. This sharp increase occurs because additional contacts are
required to constrain the new rotational degrees of freedom
that arise when the spherical symmetry is broken. For p = 1
the packings are exactly isostatic, as expected [24], while the
remainder of the packings are highly hypostatic (specifically,
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FIG. 7. The average contact number Z̄ of MRJ superball pack-
ings as a function of deformation parameter p.

Z̄ < 12). In particular, we find that Z̄ ≈ 7.9 (cf. Ref. [18]) for
sufficiently large p. By contrast, for large a, prolate spheroids
plateau at Z̄ ≈ 9.9, while other, more asymmetric, ellipsoids
plateau at Z̄ ≈ 11.75 [17]. The qualitative behavior of Z̄ is
consistent with previous findings [18]. Notably, when φR be-
gins to plateau at p ≈ 1.4, so too does Z̄ .

D. Effective hyperuniformity of MRJ superball packings

Zachary et al. have shown that the spectral density χ̃V (Q)
needs to be used to fully characterize the density fluctuations
for packings of polydisperse and/or nonspherical particles
[35,39,40]. The structure and orientation of the particle
volume are accounted for in χ̃V (Q), while S(Q) only considers
the particle positions. Thus, because superballs lack spherical
symmetry (for p �= 1), we must consider χ̃V (Q). To examine
the shape effects of the slightly aspherical superballs (i.e.,
those with p very close to unity), we also consider S(Q).
These characterizations allow us to ascertain the degree of
hyperuniformity in these superball packings. Notably, our
paper appropriately utilizes the spectral density χ̃V (Q) to as-
certain whether an MRJ packing of nonspherical particles is
effectively hyperuniform for the first time in R3. Previous
studies considering the hyperuniformity of MRJ packings
of nonspherical particles in R3 (e.g., Ref. [19]) consider
only S(Q).

Figures 8 and 9 show S(Q) for the centroids of MRJ
superball packings with p � 1 and p � 1, respectively. By
scaling Q by w̄, we find that the principal peaks all collapse
to nearly the same position. Moreover, as |1 − p| increases,
peak positions are pushed to larger values of Qw̄. Second and
subsequent peak heights also begin to see attenuation, which
increases in magnitude as |p − 1| increases.

While the centroids in MRJ sphere packings are known to
be hyperuniform [15], this is not generally true of packings
of particles with anisotropy or polydispersity [35,39,40]. Due
to the striking similarities between S(Q) for spheres and all
other superballs considered here, it is reasonable to conclude
that superballs behave like effective spheres inscribed within
the superballs. This sphere-like behavior occurs because there
is sufficient orientational disorder in the superball packings.
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p = 1.00

FIG. 8. The structure factor S(Q) [defined by Eq. (4)] as a func-
tion of wave number Q scaled by the mean width w̄ for values of the
deformation parameter p � 1.

This distribution of orientations averages out local inhomo-
geneities in the spatial distribution of particle centroids caused
by the particle anisotropy on large scales.

Figures 10 and 11 show χ̃V (Q) for MRJ superball packings
with p � 1 and p � 1, respectively. As above, scaling Q by
w̄ results in the principal peaks clustering tightly. Likewise,
minor peaks are shifted to larger values of Qw̄ and have
their heights attenuated as |1 − p| increases. The significant
attenuation of the principal peak heights in χ̃V (Q) as |1 − p|
increases compared to those in S(Q) is a result of m̃(Q; R)
[cf. Eq. (12)].

To estimate χ̃V (0) to obtain H defined by Eq. (15) we must
fit the small-Q region of χ̃V (Q) (i.e., Qw̄ � 1.4) with

χ̃V (Q) = a0 + a1Qα, (33)

where a0 = χ̃V (0) and a1 are fit parameters and α is the hype-
runiformity scaling exponent. As a result of the voxelization
procedure and small system size, the small-Q values of the
spectral density are noisy. Thus, a direct numerical fit using
Eq. (33) with the triplet a0, a1, and α as free parameters has
a strong dependence on the range of Q values to which the
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FIG. 9. The structure factor S(Q) [defined by Eq. (4)] as a func-
tion of wave number Q scaled by the mean width w̄ for values of the
deformation parameter p � 1.
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FIG. 10. The scaled spectral density χ̃V (Q) /w̄3 [defined by
Eq. (12)] as a function of wave number Q scaled by the mean width
w̄ for values of the deformation parameter p � 1.

fit is applied, resulting in a large range of values for both a0

and α. For example, for p = 1.50, by varying the fit win-
dow between Qw̄ ∈ (0.415, 1.16) and Qw̄ ∈ (0.415, 2.07)
we find α ∈ (0.244, 0.711) and a0 ∈ (3.82 × 10−8, 6.94 ×
10−4). Computing the excess spreadability (see Sec. V B for
additional details) is a robust and accurate way to find α. To
reduce the variability in our results for H when fitting χ̃V (Q)
for a given value of p, we fix α in Eq. (33) to be the value
computed via the excess spreadability. Over the same range
of fits above for p = 1.50, a0 ∈ (2.10 × 10−4, 3.64 × 10−4)
when α is fixed to be the value found via the excess spread-
ability. Table I contains the fit parameters a0 and a1, the fixed
value of α from the excess spreadability calculation used in
the fit, and the corresponding value of H for each p value
examined. Figure 12 shows H as a function of p computed by
using Eq. (15). We find the values of H are on the order of, or
less than, the effective hyperuniformity threshold (10−2), thus
we consider the packings to be effectively hyperuniform, as
one would expect for MRJ packings of anisotropic particles.

V. EFFECTIVE PROPERTIES OF MRJ SUPERBALL
PACKINGS

A. Pore-size distribution function and transport properties

Figures 13 and 14 show F (δ) for MRJ superball packings
with p � 1 and p � 1, respectively. The maximum value of δ

in these packings is bounded and less than w̄/2, indicating that

0 5 10 15 20

Qw

0

0.005

0.01

0.015

0.02

0.025

0.03

~
V(
Q

)/
w

3

p = 1.00

p = 1.10

p = 1.20

p = 1.30

p = 1.40

p = 1.50

FIG. 11. The scaled spectral density χ̃V (Q) /w̄3 [defined by
Eq. (12)] as a function of wave number Q scaled by the mean width
w̄ for values of the deformation parameter p � 1.

TABLE I. The fit parameters a0 and a1 obtained by fitting
Eq. (33) to the small-Q values of χ̃V (Q) (Qw̄ � 1.4) with a fixed
hyperuniformity scaling exponent α computed via the the excess
spreadability [cf. Eq. (24)], and the corresponding value of the hy-
peruniformity index H for each value of the deformation parameter
p considered.

p a0 × 10−4 a1 × 10−3 α H × 10−3

0.85 1.74 1.16 0.540 7.94
0.90 1.18 1.24 0.618 5.00
0.95 1.48 1.24 0.624 5.74
1.00 0.26 0.14 0.640 0.96
1.10 2.00 1.11 0.600 8.22
1.20 0.97 1.08 0.540 4.29
1.30 1.68 0.87 0.500 7.81
1.40 0.99 1.01 0.380 4.98
1.50 2.10 1.06 0.320 11.30

each packing is saturated. Again, the p = 1 point represents
an extreme value; the MRJ packings of such superballs have
the largest pore sizes, reflective of sphere packings having the
lowest φ (largest volume of void space). As p diverges from
unity (with a concomitant increase in φ), we find that the pore
sizes tend to become smaller.

Using the equations in Sec. II B, we approximate k, and
compute upper bounds on τ , and T1 in the diffusion-controlled
limit (see Fig. 15) for a range of p values. To approximate F
in Eq. (20), we use the following formula for ζ2 based on an
interpolation analysis on data involving packings of spheres
and packings of cubes from Ref. [3]:

ζ2 = 0.21068φ + |p − 1|(0.11882 + 0.772236φ). (34)

We find that our predictions of τ and T1 for MRJ sphere
packings are slightly larger than (but of the same order as)
previous results, which we attribute to the voxelization proce-
dure slightly overestimating the pore sizes, while k falls within
the previously computed bounds [23]. The transport proper-
ties have a maximum at p = 1 (where φ is at a minimum), and
decrease as |1 − p| increases, which is consistent with sphere
packings having larger pore sizes than spherically asymmetric
superballs.
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FIG. 12. The H index [defined by Eq. (15)] as a function of the
deformation parameter p computed from the spectral density χ̃V (Q).
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FIG. 13. The complementary cumulative pore-size distribution
function F (δ) [defined by Eq. (16)] as a function of pore ra-
dius δ scaled by the mean width w̄ for values of the deformation
parameter p � 1.
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FIG. 14. The complementary cumulative pore-size distribution
function F (δ) [defined by Eq. (16)] as a function of pore ra-
dius δ scaled by the mean width w̄ for values of the deformation
parameter p � 1.
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FIG. 15. The fluid permeability k [Eq. (19)] scaled by the mean
width squared w̄2, mean survival time τ [Eq. (22)] scaled by the
diffusion coefficient D and w̄2, and principal diffusion relaxation
time T1 [Eq. (23)] scaled by D and w̄2 of the MRJ superball packings
as a function of the deformation parameter p.
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FIG. 16. The excess spreadability S(∞) − S(t ) [defined by
Eq. (24)] as a function of dimensionless time for the MRJ superballs
packings, as well as for nonhyperuniform Debye random media, for
comparison. The dimensionless times are tD/â2 for Debye random
media, where â is the length scale given in Eq. (35), and tD/w̄2

for superball packings. The dashed lines are eye guides to show the
long-time scaling behavior.

B. Spreadability

In three dimensions, if the long-time excess spreadability
of a medium decays more quickly than t−3/2, then the medium
is hyperuniform [cf. Eq. (24)] [63]. To contrast, consider a
typical disordered nonhyperuniform medium such as Debye
random media [62], whose spectral density in three dimen-
sions is given by [63]

χ̃V (k) = φ(1 − φ)πa3

(1 + (kâ)2)2 , (35)

where â is the characteristic length scale of the medium,
with long-time excess spreadability scaling of exactly t−3/2.
Figure 16 shows the excess spreadability for MRJ superball
packings with p = 0.85, 1.00, 1.50, and Debye random media
for comparison. These packings, for all values of p consid-
ered, have long-time scaling exponents between –1.66 and
–1.82. The spreadability decay tends to become slower as
|1 − p| increases, indicating packings of less spherical super-
balls are more weakly hyperuniform.

The corresponding values of α based on these scaling expo-
nents are given in Fig. 17. We find the MRJ superball packings
belong to Class III [see Eq. (14)] for all values of p considered.
In the special case of the sphere (p = 1), a recent numerical
study of randomly close packed spheres [91] also reports that
such packings are of Class III, but with a value of α = 0.24,
extracted from the structure factor, that is substantially smaller
than for our MRJ sphere packings. It is not surprising that the
spreadability offers a robust and accurate method to compute
α that is less susceptible to pointwise variations in χ̃V (Q)
itself, since the spreadability can be regarded to be a Gaussian
smoothing of the spectral density as derived in Ref. [63].
Due to finite system sizes, the small-Q region of χ̃V (Q) tends
to have low resolution and is prone to being noisy, which
can lead to large variability in the resulting numerical fits.
Computing the excess spreadability does not rely on these
potentially dubious extrapolations, and as such is more robust
against noise than other measures of α. One can compare these
results to those from Ref. [63], which demonstrates that these
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FIG. 17. The hyperuniformity scaling exponent α determined via
fitting the long-time behavior of Eq. (24) to Eq. (27) as a function
of p.

packings are “less hyperuniform” than the stealthy hyperuni-
form systems considered therein, which is consistent with the
classification of these hyperuniform systems in previous work
(see, e.g. Table 1 in Ref. [16]).

VI. CONCLUSIONS

In this paper, we examined superballs, a family of cen-
trally symmetric shapes defined by Eq. (1), that take on both
cube-like (p > 1) and octahedron-like shapes (p < 1). Using
the DTS algorithm, we produced large MRJ packings of su-
perballs with p ∈ [0.85, 1.50]. We also generated voxelized
versions of these packings using an efficient method to aid
in the computation of χ̃V (Q) and F (δ). To characterize these
packings, we computed φ, Z̄ , and φR. We also calculated the
mean width w̄, and find that it is a useful length scale to make
distances dimensionless to compare superballs of different
shape. In particular, w̄ is a better choice of scale than other,
seemingly sensible, choices of scale, like the length of the
major axes of the superball. In addition, we determined S(Q)
of the superball centroids and χ̃V (Q) of the voxelized packings
and examined the small-Q behavior to characterize the large-
scale properties. We also computed F (δ) and the transport
properties k, τ , and T1, as well as the excess spreadability
S (∞) − S (t ). Novel experimental techniques have allowed
for the synthesis of colloidal particles with superball-like
shapes [54–56]. Thus, careful characterization of simulated
packings can be helpful in the design of real colloidal materi-
als fabricated via these methods.

To build on previous work in this area [18], we more
closely characterized the nonanalytic “cusp” in φ at p = 1
and find that φ increases nearly linearly on either side of the
sphere point as |1 − p| increases for sufficiently small |1 − p|.
The notion that p = 1 is an extreme point persists in each

of the subsequent characterizations of the packings, although
the linear scaling does not. We additionally determined φR as
a function of p and find that it rapidly decreases as |1 − p|
increases. Notably, as Z̄ begins to plateau at p ≈ 1.4, so too
does φR. Because φR monotonically decreases, we expect it to
vanish in the p → ∞ limit.

In the present work, we have used χ̃V (Q) to assess the
hyperuniformity of packings of nonspherical particles in R3.
We found that the MRJ superball packings are effectively
hyperuniform with respect to χ̃V (Q) , which is the appropriate
spectral measure for nonspherical particles. Further, due to the
striking similarities between S(Q) of spheres and those of the
nonspherical superballs, we conclude that superballs behave
like effective spheres inscribed within the superballs.

Moreover, we found that the pore sizes in MRJ super-
ball packings tend to become smaller away from the sphere
point (i.e., as φ increases). The maximum pore sizes in these
packings are also bounded and less than the semiaxes of the
superballs, indicating that the packings are saturated. The fluid
permeability k, mean survival time τ , and principal diffusion
relaxation time T1 all have a maximum at p = 1 and de-
crease as |1 − p| increases. Additionally, the long-time excess
spreadability indicates that these packings are hyperuniform
with α ∈ (0.32, 0.68) that decreases as |1 − p| increases. Use
of the spreadability to compute α is robust to noise, and
as such a reliable way to compute α for numerically- or
experimentally-generated two-phase media.

Due to stability issues in the DTS algorithm, we are
presently unable to simulate the behavior of superballs with
p > 3.0 (cube limit) or p < 0.85 (octahedral limit, concave
superballs). While the the MRJ state of octahedra has been
studied using other methods (see Refs. [19,28]), the MRJ state
of cubes is still undiscovered. Further, very little is known
about the behavior of hard concave superballs, e.g., only pre-
dictions for the densest packings of concave superballs are
known [50], and disordered packings have only been exam-
ined via RSA [92]. It is also of great interest to more carefully
examine the structure of the contact network beyond Z̄ and
its relationship with the particle shape. For example, similar
to the analysis carried out in Ref. [93], one can examine the
relationship between p and the distribution of contact angles
(or α, in the case of spheroids), which could help determine
why MRJ superball packings are more hypostatic than MRJ
spheroid packings.
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I. SYMBOL GLOSSARY

TABLE S1: List of symbols and notation used in the text.

Symbol Description

Rd d-dimensional Euclidean space
ϕ Packing fraction
Z̄ Average contacts per particle
f Degree of freedom
ϕR Rattler fraction
p Superball deformation parameter
a Aspect ratio
a∗ Ellipsoid critical aspect ratio
S(Q) Structure factor
χ̃V (Q) Spectral density
α Hyperuniformity scaling exponent
g2(r) Pair correlation function
χV (r) Phase autocovariance function
S(t) Spreadability
δ Pore radius
F (δ) Pore-size distribution function
k Fluid permeability
τ Mean survival time
T1 Principal relaxation time
ρn(r1, . . . , rn) n-particle correlation function
ρ Number density
h(r) Total correlation function (g2(r)− 1)

h̃(Q) Fourier transform of h(r)
Λ Lattice
F Fundamental cell
VF Fundamental cell volume
S(Q) Scattering intensity
δ(Q) Dirac delta function
Vi Volume of phase i

S
(i)
n (x1, . . . ,xn) n-point probability function for phase i

I(i)(x) Phase indicator function for phase i
R Geometrical parameters of particle shape
m(r;R) Particle indicator function
m̃(Q;R) Particle form factor
v1 Single-particle volume
H Hyperuniformity index
P (δ) Pore size probability density
⟨δ⟩ Mean pore size
⟨δ2⟩ Second moment of P (δ)
F Formation factor
L Length scale determined by the

eigenvalues of the Stokes operator

Θn Viscous relaxation time
σi Conductivity of phase i
ζ2 3-point microstructural parameter
D Diffusion coefficient
κ Reaction rate
s Specific surface
ωd Volume of a d-dimensional unit sphere
w(n) Width of a convex body in direction n
w̄ Mean width
γ Expansion rate
P Pressure
O−1 Matrix describing the sphere
ϵ Voxelization scaling parameter
r̃ Scaled particle position
N0 Natural numbers including 0
li Length of edge i
θi Angle between the two faces meeting at edge i
â Debye random media length scale
D Sphere diameter
A Superball major axis

II. FORM FACTORS FOR SUPERBALLS

Here, we present the angular-averaged form factors
m̃(k;R) (defined in Sec. II A) for a selection of the su-
perballs which have their spectral densities computed in
the main text (i.e., 0.85 ≤ p ≤ 1.50). We apply our novel
voxelization procedure, described in Sec. III B, to a a
simulation box containing a single superball and apply
Eq. (12) to the result. These voxelizations have a res-
olution of 5003 voxels. Each of the particles considered
has the same volume, chosen here to be equal to that of
the unit sphere. Figure S1 shows the scaled form fac-
tors of the superballs. In this range of p values, when
scaled by the diameter of a sphere with the same vol-
ume as the superball, all of the form factors appear to be
nearly identical to that of a sphere, with deviations due
to error associated with the voxelization procedure. Such
errors arise because the smooth surface of the superballs
in this range of p values cannot be exactly replicated by
discrete voxels. Specifically, there are a small number
of voxels near the boundary of the superball erroneously
set as empty. At the resolution used here, these errors
result in a very small underestimation of the volume of
the superball, but this has a very small impact on the



2

form factor. Figure S2 shows a zoomed-in portion of the
scaled form factors on a log-log scale, where we see that
as |1−p| increases, peaks at larger wavenumbers start to
become less pronounced.

III. MEAN WIDTH SCALING

Figures S3, S4, S5, and S6 show the structure factors
S(Q) and spectral densities χ̃

V
(Q) scaled by the major

axis length A of the superballs instead of the mean widths
respectively. Compared to Figs. 8, 9, 10, and 11 in the
main text, it is clear that the peaks in these figures are
more broadly distributed. In particular, superballs with
p < 1 have their peaks pushed to larger wavenumbers,
while superballs with p > 1 have their peaks brought
closer to the origin. Thus, we claim that the mean width
is a more sensible choice of scale than the superball major
axis length.
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FIG. S1. The scaled form factor m̃(k;R)/(D34π/3) where
D is the diameter of the unit sphere as a function of scaled
wavenumber QD/2π.
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FIG. S2. The scaled form factor m̃(k;R)/(D34π/3) where
D is the diameter of the unit sphere as a function of scaled
wavenumber QD/2π on a log-log scale.
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FIG. S3. The structure factor S(Q) as a function of wavenum-
ber Q scaled by the superball major axis legth A for values
of the deformation parameter p ≤ 1.
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FIG. S4. The structure factor S(Q) as a function of wavenum-
ber Q scaled by the superball major axis legth A for values
of the deformation parameter p ≥ 1.
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FIG. S5. The scaled spectral density χ̃V (Q) /A3 as a function
of wavenumber Q scaled by the superball major axis A for
values of the deformation parameter p ≤ 1.
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FIG. S6. The scaled spectral density χ̃V (Q) /A3 as a function
of wavenumber Q scaled by the superball major axis A for
values of the deformation parameter p ≥ 1.
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IV. RAW DATA FOR ϕR, ϕ, AND Z̄

TABLE S2: Raw values used to produce Figure 4, which shows the
rattler fraction ϕR as a function of the deformation parameter p, and
the associated standard deviation of the data points.

p ϕR

0.85 0.4532± 0.1006
0.90 0.7656± 0.1226
0.95 1.246± 0.1821
0.975 1.996± 0.1429
1.00 2.42± 0.5223
1.025 1.966± 0.1890
1.05 1.126± 0.1333
1.10 0.6944± 0.1248
1.20 0.2516± 0.0645
1.30 0.1384± 0.0504
1.40 0.0948± 0.0472
1.50 0.0852± 0.0337

TABLE S3. Raw values used to produce Figure 5, which
shows the packing fraction ϕ as a function of the deformation
parameter p, and the associated standard deviation of the
data points.

p ϕ

0.85 0.67763± 0.0004398
0.90 0.66522± 0.0004810
0.95 0.65369± 0.000408
0.975 0.64812± 0.0003156
1.00 0.64327± 0.0003754
1.025 0.64841± 0.0004104
1.05 0.65362± 0.0004911
1.10 0.66351± 0.0004847
1.20 0.68069± 0.0004036
1.30 0.69406± 0.0004449
1.40 0.70485± 0.0004811
1.50 0.71448± 0.0006174

TABLE S4: Raw values used to produce Figure 7, which shows the
average contact number Z̄ as a function of the deformation parameter
p, and the associated standard deviation of the data points.

p Z̄

0.85 7.325278± 0.01710
0.90 6.969658± 0.01404
0.95 6.543314± 0.01800
0.975 6.20387± 0.01125
1.00 6± 0
1.025 6.26906± 0.00782
1.05 6.60804± 0.00865
1.10 7.013264± 0.01627
1.20 7.513714± 0.01415
1.30 7.765312± 0.01395
1.40 7.880766± 0.02107
1.50 7.925428± 0.02245
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