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ABSTRACT
An outstanding problem in statistical mechanics is the determination of whether prescribed functional forms of the pair correlation function
g2(r) [or equivalently, structure factor S(k)] at some number density ρ can be achieved by many-body systems in d-dimensional Euclidean
space. The Zhang–Torquato conjecture states that any realizable set of pair statistics, whether from a nonequilibrium or equilibrium system,
can be achieved by equilibrium systems involving up to two-body interactions. To further test this conjecture, we study the realizability
problem of the nonequilibrium iso-g2 process, i.e., the determination of density-dependent effective potentials that yield equilibrium states
in which g2 remains invariant for a positive range of densities. Using a precise inverse algorithm that determines effective potentials that
match hypothesized functional forms of g2(r) for all r and S(k) for all k, we show that the unit-step function g2, which is the zero-density
limit of the hard-sphere potential, is remarkably realizable up to the packing fraction ϕ = 0.49 for d = 1. For d = 2 and 3, it is realizable up
to the maximum “terminal” packing fraction ϕc = 1/2d, at which the systems are hyperuniform, implying that the explicitly known necessary
conditions for realizability are sufficient up through ϕc. For ϕ near but below ϕc, the large-r behaviors of the effective potentials are given
exactly by the functional forms exp[−κ(ϕ)r] for d = 1, r−1/2 exp[−κ(ϕ)r] for d = 2, and r−1 exp[−κ(ϕ)r] (Yukawa form) for d = 3, where
κ−1
(ϕ) is a screening length, and for ϕ = ϕc, the potentials at large r are given by the pure Coulomb forms in the respective dimensions as

predicted by Torquato and Stillinger [Phys. Rev. E 68, 041113 (2003)]. We also find that the effective potential for the pair statistics of the
3D “ghost” random sequential addition at the maximum packing fraction ϕc = 1/8 is much shorter ranged than that for the 3D unit-step
function g2 at ϕc; thus, it does not constrain the realizability of the unit-step function g2. Our inverse methodology yields effective potentials
for realizable targets, and, as expected, it does not reach convergence for a target that is known to be non-realizable, despite the fact that it
satisfies all known explicit necessary conditions. Our findings demonstrate that exploring the iso-g2 process via our inverse methodology is
an effective and robust means to tackle the realizability problem and is expected to facilitate the design of novel nanoparticle systems with
density-dependent effective potentials, including exotic hyperuniform states of matter.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0130679

I. INTRODUCTION

The relationship between interactions in many-body systems
and their corresponding structural properties is fundamental in
statistical physics, condensed-matter physics, chemistry, mathemat-
ics, and materials science.1–4 Among the commonly used structural
descriptors,5 the pair correlation function g2(r) has unique impor-
tance due to its computational simplicity, experimental accessibility
through diffraction measurements, and the popularity of theoretical

statistical-mechanical models with pairwise additive interactions.5,6

Despite the widespread application of g2(r), the realizability of
pair correlation functional forms by actual many-body configura-
tions remains an outstanding problem in statistical mechanics.7–13

It is known that for a statistically homogeneous (i.e., translation-
ally invariant) many-body system in d-dimensional Euclidean space
Rd, knowledge of one- and two-body correlations is insufficient
to determine the corresponding higher-body correlation functions
g3, g4, . . ..8–12 Consequently, given a prescribed functional form of
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a pair correlation function g2(r) [or equivalently, a target struc-
ture factor S(k)] and number density ρ ≥ 0, an uncountable number
of necessary and sufficient conditions must be satisfied for g2(r)
to be realizable,9 which are practically impossible to check. The
ensemble-averaged structure factor S(k) is defined as

S(k) = 1 + ρh̃(k), (1)

where h(r) = g2(r) − 1 is the total correlation function and h̃(k)
is the Fourier transform of h(r). While some necessary conditions
can be readily checked,7,9,10 it remains a practically important task
to probe realizability via precise numerical techniques.

A major focus of this study is the realizability of the unit-step
pair correlation function for positive densities,

g2(r) =
⎧⎪⎪
⎨
⎪⎪⎩

0, r ≤ D,

1, r > D,
(2)

where D is the sphere diameter, hence taken to be unity. Equa-
tion (2) implies that the many-body system forms a packing in which
no particles overlap. The packing fraction, i.e., the fraction of the
total volume covered by the spheres is given by ϕ = ρv1(1/2), where
v1(R) is the volume of a d-dimensional sphere of radius R,

v1(R) =
πd/2Rd

Γ(1 + d/2)
. (3)

Importantly, Eq. (2) is exactly the zero-density limit of g2(r) for
the equilibrium hard-sphere (HS) fluid,5,6 whose pair potential is
given by

vHS(r) =
⎧⎪⎪
⎨
⎪⎪⎩

+∞, r ≤ 1,

0, r > 1.
(4)

Hence, it is not immediately obvious that the step-function g2 given
by (2) can be achieved for positive densities.

The g2-invariant process introduced by Torquato and Still-
inger14 aims to determine the nonvanishing density range over
which a prescribed form of g2(r) for a many-body system remains
invariant over that range. They showed that a g2-invariant pro-
cess possesses an upper terminal density ρc, which is the highest
value such that all explicitly known necessary conditions are satis-
fied, including g2(r) ≥ 0 for all r, S(k) ≥ 0 for all k, and the Yamada
condition7,9,10 as detailed in Sec. II D. The terminal packing fraction
in the case of the step function (2) is given by14

ϕc =
1
2d , (5)

at which the structure factor associated with (2) satisfies
limk→0S(k) = 0, implying that the system must be hyperuniform15

if realizable.16 Disordered hyperuniform systems anomalously
suppress large-scale density fluctuations compared to typical disor-
dered systems, such as liquids;15 see Sec. II B. for mathematically
precise definitions. Such exotic amorphous states of matter have
been receiving great attention because they are endowed with
unique physical or chemical properties and connect a variety
of seemingly unrelated systems that arise in physics, chemistry,
materials science, mathematics, and biology.17 Figure 1 shows the
target S(k) corresponding to the unit-step function g2 at various

densities for d = 1, 2, 3;16 see Sec. II A. for their explicit functional
forms.

Previous numerical studies have shown that the unit-step func-
tion g2 is realizable but only for a finite range of r, in one,8,18

two,8 and three10 dimensions up to the terminal packing fraction.
However, the reverse Monte-Carlo technique19 used to achieve such
realizations does not target small-k correlations in Fourier space
and provides no information on interparticle interactions. For d = 1,
Costin and Lebowitz proved that the unit-step function g2 is real-
izable by a special type of Markovian point processes (known as
renewal processes) if and only if ϕ ≤ e−1

∼ 0.370.9 While the results
for this special g2-invariant process do not necessarily mean that the
one-dimensional (1D) unit-step function g2 is non-realizable by any
process for e−1

< ϕ < ϕc = 1/2, they nevertheless raise the possibility
that this 1D target may not be realizable at ϕc.

A powerful way to tackle the realizability problem is via
inverse statistical mechanics, i.e., determining the effective inter-
actions that attain an equilibrium system with the prescribed pair
statistics.3,13,20–24 Recently, Zhang and Torquato conjectured that
any realizable g2(r) or S(k) corresponding to a translationally
invariant nonequilibrium system can be attained by an equilibrium
ensemble involving only (up to) effective pair interactions.13 They
introduced a theoretical formalism that enabled them to devise an
efficient algorithm to construct systematically canonical-ensemble
particle configurations with such targeted S(k) at all wavenumbers
whenever realizable. However, the procedure presented in Ref. 13
does not provide the explicit functional forms of the underlying one-
and two-body potentials.

Very recently, Torquato and Wang tested the Zhang–Torquato
conjecture for challenging target pair statistics that correspond to
nonequilibrium systems of current interest,25,26 including a non-
hyperuniform 2D random sequential addition process27–30 as well
as exotic disordered hyperuniform states, such as a 2D perfect
glass,26,31 a 3D “cloaked” uniformly randomized lattice,25,32 and a
3D critical-absorbing state.26,33,34 In all cases, the nonequilibrium
target pair statistics was achieved accurately by equilibrium states
with effective one- and two-body potentials, lending crucial support
to the Zhang–Torquato conjecture. Further testing this conjecture
requires the solution of inverse problems for pair statistics with other
prescribed functional forms.

In this work, we use a precise inverse methodology that we
introduced recently25 to investigate numerically the realizability
problem via effective interactions. Specifically, we study the prob-
lem as an iso-g2 process,16,18,35 which is a process corresponding to
a many-body system under a density-dependent effective potential
v(r; ρ) that yields equilibrium states in which g2 remains invari-
ant for a positive range of densities at constant positive temperature
T. In other words, an effective potential must negate the natu-
ral density dependence of g2(r). Density-dependent potentials are
widely applied to describe coarse-grained models for polymers and
macromolecules.36 The iso-g2 process is a nonequilibrium process
whenever the target g2 is known to correspond to an equilibrium
state: One then studies whether the same equilibrium g2 can be
achieved for a range of nonvanishing densities. Since at positive
densities, g2(r) for the pure equilibrium hard-sphere fluid deviates
from the unit-step functional form (2) and becomes oscillatory,6
the corresponding iso-g2 process determines an effective potential
v(r; ϕ) that suppresses such oscillations (both positive and negative
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FIG. 1. Target structure factors for the
unit-step function g2 at various rel-
ative packing fractions ϕ/ϕc , where
ϕc = 1/2d is the terminal packing frac-
tion, for (a) 1D, (b) 2D, and (c) 3D
systems.

correlations) and maintains the unit-step form (2). Approximations
of the effective potential have been obtained via Percus–Yevick
and hypernetted chain (HNC) approximations.18 Stillinger and
Torquato also derived low-density approximations for the effec-
tive potential using diagrammatic expansions.16 However, these
approximate potentials yield g2(r)’s that deviate from (2), and the
deviations increase for larger ϕ. Thus, these results do not provide a
definitive conclusion on the realizability of the unit-step function g2
for ϕ close to ϕc.

Prior to the development of our inverse methodology,25

predictor–corrector methods,20–22,24 such as iterative Boltzmann
inversion (IBI)22 and iterative HNC inversion (IHNCI),24,37 were
regarded to be the most accurate inverse procedures. Both IBI and
IHNCI begin with an initial discretized (binned) approximation of
a trial pair potential. The trial pair potential at each binned distance
is iteratively updated to attempt to reduce the difference between
the target and trial pair statistics. However, IBI and IHNCI can-
not treat long-ranged pair interactions required for hyperuniform
targets, nor do they consider one-body interactions that stabilize
hyperuniform equilibrium states;25 see Sec. II B. for details. These
algorithms also accumulate random errors in the binned potentials
due to simulation errors in the trial pair statistics and thus do not
achieve the precision required to probe realizability problems. More-
over, because all previous methods do not optimize a pair-statistic
“distance” functional, they are unable to detect poor agreement
between the target and trial pair statistics that may arise as the simu-
lation evolves, leading to increasingly inaccurate corresponding trial
potentials as demonstrated in Ref. 25.

Our inverse methodology25 improves on previous procedures
in several significant ways. It utilizes a parameterized family of point-
wise basis functions for the potential function at T > 0, whose initial
form is informed by small- and large-distance behaviors dictated by
statistical-mechanical theory. Pointwise potential functions do not
suffer from the accumulation of random errors during a simulation,
resulting in more accurate interactions.25 Subsequently, a nonlinear
optimization technique is utilized to minimize an objective func-
tion that incorporates both the target pair correlation function g2(r)
and structure factor S(k) so that both the small- and large-distance
correlations are very accurately captured. For hyperuniform tar-
gets, our methodology is able to optimize the required long-ranged
pair potential38 as well as the neutralizing background one-body
potential;25 see Sec. III for details.

To assess the accuracy of inverse methodologies to target
pair statistics, we introduced25 the following dimensionless
L2-norm error:

E =
√

Dg2 +DS, (6)

where Dg2 and DS are L2 functions given by

Dg2 = ρ∫
Rd
[g2,T(r) − g2,F(r; a)]2dr, (7)

DS =
1

ρ(2π)d∫Rd
[ST(k) − SF(k; a)]2dk, (8)

where g2,F(r; a) and SF(k; a) represent the final pair statistics at
the end of the optimization, which depend on the supervector a.
We have previously shown that our inverse methodology generally
yields L2-norm errors that are an order of magnitude smaller than
those obtained via previous inverse methods and is able to treat
challenging near-critical and hyperuniform targets,25 which previ-
ous methods20–22,24 cannot do. Importantly, for equilibrium target
pair statistics, it reaches the precision required to recover the unique
potential dictated by Henderson’s theorem.39 Thus, it is a superior
method for our purpose of probing the realizability of pair statistics
over all distances in direct (physical) space and all wavenumbers in
Fourier space, especially as it concerns hyperuniform targets.

A major goal of this study is to ascertain the density range on
which the unit-step function g2 is realizable for d = 1, 2, 3 in the
thermodynamic limit and to determine the effective potential when
it is realizable. We find that for d = 1, the unit-step function g2 is
numerically realizable up to ϕ = 0.49 = 0.98ϕc. For d = 2, 3, it is reali-
zable up to ϕ = ϕc, at which the systems are hyperuniform. The
effective potentials at the maximum realizable packing fractions of
the unit-step function g2 significantly suppress both positive and
negative correlations that would otherwise be present in the pure
equilibrium HS system, as manifested by the smaller order metrics
τ (19) for the corresponding former systems. For ϕ near but below
ϕc, the large-r behavior of the effective potentials are exp[−κ(ϕ)r],
r−1/2 exp[−κ(ϕ)r], and r−1 exp[−κ(ϕ)r] for d = 1, 2, and 3, respec-
tively, where κ(ϕ) is the inverse screening length, and for the
2D and 3D targets at ϕ = ϕc, the potentials at large r are given by
the pure Coulomb forms in the respective dimensions as predicted
by Torquato and Stillinger.15 This capacity to generate hyperuni-
form states via interacting many-particle systems is an important
advance, since it is expected to facilitate the self-assembly of tun-
able hyperuniform soft-matter materials and enables one to probe
the thermodynamic and dynamic properties of such exotic states.26

We also study the realizability of two other targets of partic-
ular theoretical importance. The ghost random sequential addition
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(RSA) process29 is a generalization of the standard RSA process5,40,41

and is closely related to the unit-step iso-g2 process as its maximum
packing fractions for all d are identical to ϕc = 1/2d. At the maximum
density, g2 for the ghost RSA process contains a small positive
“bump” at the contact radius r = 1, which may suggest that low-
dimensional unit-step function g2 is unrealizable.29 We show that
the 3D ghost RSA target at ϕc = 1/8 can be realized by an effective
potential that is much shorter ranged than that for the unit-step
function g2. We also test the accuracy and power of our inverse
methodology for a known non-realizable case that meets all of the
known necessary conditions and yet is not realizable due to geomet-
ric constraints.11 Our method is shown to be robust as it does not
reach convergence, as expected, for this known unrealizable target.

We begin by providing basic definitions and background in
Sec. II. In Sec. III, we briefly review our inverse methodology to
determine effective potentials for targeted pair statistics. Section IV
presents the realizability range and the effective interactions for the
unit-step function g2 for d = 1, 2, 3. Sections V and VI. present the
results for the 3D ghost RSA target and the 2D non-realizable target,
respectively. We provide concluding remarks in Sec. VII.

II. DEFINITIONS AND PRELIMINARIES
A. Pair statistics

We consider many-particle systems in Rd that are completely
statistically characterized by the n-particle probability density func-
tions ρn(r1, . . . , rn) for all n ≥ 1.6 In the case of statistically homoge-
neous systems, ρ1(r1) = ρ and ρ2(r1, r2) = ρ2 g2(r), ρ is the number
density in the thermodynamic limit, g2(r) is the pair correlation
function, and r = r2 − r1. If the system is also statistically isotropic,
then g2(r) is the radial function g2(r), where r = ∣r∣.

For a single periodic configuration containing N point particles
at positions r1, r2, . . . , rN within a fundamental cell F of a lattice Λ,
the scattering intensity I(k) is defined as

I(k) =
∣∑

N
i=1 e−ik⋅ri ∣

2

N
. (9)

For an ensemble of periodic configurations of N particles within the
fundamental cell F, the ensemble average of the scattering inten-
sity in the infinite-volume limit is directly related to structure factor
S(k) (1) by

lim
N,VF→+∞

⟨I(k)⟩ = (2π)dρδ(k) + S(k), (10)

where VF is the volume of the fundamental cell and δ is the Dirac
delta function.17 In simulations of many-body systems with finite
N under periodic boundary conditions, Eq. (9) is used to compute
S(k) directly by averaging over configurations. The structure factor
corresponding to the unit-step function g2 [Eq. (2)] in dimensions
1, 2, 3 are given by16

S(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 2ρ
sin(k)

k
, d = 1,

1 − 2πρ
J1(k)

k
, d = 2,

1 − 4πρ
sin(k) − k cos(k)

k3 , d = 3,

(11)

where J1(x) is the first-order Bessel function. Note that at ϕc = 1/2d,
S(k) ∼ k2 as k→ 0, indicating that terminal-density systems are
hyperuniform if they are realizable.

B. Hyperuniformity and nonhyperuniformity
A hyperuniform point configuration in d-dimensional

Euclidean space Rd is characterized by an anomalous suppression of
large-scale density fluctuations relative to those in typical disordered
systems, such as liquids and structural glasses.15,17 More precisely,
a hyperuniform point pattern is one in which the structure factor
S(k) = 1 + ρh̃(k) tends to zero as the wave number k = ∣k∣ tends to
zero,15,17 i.e.,

lim
∣k∣→0

S(k) = 0. (12)

This hyperuniformity condition implies the following direct-space
sum rule:

ρ∫
Rd

h(r)dr = −1. (13)

An equivalent definition of hyperuniformity is based on the
local number variance σ2

(R) = ⟨N(R)2
⟩ − ⟨N(R)⟩2 associated with

the number N(R) of points within a d-dimensional spherical obser-
vation window of radius R, where angular brackets denote an ensem-
ble average. A point pattern in Rd is hyperuniform if its variance
grows in the large-R limit slower than Rd.15

Consider systems that are characterized by a structure factor
with a radial power-law form in the vicinity of the origin, i.e.,

S(k) ∼ ∣k∣α, for ∣k∣ → 0. (14)

For hyperuniform systems, the exponent α is positive (α > 0) and
its value determines three different large-R scaling behaviors of the
number variance:15,17,42

σ2
(R) ∼

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Rd−1, α > 1 ( class I),

Rd−1 ln R, α = 1 ( class II),

Rd−α, 0 < α < 1 ( class III).

(15)

Torquato showed that for an equilibrium hyperuniform state under
a pair potential whose structure factor is characterized by the power
law (14), the potential v(r)must be long-ranged in the sense that its
volume integral is unbounded,17

v(r) ∼
⎧⎪⎪
⎨
⎪⎪⎩

r−(d−α), d ≠ α,

− log(r), d = α.
(16)

Therefore, to stabilize a classical hyperuniform system at posi-
tive T, which is thermodynamically incompressible,15 one must
treat it as a system of “like-charged” particles immersed in a rigid
“background” of equal and opposite “charge,” i.e., the system must
have overall charge neutrality.17 Such a rigid background contri-
bution corresponds to a one-body potential, which is described in
Sec. III.
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By contrast, for any nonhyperuniform system, the local variance
has the following large-R scaling behaviors:43

σ2
(R) ∼

⎧⎪⎪
⎨
⎪⎪⎩

Rd, α = 0 ( typical nonhyperuniform),

Rd−α, α < 0 ( antihyperuniform).
(17)

For a “typical” nonhyperuniform system, S(0) is bounded. In
antihyperuniform systems,17 S(0) is unbounded, i.e.,

lim
∣k∣→0

S(k) = +∞, (18)

and hence these systems are diametrically opposite to hyperuniform
systems. Antihyperuniform systems include fractals, systems at
thermal critical points (e.g., liquid–vapor and magnetic critical
points)44–48 as well as certain substitution tilings.49

C. Order metric
Scalar order/disorder metrics have been profitably used to

quantify the degree of order in many-particle systems, including
sphere packings.5,50 A particularly useful measure for our purposes
is the order metric τ,51 which is defined as

τ =
1

Dd∫Rd
h2
(r)dr =

1
(2π)dDd∫Rd

h̃ 2
(k)dk, (19)

where D is a characteristic “microscopic” length scale, taken to be
the sphere diameter in this work. This order metric measures devia-
tions of two-particle statistics from that of the Poisson distribution.
Since both positive and negative correlations contribute to the inte-
gral, due to the fact that h(r) or h̃(k) is squared, τ measures the
degree of translational order across length scales. It clearly vanishes
for the uncorrelated Poisson distribution and diverges for an infinite
crystal and is a positive bounded number for correlated disordered
systems without long-range order (i.e., Bragg peaks).

D. Necessary conditions for realizability
Two well-known necessary conditions must be satisfied by

any pair statistics,8,10,16,52 viz., the nonnegativity of g2(r) and its
corresponding S(k),

g2(r) ≥ 0, for all r, (20)

S(k) ≥ 0, for all k. (21)

A further necessary condition forces a lower bound on the variance
associated with the number of particles within a d-dimensional
spherical window of radius R,7

σ2
(R) ≥ θ(1 − θ), (22)

where θ is the fractional (non-integer) part of the average number
of particle centers contained within the window ⟨N(R)⟩ = ρv1(R).
The Yamada condition, in practice, is relevant in very low dimen-
sions when (20) and (21) are satisfied and becomes less restrictive
for higher dimensions.11 It turns out to pose no additional restriction

on the realizability of all the target pair statistics considered in this
study in any dimension.11

III. INVERSE METHODOLOGY
Here, we describe our methodology to determine (up to) pair

interactions that yield canonical ensembles matching target pair
statistics; see Ref. 25 for more details. This procedure enables one
to determine equilibrium states that match both target g2(r) and
S(k) with unprecedented accuracy when they are realizable. Thus,
it is especially suitable for probing the realizability of hypothesized
functional form for the pair statistics, which heretofore has not been
done. The methodology uses a parameterized family of pointwise
basis functions for the dimensionless pair potential,

v(r; a) = ε
n

∑
j=1

fj(r/σ; aj), (23)

where fj(r/σ; aj) is the jth basis function, aj is a vector of parameters
(generally consisting of multiple parameters), a = (a1, a2, . . . , an) is
the “supervector” parameter, ε sets the energy scale, and σ is a char-
acteristic length scale. Both ϵ and σ are taken to be unity. The
components of aj are of four types: dimensionless energy scales
εj, dimensionless distance scales σj, dimensionless phases θj, and
dimensionless exponents pj.

The initial form of v(r; a) is informed by the small- and large-
distance behaviors of the target pair statistics g2,T(r) and ST(k) as
dictated by statistical-mechanical theory.17 Specifically, under mild
conditions, the exact large-r behavior of v(r; a) is enforced in (23)
to be the large-r behavior of the targeted direct correlation function
cT(r) via6,53

cT(r) ∼ −βv(r; a), (∣r∣ → +∞), (24)

where β = 1/(kBT) and kB is the Boltzmann constant, and the large-
∣r∣ behavior of c(r) can be extracted from the structure factor ST(k)
using the Fourier representation of the Ornstein–Zernike integral
equation,54

c̃(k) =
h̃(k)
S(k)

. (25)

To estimate the initial small- and intermediate-r behavior in (23), we
simply use the hypernetted chain (HNC) approximation,6 i.e.,

βvHNC(r) = hT(r) − cT(r) − ln[g2,T(r)]. (26)

The basis functions are chosen so that they reasonably span all
potential functions that could correspond to a targeted g2,T(r) for
all r or a targeted ST(k) for all k under the constraint that the result-
ing potential function v(r) satisfies the small-r and large-r behaviors
dictated by statistical-mechanical theory described above. For our
specific targets, fj(r; aj) are chosen from the possible following
general forms:

1. Hard core:

fj(r; aj) =

⎧⎪⎪
⎨
⎪⎪⎩

+∞, r ≤ 1,

0, r > 1.
(27)
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This basis function is used for the unit-step function g2 and
the RSA target as its g2,T(r) exhibits a hard core for r ≤ 1.

2. Exponential-damped oscillatory form:

fj(r; aj) = εj cos
⎛

⎝

r
σ(1)j

+ θj
⎞

⎠
exp

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
⎛

⎝

r − σ(2)j

σ(3)j

⎞

⎠

M⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (28)

Importantly, the large-r behavior of v(r) ∼ −βc(r) for the 1D
unit-step function g2 for ϕ→ ϕ−c (but ϕ ≠ ϕc) is given by an
exponential form;15 see Sec. IV. In this work, for simplic-
ity and efficiency, the exponent M (28) is restricted to be an
integer that remains fixed during the optimization process as
described below.

3. Exponential-damped power-law form:55

fj(r; aj) = εj exp(−κr)r−pj , (29)

where κ is the inverse screening length. This form is chosen
because it has been shown that the large-r behavior of
v(r) ∼ −βc(r) for the 2D and 3D unit-step function g2 in the
limit for ϕ→ ϕ−c (but ϕ ≠ ϕc) is given by (29),15 with pj = 1/2
for d = 2 and pj = 1 for d = 3; see Sec. IV for further details.

4. Power-law damped oscillatory form:

fj(r; aj) = εj cos
⎛

⎝

r
σ(1)j

+ θj
⎞

⎠
r−pj. (30)

5. The last form is the Coulomb form (16), which corresponds to
the large-r behavior of v(r) for the unit-step function g2 at the
terminal packing fraction ϕc in all dimensions, given that the
states are realizable; see Sec. II B.

Once the initial form of v(r; a) is chosen, a nonlinear optimiza-
tion procedure56 is used to minimize an objective function Ψ(a)
based on the distance between target and trial pair statistics in both
direct and Fourier spaces,

Ψ(a) = ρ∫
Rd
wg2(r)(g2,T(r) − g2(r; a))2dr

+
1

ρ(2π)d∫Rd
wS(k)(log(ST(k)) − log(S(k; a)))2dk, (31)

where wg2(r) and wS(k) are weight functions and g2(r; a) and
S(k; a) correspond to an equilibrated N-particle system under
v(r; a) at a dimensionless temperature kBT/ε = 1, which can be
obtained from Monte-Carlo (MC) (used here) or molecular dynam-
ics simulations under periodic boundary conditions. The optimiza-
tion procedure ends when Ψ(a) is smaller than some small tolerance
ϵ. If this convergence criterion is not achieved, then a different set of
basis functions is chosen and the optimization process is repeated.
The additional basis functions are obtained via a fit of the difference
of the potentials of mean forces between the simulated and target
g2(r).

For hyperuniform targets whose small-k behavior is given by
a power law S(k) ∼ kα, v(r; a) has the long-ranged asymptotic
form given by v(r) ∼ 1/rd−α, which can be regarded as a general-
ized Coulombic interaction of “like-charged” particles.17 Thus, one

requires a neutralizing background one-body potential to maintain
stability.17,57–59 Importantly, to perform the MC simulations, the
total potential energy involving the long-ranged one- and two-
body potentials is efficiently evaluated using the Ewald summation
technique.60

In our implementation of the inverse procedure, we used
wg2(r) = exp(−r2

/16), wS(k) = exp(−k2
/4), ϵ = 5 × 10−4, and the

system sizes in MC simulations were N = 400, 500, 1000 for
d = 1, 2, 3, respectively. However, if a hyperuniform target is found
to be numerically realizable for the aforementioned small system
size, we proceed to verify its realizability for larger system sizes, i.e.,
N = 10, 000 for d = 1, 2 and N = 20, 000 for d = 3. If convergence is
not achieved within five iterations of reselection of basis functions,
the target is deemed to be potentially not realizable.

IV. ISO-g 2 PROCESS FOR THE UNIT-STEP
FUNCTION g 2

In this section, we present the realizable density ranges for the
optimized effective interactions for the unit-step function g2 for
d = 1, 2, 3. Taylor expansions of Eq. (11) at the point k = 0 reveal that
S(k) for the unit-step function g2 are analytic at the origin, implying
that the power series only admits even powers of k.17 Thus, the effec-
tive potential must have exponential or superexponential decay at
ϕ < ϕc and a Coulomb form (16) at ϕ = ϕc.

17,25 Indeed, Torquato and
Stillinger showed that at ϕ = ϕc, the target direct correlation function
for r ≫ 1 is given by15,61

cT(r) ∼

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

6r, d = 1,

4 ln(r), d = 2,

−
2(d + 2)
d(d − 2)

r−(d−2), d ≥ 3.
(32)

Furthermore, in the limit ϕ→ ϕ−c (but ϕ ≠ ϕc), the form of cT(r) at
large r is given by an exponential form for d = 1, and by exponential-
damped power-law forms for d ≥ 2, i.e.,15

cT(r) ∼ −
(d + 2)

√
2π

√
2dΓ(1 + d/2)

κ(ϕ)
d−3

2 r−
d−1

2 exp[−κ(ϕ)r], (33)

where κ(ϕ) is the inverse screening length that depends on the
packing fraction,15

κ(ϕ) =

¿
Á
ÁÀ2(d + 2)(1 −

ϕ
ϕc
). (34)

Specifically, in the first three dimensions, one has

cT(r) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−6κ−1
(ϕ) exp[−κ(ϕ)r], d = 1,

−2
√

2π
κ(ϕ)r

exp[−κ(ϕ)r], d = 2,

−
10
3r

exp[−κ(ϕ)r], d = 3.

(35)

Note that the case d = 3 is a Yukawa form. We numerically fitted
−cT(r)/β ∼ v(r) and found that the large-r behaviors of v(r; a)
are indeed well-described by (32) for ϕ = ϕc and by (35) for
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7/8 ≤ ϕ/ϕc < 1. Thus, we use these forms as the longest-ranged basis
functions for v(r; a).

A. 1D systems
The long-ranged part of effective potential for the unit-step

function g2 in one dimension exhibits exponential decay,15 i.e.,

v(r; ϕ) ∼ exp[−κ(ϕ)r], r → +∞. (36)

We find that the maximum density at which the 1D unit-step
function g2 is numerically realizable is ϕm = 0.49 = 0.98ϕc. The
functional form of these potentials is given by

v(r; ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞, r ≤ 1,

ε1 exp[−κ(ϕ)r] +∑
4
j=2εj exp

⎛

⎝
−

r
σ(1)j

⎞

⎠
cos
⎛

⎝

r
σ(2)j

+ θj
⎞

⎠

+∑
6
j=5εj exp

⎡
⎢
⎢
⎢
⎢
⎣

−
⎛

⎝

r
σ(1)j

⎞

⎠

2⎤
⎥
⎥
⎥
⎥
⎦

cos
⎛

⎝

r
σ(2)j

+ θj
⎞

⎠
, r > 1.

(37)

Table I lists the values of the optimized parameters for
ϕ/ϕc = 7/8, 15/16, 31/32, and 0.98, where it is shown that the larger
ϕ is, the more oscillatory terms must be included. Figure 2(a)
shows the density-dependent effective potential at the aforemen-
tioned packing fractions, which clearly shows that for ϕ/ϕc ≥ 31/32,
v(r; ϕ) exhibits significant oscillations (or “wiggles”) to negate the
oscillations in g2(r). The amplitude of the sum of the oscillatory
terms increases with ϕ. As we will show in Secs. IV B and IV C,
such oscillatory behavior is insignificant in v(r, ϕ) for 2D and 3D
unit-step function g2 due to the decorrelation principle in higher
dimensions.17 Figures 2(b) and 2(c) show the target and optimized
pair statistics at the maximum realizable packing fraction ϕm = 0.49
= 0.98ϕc. We find that the L2 functions [Eqs. (7) and (8)] are Dg2 = 6
× 10−4, DS = 0.0010 and the L2-norm error (6) is E = 0.040. These
errors are an order of magnitude smaller than typical errors obtained
via IHNCI for realizable targets.25 Figure 2(b) also shows g2(r) for
the pure equilibrium hard-rod system at ϕm = 0.49, which exhibits
significant positive and negative correlations compared to the

TABLE I. Optimized parameters of the effective pair potential for the 1D unit-step
function g2.

ϕ/ϕc 7/8 15/16 31/32 0.98 ϕ/ϕc 31/32 0.98

ε1 6.47 10.12 11.18 29.52 ε4 −4.098 −1.828
κ−1
(ϕ) 1.165 1.641 2.440 2.704 σ(1)4 0.5710 3.152

ε2 2.809 0.7187 −6.772 −3.056 σ(2)4 0.2687 0.325 4
σ(1)2 0.7674 1.680 1.094 0.6015 θ4 4.000 3.077
σ(2)2 −0.5470 −0.3393 1.375 −0.2195 ε5 0.1934 0.04138
θ2 4.059 0.1577 2.050 3.332 σ(1)5 60.23 21.99
ε3 ⋅ ⋅ ⋅ 10.74 −1.534 −5.844 σ(2)5 −425.8 2.073
σ(1)3 ⋅ ⋅ ⋅ 0.5624 2.211 1.587 θ5 1.781 4.089
σ(2)3 ⋅ ⋅ ⋅ 0.7691 0.3275 1.420 ε6 3.494 0.389 9
θ3 ⋅ ⋅ ⋅ 3.317 2.960 2.902 σ(1)6 4.280 6.914

σ(2)6 19.36 1.629
θ6 0.8264 4.124

unit-step function g2. This demonstrates that the unit-step function-
g2 system is much more disordered than the pure equilibrium
hard-rod system and that the effective potential (37) significantly
suppresses the correlations beyond the hard core as will be quantita-
tively analyzed in Sec. IV D via the order metric τ (19). Figure 2(d)
shows a 25-particle portion of a 400-configuration at ϕm.

Figure 3(a) shows the optimized potential of the form (37) at
packing fraction ϕ = 127/128ϕc > ϕm, obtained after five iterations
of reselecting the basis functions. Figures 3(b) and 3(c) show the cor-
responding optimized pair statistics. It is clear that the target pair
statistics are not realized by the simulated many-body system. The
optimized g2(r) oscillates around unity for r > 1 and contains a peak
at r = 1. Thus, the system exhibits clustering of particles despite the
highly repulsive nature of the potential. The optimized S(k) contains
a small peak at k ∼ π, and the S(k) values at small k are higher than
those of the target ST(k).

To test whether the non-convergence of the trial potential
is due to the constraints of the forms of the basis functions,
we included two additional exponential-damped oscillatory basis
functions (28)–(37) and repeated the optimization procedure. We
observed that convergence was still not reached, which suggests that
the target is potentially indeed non-realizable.

We also applied the IHNCI procedure,20,24 which was the
most accurate inverse algorithm prior to the development of our
methodology25 on the 1D unit-step function g2 target at ϕ = 127/256
= 127/128ϕc. We found that (1) the trial S(k) at small k is larger than
that of the target and (2) the trial v(r) at all r increased in each iter-
ation due to the fact that the algorithm attempts to match the small
values of ST(k) around the origin. In about 100 iterations, the trial
potential became so repulsive that the system crystallized, leading
to a trial g2(r) that is drastically different from g2,T(r). Therefore,
IHNCI is definitely not suited to treat the realizability problem in
this case.

B. 2D systems
The long-ranged part of effective potential for the unit-step

function g2 in two dimensions is determined to be the exponentially
screened inverse power law r−1/215 for ϕ < ϕc, i.e.,
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FIG. 2. (a) Effective potentials for the 1D unit-step function g2 (2). (b) Target and
optimized g2 at the maximum realizable packing fraction ϕm = 0.49 = 0.98ϕc .
Here, we find that the L2 function (7) is Dg2 = 6 × 10−4. The blue curve shows
g2(r) for the pure equilibrium hard-rod fluid at ϕm. (c) Target and optimized S(k)
at ϕm. Here, we find that the L2 function (8) is DS = 0.0010. The L2-norm error
(6) is E = 0.040. The inset shows on a log scale the small-k behaviors. (d) A 25-
particle portion of a 400-particle configuration of the system with unit-step function
g2 at ϕm.

v(r; ϕ) ∼ exp[−κ(ϕ)r]r−1/2, r → +∞. (38)

We find that the 2D unit-step function g2 is numerically realizable
up to the terminal density ϕc = 1/4. Figure 4(a) shows the density-
dependent effective potential v(r, ϕ), whose functional form is
given by

v(r; ϕ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

+∞, r ≤ 1,

ε1r−1/2 exp[−κ(ϕ)r]
+ε2 exp(−r/σ(1)2 ) cos(r/σ(2)2 + θ2), r > 1.

(39)

FIG. 4. (a) Effective potentials for the 2D unit-step function g2 (2). The potential
for ϕc = 1/4 is shifted such that v(10; ϕc) = 0. (b) Target and optimized g2(r)
at ϕc . Here, we find that the L2 function (7) is Dg2 = 6 × 10−4. (c) Target and
optimized S(k) at ϕc . Here, we find that the L2 function (8) is DS = 0.0022. The
L2-norm error (6) is E = 0.053. The inset shows the small-k behaviors on a
log scale. (d) A 600-particle configuration of the 2D system with unit-step function
g2 at ϕc .

Table II lists the optimized values of the parameters. The potential
becomes increasingly long-ranged with increasing ϕ and the charac-
teristic length scale κ−1

(ϕ) diverges to infinity as ϕ→ ϕ−c . At ϕ = ϕc,
the long-ranged part of the potential becomes the 2D Coulomb form
given by

v(r, ϕc) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

+∞, r ≤ 1,

−ε1 log(r)+
ε2 exp(−r/σ(1)2 ) cos(r/σ(2)2 + θ2), r > 1.

(40)

FIG. 3. (a) Optimized trial potential (37)
for the 1D unit-step function g2 (2) at
ϕ = 127/256 = 127/128ϕc . (b) Target
and optimized g2(r). (c) Target and opti-
mized S(k). The inset shows the small-k
behaviors on a log scale.
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TABLE II. Optimized parameters of the effective pair potential for the 2D unit-step
function g2.

ϕ/ϕc ε1 κ−1(ϕ) ε2 σ(1)2 σ(2)2 θ2

7/8 5.254 0.9684 54.40 0.2182 −0.3018 0.6078
15/16 5.430 1.455 595.7 0.1612 −0.4543 0.1322
31/32 5.977 2.093 25.06 0.2881 −2.857 3.502
63/64 6.665 3.425 −20.50 0.3172 2.854 −0.4685
1 4 +∞ 6.774 0.4250 0.4834 1.776

As shown in Fig. 4(b), the equilibrium state at ϕc accurately yields the
unit-step function g2. Figure 4(c) shows that the optimized system
is hyperuniform and its structure factor matches ST(k). As in the
1D case, the precision of our methodology is evident from the small
values of the L2 functions [Eqs. (7) and (8)] and the L2-norm error
(6), given by Dg2 = 6 × 10−4, DS = 0.0022, and E = 0.053. Figure 4(d)
shows a snapshot of the optimized system at ϕc. The particles are
well-separated and do not form large clusters.

C. 3D systems
As in the case of the 1D and 2D unit-step function g2, the long-

ranged part of v(r; a) for the 3D unit-step function g2 is found to
be the Yukawa form.15 The target pair statistics is realizable up to
ϕc = 1/8, and the optimized density-dependent pair potential is
given by

v(r; ϕ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

+∞, r ≤ 1,

ε1 exp[−κ(ϕ)r]/r
+ε2 exp(−r/σ(1)2 ) cos(σ(2)2 + θ2), r > 1,

(41)

where κ(ϕc) = 0, giving a long-ranged potential with a Coulomb tail,
i.e., v(r; ϕc) ∼ 1/r.

Figure 5(a) shows the density-dependent effective potential of
the unit-step function g2 for packing fractions ϕ in the vicinity
of ϕc. As ϕ increases, v(r; ϕ) becomes increasingly long-ranged.
Table IV lists the optimized parameters in v(r; ϕ), from which it
is obvious that the screening length of the potential κ−1

(ϕ) increases
with ϕ. Figures 5(b) and 5(c) show that the pair statistics at ϕc is
excellently produced by the equilibrium system under the effective
potential as manifested by the small L2 functions [Eqs. (7) and (8)]
Dg2 = 4 × 10−4 and DS = 0.0016 as well as the small L2-norm error (6)
E = 0.045. Figure 5(d) shows a snapshot of the system with unit-step
function g2 at ϕc.

D. Screening lengths and order
metrics across dimensions

To study the dependence of the screening length κ−1
(ϕ) on

the packing fraction and the dimensionality, we plot in Fig. 6 the
optimized κ−1

(ϕ) against ϕ/ϕc for d = 1, 2, and 3 as well as the the-
oretical relation (34) shown as dashed curves. In all dimensions, the
theoretical and optimized κ−1

(ϕ) agree well, revealing the applica-
bility of Eqs. (35) and (34) for ϕ near but below ϕc. Nevertheless,
note that the discrepancy between theoretical and optimized κ−1

(ϕ)

FIG. 5. (a) Effective potentials for the 3D unit-step function g2 (2). (b) Target and
optimized g2(r) at the terminal packing fraction ϕc = 1/8. Here, we find that the L2

function (7) is Dg2 = 4 × 10−4. (c) Target and optimized S(k) at ϕc . Here, we find
that the L2 function (8) is DS = 0.0016. The L2-norm error (6) is E = 0.045. The
inset shows the small-k behaviors on a log scale. (d) A 216-particle configuration
of the 3D system with unit-step function g2 at ϕc .

is larger (on the order of 10%) for ϕ/ϕc ≥ 31/32 in all dimensions
due to the decreased sensitivity of pair statistics on pair potentials
for higher-density states.62 Importantly, for the same value of ϕ/ϕc,
κ−1
(ϕ) decreases with d, reflecting the decorrelation principle for

higher dimensions.17

To quantitatively characterize the suppression of correlations
in the unit-step function g2 relative to the corresponding equilib-
rium system with pure HS interactions at the same ϕ, we compute
their order metrics τ (19) for d = 1, 2, 3 at the maximum realizable
packing fractions for the unit-step function g2. Equation (19) yields
immediately that τ = v1(1) for the unit-step function-g2 systems.
The explicit expression of S(k) for the 1D pure equilibrium HS sys-
tem is given in Ref. 43, which yields τ = 2.43 at ϕm = 0.49 = 0.98ϕc.
Note that τ for the unit-step function g2 at ϕm is only 41% of that for
the equilibrium HS system (Table III), indicating that the effective
potential (37) achieves significant suppression of both positive and
negative correlations that would otherwise be present in the pure
equilibrium HS fluid.

The equilibrium pair statistics for the 2D and 3D pure equi-
librium HS systems are not known exactly.5 Thus, we numerically
computed τ from the pair statistics obtained via MC simulations.
Table III shows the τ order metrics (19) for the unit-step function-
g2 systems and the pure equilibrium HS packings. We observe that
the discrepancy in the τ values for the two systems decreases as
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FIG. 6. The potential screening length
κ−1
(ϕ) as a function of the relative

packing fraction ϕ/ϕc for (a) 1D, (b) 2D,
and (c) 3D unit-step function g2, where
ϕc = 1/2d is the terminal packing frac-
tion. The dashed curves show the theo-
retical relation (34) and the filled circles
are values obtained from the optimized
effective potentials (37), (39), and (41).

d increases, which again reflects the decorrelation principle for
higher dimensions.17

V. 3D GHOST RSA TARGET
In this section, we compare the effective potential for the

unit-step function g2 with that for a closely related model known
as the “ghost” RSA process.11,29 It is a special case of a general-
ization of the standard RSA process5,40,41 and is the only known
model for which all n-particle correlation functions are exactly solv-
able for any dimension d and allowed densities.29 In the ghost
RSA process, spherical “test” particles of unit diameter are added
continually to Rd during time t ≥ 0 according to a translation-
ally invariant Poisson process of density η per unit time, i.e., η
is the number of points per unit volume and time, here taken to
be unity without loss of generalization. A test sphere centered at
position r at time t is retained if and only if it neither overlaps
any existing sphere in the packing nor any previously rejected test
sphere in the time interval [0, t).29 The maximum packing frac-
tion for the ghost RSA process is ϕ(t = +∞) = 1/2d, identical to the
terminal density ϕc of the iso-g2 process for the unit-step func-
tion g2.29 For finite d, the ghost RSA model is nonhyperuniform at

TABLE III. Order metric (19) for unit-step function-g2 systems at their highest real-
izable packing fractions (τUS) and for pure equilibrium HS packings at the same
ϕ (τHS).

d ϕ τUS τHS τUS/τHS (%)

1 0.98ϕc = 0.49 1 2.43 41
2 ϕc = 1/4 π ≈ 3.14 3.72 85
3 ϕc = 1/8 4π/3 ≈ 4.19 4.57 92

TABLE IV. Optimized parameters of the effective pair potential for the 3D unit-step
function g2.

ϕ/ϕc ε1 κ−1
(ϕ) ε2 σ(1)2 σ(2)2 θ2

7/8 3.227 0.926 13.92 0.2615 −0.3368 5.368
15/16 3.262 1.352 15.84 0.2528 −0.2850 0.068 81
31/32 3.166 1.985 −13.96 0.2703 −0.3203 2.610
63/64 3.295 2.751 −25.47 0.2342 −0.3079 3.102
1 3.378 +∞ −450.3 0.1521 −0.3720 3.502

ϕc and the corresponding g2(r) possesses a small “bump” at r = 1
and is identically unity for r ≥ 2. The existence of such a bump at
maximum density might suggest that the unit-step function g2 is
unrealizable at ϕc for small d. Here, we study the pair statistics of the
3D ghost RSA process at the maximum packing fraction (ϕc = 1/8),
whose g2,T(r) is given by29

g2,T(r) =
2Θ(r − 1)

2 − [(1 − 4r
3 +

r3

16)Θ(2 − r)]
, (42)

Torquato et al.63 derived the exact expression for the corre-
sponding structure factor, which is analytic at the origin. The small-k
expansion is given by63

S(k) ∼ 0.2901 + 0.014 66k2
+ 0.004 790k4, k→ 0, (43)

which implies that v(r) exhibits exponential or superexponential
decay at large r.17 Thus, we used the functional forms (27) and (28)
for the basis functions.

Figure 7 shows the effective pair potential as well as target and
optimized pair statistics for this model. The effective potential is
given by

v(r; ϕc) =

⎧⎪⎪
⎨
⎪⎪⎩

+∞, r ≤ 1,

ε1 exp[−(r/σ1)
2
] + ε2 exp[−(r/σ2)

3
], r > 1.

(44)
Table V lists the optimized parameters. We achieved excellent agree-
ment between target and optimized pair statistics, with the L2
functions [Eqs. (7) and (8)] Dg2 = 5 × 10−4, DS = 3 × 10−5, and the
L2-norm error (6) E = 0.023. Compared to the effective potential for
the unit-step function g2 at the same packing fraction, the potential
for the ghost RSA process is much shorter ranged as the latter system
is nonhyperuniform and S(k) is analytic at the origin.25 The fact that
v(r; ϕc) for the 3D ghost RSA is not highly repulsive means that the
bump in its g2,T(r) does not constitute a considerable constraint to
the realizability of the 3D unit-step function g2 at ϕc.

VI. A KNOWN 2D NON-REALIZABLE TARGET
To test the accuracy and robustness of our methodology, in this

section, we study a 2D target g2 whose functional form consists of a
unit-step function and a delta function separated by a gap.11,13 For
specific parameters chosen, the target g2 satisfies all known neces-
sary conditions for realizability (Sec. II D) but is not realizable due
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FIG. 7. (a) Effective potentials for pair
statistics of the 3D unit-step function g2
(2) and the 3D ghost RSA process (42)
at ϕc = 1/8. (b) Target and optimized
g2(r) at ϕc . Here, we find that the L2

function (7) is Dg2 = 5 × 10−4. (c) Target
and optimized S(k) at ϕc . Here, we find
that the L2 function (8) is DS = 3 × 10−5.
The L2-norm error (6) is E = 0.023.

to geometrical constraints.11 This model has been used to show that
the densest packings in high dimensions are disordered.11

The functional form of the target g2(r) is given by

g2,T(r) = Θ(r − σT) +
Z

2πρ
δ(r − 1), (45)

where σT ≥ 1 is a distance parameter in units of σ. When σT = 1, g2,T
is known as the contact-δ plus step function14 and is the zero-density
limit of the sticky hard-sphere (SHS) potential5 given by

vSHS(r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

+∞, r < 1,

−ε0, r = 1,

0, r > 1,

(46)

which is the limit of the square well (SW) potential5,35 given by

vSW(r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

+∞, r < 1,

−ε0, 1 ≤ r < σ0,

0, r ≥ σ0,

(47)

as σ0 → 1, where ε0 and σ0 are energy and distance parameters in
units of ε and σ, respectively. The contact-δ plus step function has
been shown to be realizable for a finite range of r for d = 2, 3.10

TABLE V. Optimized parameters of the effective pair potential for the 3D ghost RSA
pair statistics.

ε1 σ1 ε2 σ2

−0.3502 1.284 0.8856 1.304

On the other hand, with the parameters σT = 1.2946,
Z = 4.0138, and ϕ = ρπ/4 = 0.74803, g2,T(r) is not realizable in two
dimensions because of the fact that Z > 4 implies that there are some
particles that are in contact with at least five particles. However,
any arrangement of the five will result in nonzero g2(r) within the
targeted gap 1 < r < 1.2946.

The small-k behavior of the unrealizable target is given by
ST(k) ∼ 0.04689k2, implying that the large-r behavior of the trial
v(r)must be of a Coulomb form v(r) ∼ −log(r). The HNC approx-
imation suggests that the small- and intermediate-r behavior of the
trial potential is composed of at least three oscillatory functions
damped by a power law r−1 (30). The form of the trial potential is
thus given by

v(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

+∞, r ≤ 1,

ε1 log(r) +∑
4
j=2εj cos(

r
σj
+ θj)/r, r > 1.

(48)

As expected, our inverse algorithm did not find an equilibrium state
that matches the target pair statistics. The inverse procedure gener-
ated an optimized potential [Fig. 8(a)] that yields Ψ = 59.5, which
is much larger than the convergence criterion Ψ < 5 × 10−4. The
simulated g2(r) [Fig. 8(b)] contains extra δ peaks for r > 1 and
is nonzero in the targeted gap 1 < r < 1.2946. The simulated S(k)
[Fig. 8(c)] contains many sharp peaks that are not present in the
target. We note that the IHNCI procedure for this target yielded
diverging trial potentials, i.e., ∣v(r)∣ became unbounded for all r val-
ues except where v(r) = 0, which again highlights the insufficiency
of such methods for our purpose.

FIG. 8. (a) The optimized potential for the
2D unrealizable g2 (45), which does not
satisfy the convergence criterion. (b) Tar-
get and simulated g2(r). (c) Target and
simulated S(k).
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VII. CONCLUDING REMARKS

We have numerically investigated the realizability of the unit-
step function g2 for d = 1, 2, 3 by determining precise density-
dependent effective interactions that yield positive-temperature
equilibrium states matching both target g2(r) for all r and target
S(k) for all k. For d = 1, we found that the unit-step function g2 is
realizable up to ϕm = 0.49 = 0.98ϕc. For d = 2 and 3, it is realizable
up to the terminal packing fraction ϕc = 1/2d, where the equilib-
rium states are hyperuniform and v(r) at large r behave as the
Coulomb interaction in the respective dimensions. This implies that
the explicitly known necessary conditions for realizability described
in Sec. II D are also sufficient up though ϕc for 2D and 3D unit-
step function g2. Furthermore, because the unit-step function g2 is
realizable up to ϕc for d = 2 and 3, it is also realizable in all higher
dimensions up to their respective maximum terminal packing frac-
tions at which the systems are hyperuniform.11,17 For ϕ near but
below ϕc, the large-r behavior of the effective potentials is given by
exp[−κ(ϕ)r], r−1/2 exp[−κ(ϕ)r], and r−1 exp[−κ(ϕ)r] for d = 1, 2,
and 3, respectively, where κ(ϕ) is the inverse screening length, and
for ϕ = ϕc, the potentials at large r are given by the pure Coulomb
forms in the respective dimensions as predicted in Ref. 15. The
effective potentials at the maximum realizable packing fractions for
the unit-step function g2 significantly suppress both positive and
negative correlations that would otherwise be present in the pure
equilibrium HS system as manifested by the smaller order metrics
τ (19) for the corresponding former systems. The capacity to gen-
erate hyperuniform states at positive T via effective potentials is
expected to facilitate the self-assembly of tunable hyperuniform soft-
matter materials and enables one to probe the thermodynamic and
dynamic properties of such states. Due to the long-ranged nature
of these potentials (16), one can use ρ and T as tuning parameters
to generate equilibrium hyperuniform states or states with stronger
hyperuniform forms via their inherent structures, i.e., local energy
minima.26

While we do not provide a rigorous proof that the 1D unit-
step function g2 is non-realizable at ϕ = ϕc = 1/2, the accuracy of
our methodology and the fact that the hyperuniform targets are
realizable in higher dimensions (d = 2 and d = 3) suggests that the
1D unit-step function g2 is highly likely to be non-realizable for
ϕ = ϕc, even if it is realizable for almost all packing fractions below
ϕc, i.e., for ϕ ≤ 0.49. We recall that it has been shown that the realiz-
ability of a particular functional form for hypothetical correlation
function corresponding to a disordered system becomes easier as
the space dimension increases due to a “decorrelation” principle,11

and hence 1D systems are the most likely to be non-realizable in
general.

We also found that the realizable 3D nonequilibrium ghost RSA
target at the maximum packing fraction ϕc = 1/8 is realizable as an
equilibrium system with an effective pair potential, which further
supports the Zhang–Torquato conjecture.13 Interestingly, its corre-
sponding effective pair potential is much shorter ranged than the
one we determined for the 3D unit-step function g2 at ϕc as the
former system is nonhyperuniform and S(k) is analytic at the ori-
gin. Thus, despite the fact that its maximum density coincides with
ϕc for the unit-step function g2, the ghost RSA model does not
provide a significant constraint on the realizability of the unit-step
function g2.

Importantly, we have demonstrated that our inverse methodol-
ogy25 is robust and generally capable of probing realizability prob-
lems as it successfully generates effective potentials in cases when
the target pair statistics is realizable. Furthermore, as expected, the
trial potential does not converge for the 2D “contact-delta + gap
+ unit-step” g2 (45), which is known to be non-realizable, despite
the fact that it satisfies all known explicit necessary conditions. Note
that the non-realizability of (45) in two dimensions does not imply
that it is non-realizable in higher dimensions. A fascinating venue
for future research is to apply our methodology to investigate the
realizability of (45) for d ≥ 3. If (45) is shown to be realizable in
relatively low dimensions, such as d = 3 or 4, then one has further
evidence that the densest packing of identical spheres in high dimen-
sions are disordered (rather than ordered as in low dimensions),
which is based on the terminal packing fraction corresponding
to the higher-dimensional versions of the “contact-delta + gap
+ unit-step” g2.11

One can also apply our methodology to study the realizability
of a wide range of prescribed pair statistics, including g2 with
prescribed forms of oscillations14 and hyposurficial states.13,64 Com-
parison of the realizable density range for these targets with the
terminal densities derived in Ref. 14 might shed light on necessary
realizability conditions that are hitherto unknown.

One could also study the thermodynamic and dynamic prop-
erties of the effective potentials that yield unit-step and ghost RSA
g2’s, such as the associated phase diagrams, inherent structures, and
diffusion properties.6,65 Unlike ground states and jammed hype-
runiform states,17,66 the particle diffusion rates for the positive-
temperature hyperuniform fluids at ϕc should be positive. This
could occur if the systems’ potential only allows neighboring par-
ticle pairs to exchange positions. Such pair exchanges would allow
the system to explore all permutationally equivalent structures
but would prevent other types of structural modifications, thus
retaining the system’s vanishing isothermal compressibility while
permitting a positive self-diffusion rate. One could test this hypoth-
esis by computing particle trajectories and velocities via molecular
dynamics.

Finally, we note that our work provides a challenge to exper-
imentalists to fabricate nanoparticles that result in the effective
pair potentials found in this study. Achieving potentials close to
(39) and (41) for ϕ < ϕc is expected to be experimentally feasible
as the exponentially damped power-law tails can be readily attained
by charged nanoparticles in solution67 and the exponential and
superexponential short-ranged terms can be achieved by polymer-
grafted nanoparticle surfaces.68 Generating interactions close to the
ghost RSA potential (44) would also be feasible via polymer-grafted
nanoparticles68 as (44) consists of only short-ranged superexponen-
tial terms.

If one can find realistic chemical compositions of nanoparticles
that realize the unit-step function g2 near or at the terminal packing
fractions, then such systems could be utilized for various practical
applications. For example, nanoparticles interacting via (39) in the
plane near ϕc suppress clustering and thus can be useful substrates
for reactions that are sensitive to reactant clustering.69 Furthermore,
the packings corresponding to the 2D and 3D unit-step function
g2 at ϕc are hyperuniform states with no short-range order beyond
the hard core, unlike typical hyperuniform sphere packings. Thus,
they can be useful in optical applications70 and controlled drug
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delivery.71 While achieving the long-ranged interactions for hype-
runiform states is challenging, one could reproduce the potentials
over some finite but large range of r to fabricate effectively hyper-
uniform states, i.e., states with very small but nonvanishing positive
value of S(0).72–76 Subsequently, the deviation of such systems
from perfect hyperuniformity can be characterized via the various
quantitative measures described in Ref. 43.
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