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A novel perturbative treatment of electron correlation in N-electron atoms is devised. The unperturbed 
starting point is a central-force "hydrogenic" problem in the full dN-dimensional configuration space 
(d = dimensionality). The central potential in this solvable" hydrogenic" problem is obtained by averaging 
the actual electron-electron and electron-nucleus potentials over all dN -1 hyperspherical polar angles 
in the configuration space. The relevant projected Green's functions are computed for the ground states of 
the model one-dimensional two-electron atom (with delta function interactions), as well as for the real 
three-dimensional helium isoelectronic sequence. The corresponding first-order wavefunctions exhibit 
weakly singular logarithmic behavior (at three-particle confluence) of the type first advocated by Fock. 
Second-order energies are evaluated for both of these two-electron problems. The basic ingredients of our 
hyperspherical coordinate method for three-electron atoms are displayed, in preparation for later application. 
Explicit suggestions are made for inclusion of singular terms in high-accuracy atomic and molecular varia­
tional wavefunctions. 

I. INTRODUCTION 

Quantum theory has been applied to the study of the 
spectra and properties of atoms and molecules for over 
40 years. In this time theorists have achieved quite 
reasonable success considering the fact that the 
Schrodinger equation has been solved exactly only for 
one-electron systems. Because of the relative ease of 
treating one-electron systems the theory of atomic 
structure was originally based on an independent 
particle model with self-consistent atomic orbitals.I 

In recent years it has become increasingly evident 
that electron correlation must be understood and 
accounted for if a quantitative ab initio approach to 
atomic and molecular structure is to become a reality.2 
We present in the following a novel approach to cor­
relation in atomic theory. 

If the Hamiltonian for an N-electron atom is written 
in terms of spherical coordinates in 3N dimensions 
(hyperspherical coordinates), the potential energy is 
homogeneous of degree minus one in the radial variable 
p = (r12+ ••• + rN2) 1/2, while the kinetic energy is the 
sum of a radial operator and an angular operator. We 
approach the solution of the eigenvalue problem by 
perturbation theory and find it natural to choose the 
zeroth-order potential energy to be the average of the 
true potential energy over the 3N -1 angular variables. 
This corresponds to a model which may be thought of 
as a generalized hydrogen atom in 3N dimensions.3 

For this model it is relatively simple to construct 
explicitly the reduced Green's function necessary for 
the solution of the perturbation equations. 

Section II discusses the hyperspherical coordinates 
themselves and gives the form of the Laplacian in these 
coordinates. In Sec. III the technique mentioned in the 
last paragraph is applied to a delta-function model of 
the two-electron atom in order to establish the ability 
of the method to predict the correct form of the known 
wavefunction. Section IV concerns the ground state of 
the real two-electron atom. It is shown that three­
body effects of a form proposed by Fock4 enter the 
wavefunction naturally in first order. 

In Sec. V we consider briefly the extension of the 
hyperspherical coordinate method to three electron 
atoms (and ions). It is pointed out that electron spin 
per se does not enter the problem, and that one again is 
concerned only with finding spatial eigenfunctions of 
the ~pin-free Hamiltonian H. However, one must be 
careful to satisfy certain accessory conditions on the 
spatial functions which, for the zeroth-order Hamil­
tonian with a hyperspherically averaged potential, 
require selection of a special excited state. In principal, 
similar but more complicated considerations apply to 
any nonrelativistic atom or ion with more than three 
electrons, so in principle our method is a general tech­
nique for the study of electron correlation. 

The final section (Sec. VI) proposes inclusion of 
special logarithmic functions that are suggested by our 
analysis in accurate variational trial wavefunctions for 
molecules such as H2. 

II. HYPERSPHERICAL COORDINATES 

Consider an atomic system with N electrons (N) 1). 
The number of coordinates necessary to specify the 
position of these electrons relative to a fixed point (the 
nucleus) is, in general, 3N. If the Laplacian operator 
is written in terms of the three-dimensional spherical 
coordinates for each electron (ri' Oi, CPi) it has the well­
known form 

(1) 

where D(Oi, CPi) is Laplace's operator on a sphere in 
three dimensions, 

-D(Oi' CPi) = (sinOi)-l(ajaOi) sinOi(ajaOi) 

+ (sin20i)-1(ajacp;2). (2) 

In spaces of dimensionality exceeding 3, a variety 
of choices for "spherical" coordinates is available 
depending on how one defines the angles. For N-electron 
atoms, one can choose to form an orthogonal hyper­
spherical coordinate system in the following way. Let 
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ELECTRON CORRELATION IN ATOMS 5801 

2N of the angular variables be the Oi, rpi mentioned above. From the N ri define a single radial coordinate 
p and N -1 angular coordinates Xn by the relationships 

rl=p COSXI 

a(rl, r2, "', rN) /a(p, Xl, ''', XN-I) = pN-I (sinl)N-2 (sinX2)N-3 •. ·sinXN_2. (3) 

Then it may be shown that5 

1 a a 1 
V'3N2= -- - p3N-I_ - - A3N2(XI ••• XN-I 01 ••• ON rpl ... rpN) 

p3N-I ap ap p2 """'" 
(4) 

where the generalized angular-momentum operator - A3N2 is given by 

Note that D(O, rp) is to be identified with A32(O, rp). 
The eigenvalues and eigenfunctions of the generalized 

angular momentum operator are known5,6 and the case 
N = 2 has been explored in detail.7 ,8 Since we do not 
require the detailed properties of A3N2 for N> 2 in what 
follows we shall omit further study of these operators. 

III. THE DELTA-FUNCTION MODEL OF THE 
TWO-ELECTRON ATOM 

We will first consider the problem of two one­
dimensional "particles" which interact with a fixed 
center and with each other by short-range Dirac delta 
function potentials.9 The displacements of the particles 
from the fixed center will be denoted by x and y, re­
spectively. The Hamiltonian for this model system will 
be taken to be 

1(a2 (
2

) H = - - - + - -o(x) -o(y) +M(x-y), 
2 ax2 ay2 

- 00 ::; x, y::; 00 (6) 

in suitable units. The particles are thus attracted to the 
fixed center and repelled by each other. The parameter 
X governs the strength of the mutual interaction of the 

A3N_ 32 (X2, •• " XN-I, OZ, "', ON, r/>z, "', rpN) 

sin2xI 

(5) 

particles relative to their interaction with the fixed 
center. 

We are interested in the ground-state eigenfunction 
of this Hamiltonian. When X = 0, this s tate is par­
ticularly simple with eigenfunction exp( -I x I - I y I) 
and eigenvalue -1.0 in the units chosen. For small X 
it is natural to apply standard Rayleigh-Schrodinger 
perturbation theorylO to this eigenvalue problem with 
X itself serving as an obvious perturbation parameter. 
This analysis has been carried outll through first order 
in X, but since the results are not generally available 
we present one method of obtaining them in Appendix 
A. The result for the eigenfunction is 

'11 (x, y) 

=exp( -/ x I-I y J) (l-!X+tX / x+y l+tX I x-y /) 

X 1"" dk + 2?r 0 (1+k2)3/2 (exp[ -/ x+y J(1+k2)1/2J 

Xcos(1 x-y / k) -exp[ -/ x-y I (1 + k2)1/2] 

Xcos(1 x+y / k) } +0(X2), (7) 

and the corresponding expansion for the eigenvalue isH 

E(X) = -1.0+0.5X- [j- (2/3?r) JX2+[(6?r)-I_rlsJX3+0(X4) 

= -1.0+0.5X-0.16279X2+0.013989X3+0(X4). (8) 

We will now approach this problem quite differently. In terms of the polar coordinates 

p2=X2+y2, 

0= tan-l (y/x) -t?r, 

O::;p::; 00, 

-?r::; O::;?r (9) 

(which ~re the direct but simple a~alogs of the .hyperspherical coordinates introduced in the preceding section), 
where 0 IS measured counterclockwIse from the lme x=y, x, y>O, the potential energy for the model, 

U(p, 0) = -o(x) -o(y) +M(x-y) 

= -p-l[o(8+t?r) +o(O-t?r) +0 (8+!?r) +o(8-!?r) J+ (X/21/2p) [0(0) +o(8-?r)], (10) 
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is homogeneous of degree minus one in p. If we average 
this potential over the angle () we obtain 

Uo(p) = (21l')-' L: U(p, ()d() 

= -Zo/p, (11) 

where Zo= (4- 21/2;\) /21l'. In spite of the fact that Uo is 
quite different from U itself due to the short-range 
character of the latter, we will perform a perturbation 
calculation using Uo as the zeroth-order potential. 
This should be a nontrivial test of the technique of 
angular averaging of a potential and the results should 
yield qualitative conclusions about the reliability of the 
general technique. 

We thus partition the Hamiltonian (6) into two 
parts, 

H=Ho+~HI 

(ultimately ~= 1, of course), with 

HO=_ty'2+UO 
and 

H I = U-Uo, 

(12) 

and assume that the wavefunction and eigenvalue are 
expandable as 

(13) 

E=Eo+~EI+eE2+~3E3+"" (14) 

The first two equations in the perturbation hierarchy 
are 

(15) 
and 

The requisite solution of the former of these equations 
IS 

1/10= (8/1l') 1/2Z0 exp( -2Zop) , 

Eo= _2Z02= -0.81057+0.57316;\-0.10132;\2, (17) 

while 

E, = (1/10 I H,I 1/10)=0. 

We will use a Green's function technique to solve 
(16). The required Green's function is defined by 
the equation 

[Ho(l) -EOJGO(~I' ~2) =O(~I-~2) -1/10 (PI) 1/10 (P2) (18) 

together with suitable regularity conditions at the 
origin and at infinity. To uniquely determine Go we 
require it to be orthogonal to the homogeneous solution 
1/10, and we note that the relevant part of Go will have 
the same symmetry as 'IF itself. 

To begin, we use the completeness relation of the 
Fourier series to represent the delta function in (18), 

O(~'-~2) = O(~'-P2) t exp[in(()1-()2)], (19) 
1l'p, n~oo 

and then we expand GO(~I, ~2) in a corresponding 
Fourier series. The part of Go that has the correct sym­
metry is thus written as 

00 

Go( ~I, ~2) = gO(PI, P2) + 2 I: gn(PI, P2) cos[n(()'-()2)], 
n=l 

(20) 
where the gn satisfy the equation 

with on.O being the Kronecker delta. We now scale PI 
and P2 as 

R2=4ZoP2 

and rewrite (21) as 

1 Io(RI-R2) 
= 8Z021/1o(RI)1/Io(R2)On.0-1l'- RI . (22) 

The solution of (22) is relatively simple by standard 
techniques, and after applying the boundary con­
ditions and the condition of orthogonality we obtain 

goeR"~ R2) =1l'-' exp[ - (R,+ R2)] 

(23) 

and 

r(n) 1 

gn(R" R2) =1l'-1 r(2n+1) (R1R2)n exp[ -"2(RI+R2)] 

X<I>(n, 2n+1, Rd'IF(n, 2n+1, R», n>O, (24) 

where'Y is the Euler-Mascheroni constant, R> and R< 
are the greater and lesser of R, and R2, and <I> and 'IF are 
confluent hypergeometric functions'2 defined as 

reb) ( 
<I>(a,b,z) = r(b-a)r(a) J

o 
exp(zt)t"-' 

X (l-t)b-a-'dt (25) 

and 

'IF (a, b, z) = [rCa)]-' 100 

exp( -zt)t"-' 
o 

X (1+t)b-a-1dt. (26) 

We now desire to sum the Fourier series (20) and 
obtain a more useful integral representation of Go. The 
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key formula necessary to sum the series is13 

reb) I"" (xy)l(b-l)[b-l exp[ -!(x+y)t]<I>(a, b, xt)'IF(a, b, yt) = rea) 0 ds(coth!s)l>-2a exp[ -!(x+y)t coshs] 

XIb_ 1[t(xy)1IZ sinhs], 

y>x>o, Re(t) >0, I arc(t) I <11", Re(a»O, (27) 

where In is the usual imaginary-argument Bessel function, and for our use the parameters in (27) assume the values 
a=n, b=2n+1, t= 1, x=R<, y=R>. Inserting the gn obtained by using (27) and (24) into (20) and interchanging 
the order of summation and integration, we find 

21"" "" GO(pl, pz) =go(Rl, Rz)+:;;: 0 ds(cothis) exp[ -HR1+R2) coshs] El I 2n[(R1R2) 1/2 sinhs] cos (n012 ) , (28) 

where 812 =81-82, The sum in (28) may now be performed by using the expansion14 

"" exp(z coscp) = Io(z) +2 L In (z) cos(ncp), 
n=l 

with the result that 

GO(Pl, pz) =go(Rl, R2)+n·-l [0 ds(cothis) exp[ -i(R1+R2) coshs] 
o 

(29) 

x {cosh[ (RlR2)1/2 cos ct8l2) sinhs] - Io[ (RlR2) 1/2 sinhs]} . (30) 

We now wish to use this representation of the reduced Green's function to find the solution of (16) for 1/11. To 
solve (16) multiply both sides of that equation by Go and integrate over the variables with subscript 1. Use the 
Hermitian property of Ho- Eo in conjunction with (18) to obtain 

1/Il(p, 8) = - ~"" P1dpl L: d8l1/l0(pr) HI (PI, 81)GO(p, PI). (31) 

Note that 1/11 is orthogonal to 1/10 since Go has that property. Inserting (30) into (31), interchanging the order of 
integration, and performing the angular integration leads to (Rl=t) 

1/Il(R, 8) = - -/-1"" ds(coth!s) exp( -iR coshs) I"" dt exp[ -H1+coshs)t] 
21 27r3/2 0 0 

6 

X {27rZoIo(Rl/2tl/2 sinhs) - L ak cosh[Rl/2tl/2 cosH8-8k) sinhs]}, (32) 
k=l 

where 

8.=0, 

The integration over the variable t may be carried out by utilizing the facts that 

I"" exp( -y)Io(xyl/2)dy=exp(x2/4) 
o 

and 

1"" exp( -y) cosh(xyI/2)dy= 1+i7r1/2x exp(tx2) erfctx), 
o 

where the error function is defined as 

2 1'" erf(x) = -I exp( -t2)dt. 
7r12 

o 

(33a) 

(33b) 
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The result is (u=sinMs) 

1/II(R,fJ)=!/Io(R) 1'" du [exp(-Ru2)-1]+ !/Io(R) Rl/2 
o u(1+u2) 211"1/2Z0 

6 1'" du X L ak cosHfJ-fJk) --2 exp[ - Ru2 sin2!(fJ-fJk)] erf[Rl /2u cosHfJ-fJk)]. 
k=l 0 1+u 

(34) 

The first integral in (34) may be represented by an exponential integral as 

1'" du 
o u(1+u2) [exp(-Ru2)-1]=-![y+logR+exp(R)E1(R)], (35) 

where as before "I is the Euler-Mascheroni constant and 

E1 (R) = 1'" exp( -t) ~ = -'Y-logR- f (-1) nRn 
R t n=1 nn! 

The final form of the first-order wavefunction is thus 

Rl/21/;O(R) 
!/II (R, fJ) = - !1/;o (R) ["1+ 10gR + exp (R) E1 (R)]+ -'----'-

211"I!2Zo 

where the ak and fJk are defined following (32). Although 
the last integral in (36) may be represented in a variety 
of ways we have not been able to reduce it to a standard 
function. 

We have utilized 1/;1 [(36)] in a second-order energy 
calculation, and we obtain 

+X2G - 2~2) J. (37) 

If this is combined with Eo [( 17) ], the result is 

Eo+ &= -0.97131 +0.51784X-0.17566X2. (38) 

Our purpose in deriving (36) in detail has not been 
primarily to obtain a better eigenfunction that has been 
obtained previously, Eq. (7). We are also not interested 
in doing a highly accurate eigenvalue calculation; 
variational techniques are better suited to this task. 
We are however interested in the analytical form of the 
wavefunction predicted by this technique. 

It is a simple matter to show that the ground-state 
eigenfunction of H given by Eq. (6) is not analytic in 
the variable p near p=O. In other words, the eigen­
function may not be expanded as 

in the vicinity of p = O. The correct behavior [to 
O(A2) ] for small p may be obtained from (7). It is not 
difficult to demonstrate (see Appendix A) that the 

leading order nonanalytic term in 1/; for small p is 

(39) 

Through first order in X no higher powers of the lo­
garithm itself occur, although it is probable that 
weaker singularities at p= 0 with new powers of the 
logarithm occur with each new power of X. This type 
of term, an intrinsic three-body effect, is extremely 
difficult to discover by any technique other than a 
potentially exact analytic approach. 

Investigation of the first-order wavefunction ob­
tained in (36) shows that it is likewise nonanalytic in p 
with a small-p leading-order nonanalytic term of the 
same form as (39) (though multiplied by a slightly 
different factor). Thus the wavefunction obtained by 
correcting a crude zeroth-order "hydrogenic" ap­
proximation to first order displays already the ap­
parent nonanalytic form of the true wavefunction near 
the origin. 

In the case of the delta function model we have 
discovered nothing by the present technique beyond 
that already given by other methods. It is where other 
techniques cannot be applied so easily, as in the actual 
two-electron atom, that the present procedure has its 
primary significance. 

IV. THE GROUND STATE OF THE 
TWO-ELECTRON ATOM 

The general technique of employing perturbation 
theory to correct a model hyperspherically averaged 
potential will now be applied to the simplest nontrivial 
real atomic system, the ground state of the two-electron 
atom. The nonrelativistic Hamiltonian for this system 
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ELECTRON CORRELATION IN ATOMS 5805 

has the well-known form 

H= -!(V?+V22) -rl-1-r21+ (A/rI2), 

(40) 

in Z-reduced atomic units, Z being the nuclear charge. 
Since we are interested in the ground state of this 
system, there is no need to introduce the full set of 
hyperspherical coordinates given in Sec. II. Only three 
coordinates are relevant for this state (as for any S 
state), and we take these to be4 

p2 = r12+ r22, 

tan(!a) =rdrl, 

00 ~p~O, 

7r~a~O, 

cosO= (rI2+r22-rI22) /2rlr2, 

The Laplacian then has the form 

iJ2 50 4 
VI2+V22= - + --- - - A2(a, 0), 

Op2 pop p2 

where the angular operator A2 is 

A2= - (sin2a)-I(~ sin2a ~ + (sinOj-l ~ sino~) . 
oa oa 00 00 

The scalar product is 

( 41) 

(42) 

(43) 

(1/1, rp) = 7r2 JOO dp [' da j" dOp5 sin2a sinO 1/I*rp, ( 44) 
o 0 0 

and an angular integration will be denoted by (1/1, rp )n, 
where 

(1/1, rp )n = 7r2 [' da j" dO sin2a sinO 1/I*rp. ( 45) 
o 0 

The finite, continuous, square-integrable eigen­
functions of A2 are the set 

il>n./(a, 0) =Nn./(sina) ICn_1(1+1) (cosa) P l( cosO), 

n=O, 1,2, ",,1=0,1, "', n, (46) 

where the PI are Legendre polynomials defined by the 
generating function 

00 

(1+x2 - 2x COSO)-1/2= :E PI (cosO) Xl 

1::0 
(47) 

and the Cn (I) are Gegenbauer polynomials defined by 
the generating function 

00 

(1+x2-2x cosa)-l= :E Cn(l) (cosa)xn, 1;;e0. (48) 
n::O 

The normalization constant Nn,l has the value 

if the il>n,l are normalized by the requirement that 

(iI>n,l' il>m,k)Il=On,mOl,k. 

The eigenvalues of A2 are 

A2i1>n,l= n(n+ 2) il>n.l 

with degeneracy n+ 1. 

(50) 

In terms of these variables, the potential energy 
for the two-electron atom, 

U(p, a, 0) = _ sec(a/2) _ csc(a/2) 
p p 

A + (51) 
p (1- sina cos0)1/2 ' 

is homogeneous of degree minus one in p. We average 
this potential over the angles a and 0 to obtain our 
model potential 

where 
Uo(p) = (1/7r3) (I, U)ll= -Zo/p, 

Zo= (8/37r) (4-21/2A). 

(52) 

By adding and subtracting Uo we thus decompose 
the Hamiltonian into Ho and HI, 

with 
Ho= -!(VI2+V22)+ Uo, 

Hl=U-UO, 

and ~= 1. The eigenvalue problem 

(H-E)'Jf=O 

(53) 

(54) 

is approached by expanding the eigenfunction and 
eigenvalue in a power series in the (artificial) param­
eter ~, 

'Jf=1/IO+~1/Il+'" , 

E=Eo+~El+eE2+eE3+"', (55) 

and solving the resulting hierarchy of equations. 
The first of these equations is the eigenvalue problem 

(Ho- Eo) 1/10= 0, 

with the simple solution 

1/10= [( tzo) 6/5 !7r3J1/2 exp( -iZop) , 

Eo= -7lr;Z02 

(56) 

= -0.922250+0.652129A-0.115281A.2. (57) 

The choice of Zo, Eq. (52), makes E1=O, and the 
next equation to be solved is 

(58) 

We solve this equation by a Green's function techni­
que very similar to that employed in the preceding 
section on the delta-function model. The requisite 
Green's function is the solution of the differential 
equation 
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together with the usual boundary conditions at the 
origin and at infinity. Go is also required to be orthogonal 
to 1/10. 

Let us utilize the completeness relation of the 
<l>n.1 to represent the delta function in (59) 

(60) 

and expand the reduced Green's function similarly, 

00 n 

GO(Pl, P2) = L L gn(Pl, P2)<I>n.l(al, Ih)<I>n.!Ca2, 82). 
11=0 1=0 

( 61) 

The equation which determines the gn is 

The solution of (62) which satisfies the boundary con­
ditions and the condition of orthogonality is 

l R< dt ( 4 tk)] 
+5! 5" exp(t) L -kl (63) 

o t k=O . 

and 

2(2n-1)! 
gn(Rl, R2) = (4n+4)! (!Zo)4(RIR2)2n 

Xexp[ -HRl+R2)J<I>(2n, 4n+5, Rd 

n>O, (64) 

where Ri= !ZOPi, R> and R< are the greater and lesser 
of Rl and R2, <I> and 'It are the confluent hypergeometric 
functions defined by (25) and (26), and'Y is the Euler­
Mascheroni constant. There is a strong similarity be­
tween (63), (64) and (23), (24), and one may obtain 
an integral representation of Go in the same way that 
Eq. (30) was obtained in the two-dimensional case. 
However, this representation is not so useful in the 
present circumstance, and we prefer to proceed some­
what differently. 

The first-order wavefunction is obtained as 

once Go is known. The subcript on the bracket means 
integration is carried out over the variables labeled 1. 
Expanding HI ((}l) in the complete set <l>n.l, 

00 n 

Hl((}l) = Pl-l L L Hn)l)<I>n,l(al, 81), (66) 
11=0 1=0 

and employing the corresponding form for Go, Eq. (61), 
leads to the expanded form for 1/11, 

00 n 

1/Il((}) = L L1/In./l)(p)<I>n.l(a,8), (67) 
11=0 1=0 

where 

1/In)1)(p) = -Hn./(I) 100 

pNO(Pl)gn(Pl, p)dPl' (68) 
o 

In Appendix B it is shown that 

n=O=1 or n-l odd 

27T1/2 

-(n-+-1/-2-) (-n-+-3-/2-) [ -4(n+ 1) + (_1)n/221/2AJ, 1=0, n even 

( 
7T(n-l) !(n+1) )1/2 (n-I)/2 (-l)k(n-k)! 

= A2
n
+5/

2
r (Z+3/2) (21+1) (n+l+1)! E 22kk!r(n-2k+5/2)' 1>0, n-l even. ( 69) 

By using Eq. (27) to represent the product in (64) the 1/In.I(1) may be written as (R=!Zop) 

- 2H (1) 100 100 

'/;n.I(1) (R) = 4 ).1 2 1/Io(R) dRl dsR12[coth(s/2) J5 
(sZo Roo 

Xexp[ -~R(coshs-1) J exp[ -~Rl( coshs+ 1JI4n+4 (Rl/2Rll/2 sinhs), n>O. (70) 

Interchanging the order of integration and making the substitution t=Rl cosh2 (s/2) for Rl gives 

-2H 1(1).1'0(R) 100 tis exp[-R sinh2 (.1s) J 100 

.1, \1) - n. 'I' 2 dt t2 (_ t) I [2R1/2t1/2 ' h (.1 ) J 
'l'n.1 - (!ZO)R2 0 cosh(s/2)[sinh(~s)J5 0 exp 4n+4 sm 2

S 
, 

and using the fact that15 

<1>( a, b, x) = ~ ~ !~ X(l-b)/2 ~oo tit exp( - t) t1/2(2a-l-b) h-l (2Xl/2tl/2), 

(71) 

(72) 
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ELECTRON CORRELATION IN ATOMS 5807 

we obtain our final form for fn.P)[u= sinh2(s/2) J, 

-2H 1(1) (2n+4) I 1'" du 
fn.l(l) = n. . R2~0(R) -- U 2n- 1 exp( - Ru) cp(2n+5, 4n+5, Ru). 

(~Zo) (4n+4)! 0 1+u 
(73) 

The first-order correction to the wavefunction is easily shown to be nonanalytic in the variable p[ = (rI2+r22) 1/2]. 
In fact, up to order p2, the form of fo+fl implied by Eq. (73) is 

The logarithmic term appearing here is the direct 
analog of the one shown in Eq. (39) for the delta­
function atom. Furthermore, only singularities of the 
type pn logp, n2:: 2, appear in fl. It is probable, however, 
that weaker singularities at p=O with higher powers of 
the logarithm occur in the higher-order corrections to 
the wavefunction (f2, f3, etc.). Thus, the expansion 
of the wavefunction in the variable p for the two­
electron atom is very likely that predicted by Fock.4 

Since we do not discuss the convergence properties of 
our perturbation approach or investigate the higher­
order corrections to the wavefunction, we have no 
proof that the resulting form obtained for the wave­
function is correct. But since we are led to the same 
form for the wavefunction as that obtained by Fock by 
an analysis quite different from the present one, with 
different sources of weakness, we feel that this form is 
almost certainly correct. 

We have used the fn.P), Eq. (73), to calculate 
various components of the second-order energy. Since 

'" n 
E2= (fo, H1fl) = L L En ,I(2l, (75) 

n=O l=O 

where 

E p)= _n_,Z_ R4./ o(R)·'· z(I)(R)dR H (1)1'" 
n, (~Zo) 5 0 Of' Of'n. , 

we have 

-2(H z(I»)2(2n+4) I E (2)_ n, • 

n,Z - 5 hr3 ( 4n+4) ! 

(74) 

and performing the t integrationl6 leads to the result 

E (2)_ -2(Hn.l(I»)2[(2n+4) !J2 

n,Z - 5 hr3 ( 4n+4) ! 

x t ds S2n-I(1-s) 52F1(2n+5, 2n+5; 4n+5j s), (78) 
o 

where 2FI is the ordinary hypergeometric series 

r(C) L'" r(n+a)r(n+b) xn 
F (a b' C' x) = --'-'-

2 1 , " rea) reb) n=O r(n+c) n! • 

Finally, we obtain17 

-2(Hn .P»)2 
En,Z(2)= --'-----'-'--'-

'lI'3(2n+5) 2 

X3F2(6, 2n+5, 1j 2n+6, 2n+6j 1), (79) 

where 3F2 is a generalized hypergeometric series 

red) r(e) 
3F2(a,b,cjd,ejx)= r(a)r(b)r(c) 

;... r(n+a) r (n+b) r(n+c) xn 
X£.... ( • 

n=O r n+d)r(n+e) n! 

We evaluated the En.Z(2) to n=l= 10, and we present 
these results in Table 1. It must be pointed out that this 
computation is very easy, and it would be a simple 
matter to extend the second-order energy calculation 
to virtually any desired accuracy, but the present results 
are sufficient for our purposes. Performing the sum­
mation over nand l and adding the result to Eo, Eq. 
(17), we obtain 

1'" 1'" duR2n+4 10 n X dR _-u2n- I exp[ -R(u+l)J Eo+ L LEn)2)=-0.97623+0.64185:\-0.1605D.2. 
o 0 1+u n=O z=O 

XCP(2n+5, 4n+5, Ru). (76) (80) 

Changing variables to sand t defined as s = u/ (1 + u) , 
t=R(1+u) gives 

-2(H z(I»)2(2n+4) I E (2)_ n, • 

n,! - 5 !'lI'3( 4n+4) ! 

Xli dss2n- I(1-s)51'" dtt2n+4 exp(-t) 
o 0 

XCP(2n+5, 4n+5, st), (77) 

To this order in :\, the exact energy is18•19 

E(:\) = -1.0+0.625:\-0.15767:\2+0(:\3), (81) 

and (80) is seen to compare favorably with the exact 
result considering the crudeness of the zeroth-order 
model. 

V. THREE-ELECTRON ATOMS 

A three-electron generalization of the delta-function 
model considered in Sec. III would stem from the 
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TABLE 1. Components of the second-order energy in Z-reduced 
atomic units. 

o 
o 
o 
o 
o 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 
8 
8 
9 

10 

n 

2 
4 
6 
8 

10 
1 
3 
5 
7 
9 
2 
4 
6 
8 

10 
3 
5 
7 
9 
4 
6 
8 

10 
5 
7 
9 
6 
8 

10 
7 
9 
8 

10 
9 

10 

Hamiltonian: 

En ,I(2) 

Coefficient Coefficient 
ofAo of Al 

-0.046404 
-0.005460 
-0.001386 
-0.000502 
-0.000224 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

-0.010938 
+0.000772 
-0.000140 
+0.000039 
-0.000014 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

Coefficient 
of A2 

-0.000645 
-0.000027 
-0.000004 
-0.000001 
-0.000000 
-0.036312 
-0.000343 
-0.000028 
-0.000005 
-0.000001 
-0.005156 
-0.000156 
-0.000019 
-0.000004 
-0.000001 
-0.001373 
-0.000077 
-0.000012 
-0.000003 
-0.000499 
-0.000041 
-0.000008 
-0.000002 
-0.000219 
-0.000024 
-0.000005 
-0.000110 
-0.000014 
-0.000004 
-0.000060 
-0.000009 
-0.000036 
-0.000006 
-0.000022 
-0.000014 

H= - ! (~+ ~ + ~)-o(X) -o(y) -o(z) 
2 iJx2 iJy2 iJz2 

+A[O(X-Y) +o(x-z) +o(y-z)]' (82) 

When A2::0, this one-dimensional "lithium atom" may 
well fail to bind all three electrons, but for sufficiently 
negative A we tentatively assume that a bound state 
exists. It is therefore of some interest to see how our 
preceding considerations can be adapted to this rela­
tively simple quantum-mechanical four-body problem. 
We shall see that the results are instructive concerning 
the way that our hyperspherical technique can be 
applied to the sequence of real three-dimensional 
three-electron atoms and ions. 

The ground state should be a degenerate spin 
doublet, and one of them will fall within the spin space 

of the three spin functions: 

a(1)a(2)j3(3) , a(1)j3(2)a(3) , j3(1)a(2)a(3) . 

(83) 

In Appendix C it shown that any such doublet wave­
function for three-electron systems must have the 
following form: 

1f(123) = F(123) a(l) a(2)j3(3) + F(312) a( 1)13(2) a( 3) 

+F(231)j3(1)a(2)a(3), (84) 

where F is a function only of spatial coordinates, and 
must obey the conditions 

F(123) = -F(213) (85) 
and 

F(123)+F(312)+F(231) =0. (86) 

For the type of one-dimensional problem that H in 
Eq. (82) typifies, a convenient representation of the 
desired class of functions F(x, y, z) is easy to con­
struct. Note first that the points (x, y, z), (z, x, y), and 
(y, z, x) lie in a plane 

x+y+z= const (87) 

at the vertices of an equilateral triangle, whose centroid 
is pierced by the normal vector from the origin to 
plane (87) (see Fig. 1). This suggests the following 
coordinate rotation: 

U= (1/v3) (x+y+z) , 

v= -6-1/2(X+Y) + (V'J./v3)z, 

w= (1/V'J.) (x-y), (88) 

for which Fig. 1 displays unit vectors. Then after 
setting 

F(x, y, z) =5'(u, v, w), (89) 

we note that restraint (85) merely requires 5' to be an 
odd function of w. 

Next define 
r= (V2+W2)1/2, 

4>= arctan (w/v) ; (90) 

these are polar coordinates in the U= const plane, with 
4> measured counterclockwise from the v axis (see Fig. 
1). The oddness of 5' in w implies the relevance of a 
Fourier sine series: 

00 

5'( u, v, w) = L 5'n (u, r) sin (n4» , (91) 
n=l 

and then condition (86) requires 
00 

0= L 5'n(u, r) [sin(nej» +sin(n4>+imr) 
n=l 

00 

= L 5'n (u, r) [1 + 2 cosCin1l") ] sin(nej». (92) 
n=l 
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ELECTRON CORRELATION IN ATOMS 5809 

Since the sin(ncp) are orthogonal, their mUltipliers in 
this last expression must separately vanish. When 
integer n is a multiple of 3, 

1+2 cos(imr) =3, (93) 

so the 5'n must vanish. However, when n is not divisible 
by three, 

1+2 cos(imr) =0, (94) 

and so the corresponding 5'n need not vanish. Hence the 
general representation is 

co 

F(x, y, z) = L:'5'n(u, r) sin(ncp), (95) 

where the prime excludes n's divisible by three. 
Following the procedure established in Sees. III 

and IV, we write H in (82) as Ho+~Hl, where Ho in­
volves a spherical average of the six delta-function 
in teractions: 

Ho=- !(~ ~p2~ _ D(8,cf») _ Zo(>') , 
2 \P2 ap ap p2 p 

z 

v 

~-4~----~~-------Y 

X 

FIG. 1. Configuration space for the one-dimensional three­
electron atom. The points P, pi, and P" differ by cyclic permuta­
tion of coordinates, and they lie at vertices of an equilaterial 
triangle, equidistant from the threefold u axis. 

space (now of nine dimensions) at fixed radius: 

Zo(>') = ![1- (>./'V'2) J, (96) p= (XI2+YI2+ •• • +Z32) 1/2. (101) 

and where HI puts back the asphericity of the original 
interactions: 

HI = -o(x) -o(y) -o(z) +>.[o(x-y) +o(x-z) 

+o(y-z) J+Zo(>') / (x2+i+Z2)1/2. (97) 

The wavefunction 1/10 for the unperturbed Hamiltonian 
Ho must also conform to representation (95), of course. 
Ho is precisely the hydrogen atom Hamiltonian in 
suitable units, and it is significant to observe that 

Fo(x, y, z) ex: (sincf»r exp( -!Zor) = (1/V1) (2p,,-2PII), 

a 2p eigenfunction of Ho with energy 

Eo= -![Zo(>') J2, 

(98) 

(99) 

has form (95). Therefore the lowest-energy P state 
(rather than the lowest s state for two-electron atoms) 
serves as the unperturbed spatial eigenfunction in our 
hyperspherical coordinate method.20 The first-order 
wavefunction would then require the reduced Green's 
function for the hydrogen atom (modified to exclude 
the above 2p state), which could be constructed by 
Hostler's method of projection from the known full 
Green's function for hydrogen (see Ref. 21). 

The more realistic three-electron atom in three 
dimensions can in principle be handled by a straight­
forward extension of the strategy for the one-dimen­
sional model. Now the Hamiltonian is 

H = -!(v?+ \722+ \732) -rl-l-r2-I-r3-1 

+"-(rI2-I+rI3-I+r23-1). (100) 

As in the preceding cases we propose averaging the 
potential function over angles in the full configuration 

The resulting central-force Hamiltonian is then found 
to be 

Ho= _ ! (~i p8 ~ _ A9
2
) _ Zo(>') 

2 pS ap ap p2 p' 

Zo(>') = (105/16) (1-2-1/2>'), (102) 

which defines the unperturbed problem. By analogy 
with the one-dimensional three-electron problem, one 
anticipates that one of the nine lowest-lying p states 
for Ho provides the correct unperturbed spatial func­
tion Fo(rl' r2, r3), and in order to satisfy conditions 
(85) and (86) the nodal hyperplane for this p function 
must be 

0=XI-X2+Yl-Y2+Z1-Z2. (103) 

This starting point then in principle permits one to 
analyze correlation in the lithium isoelectronic se­
quence by the same type of Green's function technique 
that we have carried out in detail for the helium iso­
electronic sequence.20 

VI. DISCUSSION 

One of the most significant features of the analysis 
presented here is the natural occurrence of certain 
logarithmic terms predicted by Fock.4 It would seem 
to us that these weakly singular terms, which represent 
a true three-body effect, would occur quite generally in 
many electron systems22 (atoms and molecules). Thus 
whenever two electrons with opposing spins are in the 
vicinity of the same nucleus, we would expect the wave­
function to have the same general type of logarithmic 
structure. 

It is clear that the inclusion of these logarithmic 
terms greatly improves the convergence of accurate 
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variational calculations for the P.)23.24 and 23S 25 ,26 

states of helium. It would be interesting to see the 
effect that inclusion of these terms would have on the 
accurate variational calculations recently carried out 
for the hydrogen molecule.27 In particular, the ad­
dition of expressions of the form 

!1±~11']1±~21']2+~1~21']1'172+[(~12-1) (~2L 1) 

X (1-1']12) (1-1']22) JI/2 cos( CPI-CP2) ) 

X loge (~I±1']I) 2+ (~2±1']2) 2J 

in elliptic coordinates [~i= (rai+rbi)/ R, 1']i= (rai-rbi)/ R, 
CPi= rotation about Zi axisJ should be considered since 
these are the direct transcription of the helium-atom 
con tribu tions. 

Although perturbation-variation calculations of high 
order have been carried out for the ground state of the 
two-electron atom,t8.19 these calculations have not in­
cluded the weakly singular terms mentioned here. It 
would be valuable to ascertain the effect of the in­
clusion of these terms on the systematic error intro­
duced by using a finite basis set in this type of calcula­
tion. 

The success of the technique developed in this paper 
is due to the fact that the zeroth-order problem, a 
"hydrogen" atom in 3N dimensions (N = number of 
electrons), is separable in hyperspherical coordinates, 
thereby permitting a simple construction of the relevant 
reduced Green's function. A superior zeroth-order 
model for atoms would be one with noninteracting 
electrons (appropriate for Z-I perturbation theory28). 
However, efforts to construct the required Green's 
function for this latter model have thus far had only 
formal success,29 and we feel that the model presented 
here introduces mathematical simplicity (at the ex­
pense of some physical insight). 

The extension of the perturbation technique pre­
sented here to higher order, and to larger numbers of 
electrons is certainly feasible, although difficult. In 
fact, the extension to the three-electron atom (outlined 
in Sec. V) may be very interesting since singular four­
body effects, which would not necessarily be just a sum 
of three-body effects, may appear as all electrons are 
brought into the nucleus. 

APPENDIX A 

We outline here the conventional perturbation 
theory of the ground state of the delta-function atom, 
for which the unperturbed state excludes interaction 
between the two electrons. It is convenient to rewrite 
the Hamiltonian (6) thus: 

are even and odd components of the electron inter­
action (ultimately 4=L=A). Since sign reversal of 
L is merely equivalent to a rotation by angle 71"/2 in 
the x, y plane, the ground-state energy f(4, L) must 
be an even function of its second variable. 

The cusp conditions that must be satisfied by a con­
tinuous wavefunction 1/t(x, y) along the singular lines 
of the potential energy (x=O, y=O, x=y, x=-y) 
are readily obtainable from (Al), 

!! [a1/t(o+, y) /axJ- [a1/t(O-, y) /axJ) = -1/t(0, y), 

!! [a1/t(x, 0+) /ayJ- [a1/t(x, 0-) /ayJ) = -1/t(x, 0), 

!! [a1/t(x, x+) /ayJ- [a1/t(x, x-) /ayJ) 

= -t(4 +L)1/t(x, x), 

!! [a1/t( -x, x+) /ayJ- [a1/t( -x, x- ) /ay]) 

=-t(4-L)1/t(-x,x). (A3) 

One can easily verify that the function 

1/t(x, y) =exp[ -I x I -I y l+i4(1 x-y 1+1 x+y I)J 

(A4) 

exactly satisfies Eqs. (AI) and (A3) for all A+ when 
L= 0. The corresponding energy is 

f(4,0)=-1+!4-tA+2. (AS) 

The complete double series for f consequently starts 
out as follows: 

f(4, L) = -1 +!4 -t42+f02L2+ f124L2 

+f2242L2+f04L4+f3243L2+f144L4+.... (A6) 

Succeeding terms would contain at least six A'S with an 
even number of L's equal to or exceeding 2. The 
first-order wavefunction induced by the V + perturba­
tion is obvious from (A4) : 

1/t+(I) (x, y) =t(1 x-y 1+1 x+y [) exp( -I x I-I y [); 

(A7) 

the corresponding first-order 1/t-(I) induced by V_must 
be calculated by the perturbation formalism. We will 
use the familiar technique of expansion in unperturbed 
eigenfunctions.lO 

The single-particle states in the unperturbed problem 
are of three types. There is a single bound state (with 
energy -!) 

CPb(X) = exp( -I x [), (A8) 

and the unbound states are either odd in x, 

CPs (x) = (2/ L)1/2 sin(kx) , (A9) 

H=-![(a2/iix2)+Cii2/ay2)J-O(X)-O(Y) and vanish at the nucleus, or even in x and suffer a 

where 
+4V++A- V_, (AI) phase shift there, 

V+(x, y) =![o(x-y)+o(x+y)J, 

V_ex, y) =![o(x-y) -o(x+y)] 

CPc(x) = (2/ L)1/2 cost k[1 x I +.:l(k) ]1. (AlO) 

(A2) Here L is an arbitrarily large quantization interval 
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symmetrically chosen along the x axis with respect to 
the nucleus. The energies of continuum states CPs and 
CPc are jk2, and the requisite cusp condition at x=o 
requires the phase shift f:.(k) to satisfy the condition 

tan[M(k) J=k-1. (All) 

The first-order contribution to the wavefunction 
resulting from V _ h'ls the following structure: 

1/1_(1)=_ L [(nl V_I O)/(En+1)J1/In(0), (Al2) 
n>O 

where running index n covers excited states 1/In 0) of the 
unperturbed two-electron atom with energies En. In 
detail these excited states are 

%.(0)=L-112[exp( -I x I) sin(ky) 

+sin(kx) exp( - 1 y I) J, 

1/Ibc(0)=L-112[exp( -I x D cos(k 1 y I+M) 

+cos(k 1 x I+M) exp( -I y I) J, 

1/188(0) = 2112L-I[sin(k1x) sin (k2y) +sin(k2x) sin (klY) J, 

1/Icc(0) = 2112L-I[cos(kl1 x l+k1f:.1) COS(k21 y l+k2f:.2) 

+COS(k21 x l+k2f:.2) COS(kll y l+k1f:.1) J, 

1/I8C(0) = 2112L-I[sin(k1x) COS(k21 y 1 +k2f:.2) 

+COS(k21 x l+k2f:.2) sin (k1y) ]. (Al3) 

Only the third of these, 1/18/°), will give nonvanishing 
matrix elements of V _ with the unperturbed ground 
state: 

and one readily computes these matrix elements to be 

(1/18.(0) 1 V-I 1/Ibb(0»= 4(2112) 
L 

X {[4+ (kl-k2)2jL[4+ (kl+k2)2jl}. (AlS) 

In the L-H~ limit, the excited state sum in expression 
(Al2) passes into a double integral over the momenta 
kl and k2• Upon utilizing (AlS) for the matrix elements, 
this integral is found to be 

= :2 L:~ dk1 L:~ dk2{[4+(k1-k2)2jl 

-[4+ (kl+k2)2jl} exp[i (k1x+ k2y) J 
4+ (k1-k2)2+ (k1+k2)2 

(Al6) 

Then we find that 

1/1_\1) (x, y) =F(x-y, x+y) -F(x+y, x-y), (Al8) 
where 

1 1+~ 1+~ exp[i(su+tv) J 
F(s,t)= 471'2 -<Xl du _~ dv (l+u2) (l+U2+V2) • 

(Al9) 

The v integral in this last expression may be carried out 
by the calculus of residues to give 

F(s, t) = (471')-1 L:~ du(l+U2)-312 

Xexp[i 1 s 1 u-I t 1 (1+U2)112]' (A20) 

Consequently, 

1/1_(1) (x, y) = (471')-1 L:~ du(l+U2)-312 

X {exp[i 1 x- y I u-I x+y 1(1 +u2)112J 

-exp[i I x+y 1 u-I x-y I (1+U2)112J}; (A2l) 

this result in combination with 1/1+(1) in (A7) constitutes 
the required first-order wavefunction which appears in 
Eq. (7) of the main text in slightly modified form. 

If p= (x2+y2)112 is very small (so that both x and 
yare of comparably small magnitude), the arguments 
shown in Eq. (A2l) for the two exponential functions 
will remain very small until I u I equals or exceeds 
p-l (roughly). By rewriting Eq. (A2l) thus: 

1/1_(1) (x, y) =i[[ x-y I-I x+y IJ+(471')-1 

X L:~ du(l+u2)-312{[exp(i I x-y I u-I x+y I 

X (1+u2) 112) -i I x-y I u+1 x+y I (1+u2)112J 

-[exp(i I x+y I u-I x-y I (1+u2)112) 

-i I x+y I u+1 x-y I (1+u2)112J}, (A22) 

we facilitate extraction of the small-p character of 
1/1_(1). When I u I <p-t, it suffices to expand the ex­
ponentials in (A22) through second order, to reckon the 
integrand to be 

2xy( 1 + 2u2 ) / (1 +u2) 312 (I u I ;Sp-l), (A23) 

but when I u I exceeds p-I, the integrand is essentially 

u-2(1 x+y I-I x-y I)(l-i sgnu) (I u I ~p-I). 
(A24) 

The first of these differs insignificantly from 

4xy/1 u I 
over virtually the entire large range _p-I~U~p-t, 
and thus contributes 

Introduce the following change of variables: (2xy/7I') In(p-I) = - (xy/7I') In(x2+y2) (A2S) 

(Al7) to 1/1_(1). The remaining contributions from I u I ~p-I, 
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for which estimate (A24) is appropriate, are O(p2) 
and are hence dominated at small p by the p2 lnp type 
of term exhibited in (A25). In the same vein, note that 
only O(p2) terms would reflect variation in choice of 
transition points [chosen to be ±p-l in passing from 
form (A23) to (A24) J to the extent of multiplication 
by order-unity factors (i.e., ±Cp-l). 

APPENDIX B 

For two-electron atoms, the hyperspherical averaging 
procedure leads to the consideration of [see Eqs. (51)­
(53)J 

HI=(Zo/p)-rI-1- r2-I+(A!rI2) (Bl) 

as a perturbation. We wish to expand this function in 
the complete set of angular functions <l>n,/(a, 0) [de­
fined by Eq. (46)]. The homogeneity of HI in p permits 
it to be written as 

'" n 
HI = p-l L L Hn,/(I)<I>n,/(a, 0). (B2) 

n=O 1=0 

The Hn,/(I) are thus obtained as 

Hn,/(l) =71'2 f" da 1" dOsin2a sinO<l>n, 1 (a, 0) 
o 0 

X[Zo-sec!a-csc!a+X/(I-sina cosO) 1/2]. (B3) 

The definition of Zo, Eq. (52), makes HO,O(I) vanish. 
The parity of the <l>n,1 with respect to interchange of 
the electrons 1 and 2 (a~tr-a) requires Hn,/(l) to 
vanish when n-l is odd. Using the well-known ex­
pansion 

'" (l-sina COSO)-1/2 = L PI (cosO) 

x jSeC(a/2) (tan(a/2»I, 

csc(a/2) (cot( a/2» I, 

and the fact that30 

1=0 

Cn (l) (cosa) = [sin(n+l)a/sinaJ, 

we obtain the 1= 0, n even result, 

Hn,O(I) = [271'1/2/ (n+!) (n+!) J 
X[ -4(n+1) + (-1)n/221/2XJ. 

(B4) 

(BS) 

(B6) 

The 1>0, n-l even result is obtained by utilizing the 
expansion31 

Cn- {I+l) (cosa) 

__ (n~/2 (-I)k(n-k) !(2 cosa)n-I-2k 
£.." (B7) 
k=O 1!k!(n-1-2k)! 

One finally obtains 

H 1(1) = X2nH/2r (I+;!) . ( 
7r(n-l) '(n+1) )1/2 

n, 2 (21+ l) (n+1+ 1 1 ! 

(n-I)/2 (-l)k(n-kl! 

X E 22kk!r(n-2k+!) ' 
1>0, n-l even. (BS) 

APPENDIX C 

Although the general structure of the lithium atom 
atom ground-state wavefunctions must surely be well 
known,32 a simple and cogent statement of that structure 
seems not to be available in standard references. 
Therefore we offer here an elementary derivation that 
is useful in connection with Sec. V above. 

As usual, let a(i) and (3(i) be spin functions for 
electron i with z components +! and -!, respectively. 
Quartet wavefunctions for lithium, with all spins 
parallel, involve only symmetric combinations of spin 
functions for the three electrons. One such quartet 
function would be 

1ft(123) =f(rI, r2, r3)a(1)a(2)a(3), (C1) 

and the over-all antisymmetry of 1ft requires that the 
spatial functionf change sign if any two of its argument 
vectors rI, r2, ra are interchanged. 

The lithium ground-state wavefunction is not a 
quartet however, but a doublet function. If we restrict 
attention to total spin z component equal to +!, 
we need be concerned only within spin functions 
a(1)a(2){3(1), a(1){3(2)a(3), and (3(1)a(2)a(3), so 
that the wavefunction may be expanded in terms of 
them thus: 

1ft(123) =F(rI, r2, ra)a(1)a(2){3(3) 

+F2(rI, r2, ra)a(1){3(2)a(3) 

+FS(rI, r2, ra){3(1)a(2)a(3). (C2) 

We must see now what restraints apply to the spatial 
functions F, F2, and Fa so than 1ft in (C2) obeys the 
Pauli principle. 

Antisymmetry with respect to interchange of space 
and spin variables of electrons 1 and 2 requires the 
following: 

1ft(123) = -1ft(213) 

= -F(213)a(1)a(2){3(3) 

-F2(213){3(1)a(2)a(3) -Fa(213)a(1){3(2)a(3). (C3) 

Since the three spin functions are orthogonal, their 
separate coefficients in (C2) and (C3) must be equal: 

F(123) = -F(213), 

F2(123) = -F3(213), 

Fa( 123) = -F2(213). (C4) 

The first of these conditions specifies spatial antisym­
me try for F ( 123) with respect to its first two variables; 
the latter two are equivalent to one another and permit 
elimination of Fa from 1/;: 

1ft(123) =F(123)a(1)a(2){3(3) 

+ F2 ( 123) a( 1){3(2) a(3) 

-F2(213){3(1)a(2)a(3). (C5) 
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Next apply the (1,3) antisymmetry condition on if; 
to expression (C5) : 

if;(123) = -if;(321) 

= -F(321),8(1)a(2)a(3) 

- F2( 321)a(1),8(2) a(3) 

+F2(231)a(1)a(2),8(3). (C6) 

Comparison of this last result with (CS) leads to three 
conditions again: 

F(123) =F2(231), 

F2(123) = -F2(321), 

F2(213) =F(321). (C7) 

The first and third of these are equivalent, and may be 
used to eliminate F2 from if;: 

if;(123) =F(123)a(1)a(2),8(3) 

+ F( 312) a( 1),8(2) a(3) 

+F(231),8(1)a(2)a(3). (C8) 

The second of Eqs. (C7), when expressed in terms of F, 
simply reaffirms the first of Eqs. (C4) demanding 
oddness under exchange of this latter function's first 
two variables. 

The same procedure may be followed with respect 
to if; antisymmetry under 2, 3 interchange. However no 
new conditions on F arise. 

The functional representation (C8) is necessary but 
not sufficient. The three spin functions aa{3, a{3a, and 
{3aa each contain both quartet (.)2= 15/4) and doublet 
(S2= i) components. They may in fact be linearly 
combined to produce a pure quartet function, 

q= (1/v'J) [a( 1) a(2) (3(3) +a( 1){3(2) a(3) 

+(3(1)a(2)a(3)], (C9) 
and two doublet functions, 

d1 = 6-1/2[2a( 1) a(2) (3( 3) -a( 1){3(2) a(3) 

-(3(1)a(2)a(3) ], 

d2= (l/Y1) [a(1){3(2)a(3) -(3(1)a(2)a(3)]. (C10) 

By inverting (C9) and (ClO) we find 

a(1)a(2){3(3) = (l/v'J)q+(v'2/v'J)d1, 

a(1){3(2)a(3) = (1/v'J)q-6-1/2d1+(l/v'2)d2, 

(3(1)a(2)a(3) = (1/v'J)q-6-1/%- (1/v'2)d2 • (Cll) 

This permits if; in Eq. (C8) to be rewritten in terms of 
q, d1, and d2 components: 

if;(123) = (1/v'J) [F(l23) +F(312) +F(231) Jq 

+6-1/2[2F(123) -F(312) -F(231) Jd1 

+ (l/v'2) [F(312) - F(231) ]d2• (C12) 

At first sight it might seem that three distinct states 
are possible, by putting extra conditions on F to make 
any pair of the square-bracketed quantities in (C12) 
vanish. In fact only two such independent states can 
be so constructed. If we demand that the d2 com­
ponent of (Cl2) vanish: 

F(312) =F(23l), (C13) 

the implied invariance of F to cyclic permutation of its 
arguments automatically makes the d1 component 
vanish as well, so a pure quartet state results. Similarly, 
the requirement that the d1 component be zero makes 
the d2 component zero [condition (C13) is again ob­
tained], and the same quartet state results. This 
quartet state is essentially the same one shown in 
Eq. (C1) except for rotation applied to the spins. 

Quartet character is eliminated from if; by requiring 

F(123)+F(312)+F(231) =0, (C14) 

and neither doublet component may subsequently be 
annihilated without having if; degenerate identically to 
zero. The resulting single doublet function therefore is 

if; ( 123) = F( 123)a( 1) a(2){3( 3) + F(312) a( 1){3(2) a(3) 

+F(231){3(1)a(2)a(3). (C1S) 

This is the required canonical form, and the accessory 
conditions that must be imposed on F [the first of 
Eqs. (C4), and (C14)] appear in Eqs. (8S) and (86) 
of the main text. 

Since the Hamiltonian operators for the class of 
problems considered in this paper are spin independent, 
the function F must be an eigenfunction of H with the 
same eigenenergy E as the complete wavefunction if; 
itself : 

HF=EF. (C16) 

Of course F is also subject to the conventional and 
universal conditions of boundedness and square integr­
ability. 

1 E. U. Condon and G. H. Shortley, The Theory of Atomic 
Spectra (Cambridge U.P., London, 1964). 

2 A short review of current approaches is given by E. U. Condon, 
Rev. Mod. Phys. 40, 872 (1968). 

3 S. P. Alliluev, Zh. Eksp. Teor. Fiz. 33, 200 (1957) [Sov. 
Phys. JETP 6, 156 (1958)]. For N = 2, the unperturbed problem 
in our hyperspherical coordinate method has been exhibited in 
W. Zickendraht, Ann. Phys. 35, 18 (1965). 

• V. A. Fock, Izv. Akad. Nauk. Arm. SSSR, Ser. Fiz. Mat. 18, 
161 (1954). An English translation is available in V. A. Fock, 
Kgl. Norske Videnskab. Selskab. Forh. 31, 138 (1958). 

6 F. T. Smith, Phys. Rev. 120, 1058 (1960). 
6 A. P. Stone, Proc. Cambridge Phil. Soc. 57, 469 (1961). 
7 J. H. Macek, Phys. Rev. 160,170 (1967). 
8 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 

(McGraw-Hill, New York, 1953), p. 1730. 
9 Reference 8, p. 1709. 
10 A review of Rayleigh-Schrodinger perturbation theory is 

given by J. O. Hirschfelder, W. B. Brown, and S. T. Epstein, 
Advan. Quantum Chern. 1, 256 (1964). 

11 The perturbation analysis has been performed by W. B. 
Brown and will be published shortly. 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to

IP:  128.112.66.66 On: Wed, 01 Jan 2014 04:19:45



5814 R. J. WHITE AND F. H. STILLINGER, JR. 

12 The pertinent information on confluent hypergeometric 
functions is contained in M. Abramowitz and 1. Stegun (Eds.), 
Natl. Bur. Std. (U.S.), App!. Math. Ser. 55,505 (1964). In this 
reference if> is denoted by M and'l' is denoted by U. 

13L. Hostler, J. Math. Phys. 5, 591 (1964), Eq. (1.7), and 
references contained therein. 

14 Reference 12, p. 376. 
16 L. J. Slater, Confluent Hypergeometric Functions (Cambridge 

U. P., London, 1960), p. 44. Note that if>(a, b, x) =IFI(a, h; x). 
16 Reference 15, p. 43. 
17 L. J. Slater, Generalized Hypergeometric Functions (Cambridge 

U. P., London, 1966), pp. 52, 108. 
18 C. W. Scherr and R. E. Knight, Rev. Mod. Phys. 35, 436 

(1963) . 
19 J. Midtdal, Phys. Rev. 138, AlOlO (1965). 
20 Unlike the two-electron cases previously considered, a first­

order energy EI = (1/10 I HI I 1/10 )~O arises here. 
21L. C. Hostler, Phys. Rev. 178, 126 (1969). 

THE JOURNAL OF CHEMICAL PHYSICS 

22 Y. N. Demkov and A. M. Ermolaev, Zh. Eksp. Teor. Fiz. 
36, 896 (1959) [Sov. Phys. JETP 9, 633 (1959)]. 

23 A. M. Ermolaev and G. B. Sochilin, Dok!. Akad. Nauk SSSR 
155, 1050 (1964) [Sov. Phys. Dokl. 9, 292 (1964)]. 

24 K. Frankowski and C. L. Pekeris, Phys. Rev. 146, 46 (1966). 
25 A. M. Ermolaev and G. B. Sochilin, Intern. J. Quantum 

Chern. 2, 333 (1968). 
26 G. B. Sochilin, Intern. J. Quantum Chern. 3, 297 (1969). 
27 W. Kolos and L. Wolniewicz, J. Chern. Phys. 43, 2429 

(1965). 
28 D. Layzer, Z. Horak, M. Lewis, and D. Thompson, Ann. 

Phys. (N.Y.) 29, 101 (1964). 
29H. F. Hameka, J. Chern. Phys. 51,1148 (1969). 
30 Reference 12, pp. 776, 779. 
31 Reference 12, p. 775. 
32 V. A. Fock, Zh. Eksp. Teor. Fiz. 10, 961 (1940) (Bell Labora­

tories Translation TR 70-17); E. Lieb and D. Mattis, Phys. Rev. 
125, 164 (1962). 

VOLUME 52, NUMBER 11 1 JUNE 1970 

Chlorine NMR in CsCoCl3 and CsMnCl3 and ESR in CsMg(Co)C13* 

H. RINNEBERG t AND H. HARTMANN 

Institut fur physikalische Chemie der Universitat, Frankfurt am Main, Germany 

(Received 21 November 1969) 

Analysis of the 3liCI NMR in single crystals of CsMgCIs, CsMnCh at 3000 K and of CsCoCIs at different 
temperatures yielded the chlorine quadrupole coupling and for the latter two compounds the paramagnetic 
shift tensors. We found at 300oK: for CsMgCIs, vQ=4.465 Mc/sec, '1=0.235; for CsMnCb, vQ=5.2645 
Mc/sec, '1=0.2683 (bent bridge), vQ=9.1835 Mc/sec, '1=0.0234 (linear bridge); for CsCoCIs, vQ=6.87925 
Mc/sec, '1=0.4293. From the ESR spectrum of CsMg(Co)Cb, the g and hyperfine tensors were determined 
(gll=7.37, g.L=2.51, AII(CO) =339X10-4 em-I, A.L(Co) =21XlO-4 em-I). Using these data and Dq=660 
em-I, Ep= 12 000 cm-I inferred from the optical spectrum, the spin expectation values (SII) and (S.L) 
were calculated for CsCoCb. The following superhyperfine constants parallel (A II) and perpendicular 
(A.L) to the Me-Cl bond are computed from the measured paramagnetic shifts: AII=1.59, A.L=1.40 
(CsMnCb, Ch, linear bridge), AII=1.68, A.L=1.70 (CsMnCIs, Cln, bent bridge), AII=4.74, A.L=1.65 
(CsCoCIs), all in units 10-' em-I. No transition to the ordered magnetic state has been observed for CsMnCb 
for temperatures down to 20oK, contrary to ESR data in the literature. 

INTRODUCTION 

Previous analysis of the 35Cl NMR in CsCuCla and 
CsNiCla 1 yielded the quadrupole and superhyperfine 
(SHF) coupling constants showing a decrease in 
covalency when going from the copper to the nickel 
complex. Here we report the transferred hyperfine 
interaction in CsCoCla and CsMnCla together with the 
35Cl NMR in the isomorphous CsMgCla. In the latter 
compound no chemical shift could be observed within 
the experimental accuracy. Finally we include a note 
on the optical and ESR spectrum of CsCoCh and 
CsMg( Co) Ch, respectively, which have been recorded 
to obtain information about the splitting of the Co2+ 
ground state needed to discuss the NMR data. 

EXPERIMENTAL 

Single Crystals and Apparatus 

All single crystals have been grown in quartz am­
poules by vertical Bridgman technique using CsMnCh 
(dehydration of CsMnCh' 2H20 at 150° C in a dry 
stream of HCl) CsMgCla (obtained according to the 

method of Richards and Parker2 starting from an 
equimolar mixture of CsCI and MgCb·NH4Cl·6H20) 
and a stoichiometric mixture of CsCI and anhydrous 
CoCb (dehydration of CoCb·6H20 at 400°C in dry 
HCI) as starting materials. 

All NMR spectra were observed with a Varian 
V 4200B wide-line spectrometer operating between 2 
and 16 Mc/sec. The magnetic field strength was 
measured using a proton magnetometer. Sample tem­
peratures between 84 and 3000 K were obtained by 
cooling with dry nitrogen gas. 

In order to reduce the effect of demagnetizing fields 
the samples were ground to cylindrical or ellipsoidal 
shape, taking care to optimize the filling factor. Their 
orientation in the magnetic field was achieved using a 
two-circle goniometer,S and for rotation patterns a one­
circle goniometerl of high accuracy. 

The EPR spectra were recorded with a Varian 
V 4502 spectrometer operated at 9.2 kMc/sec. The 
sample temperature (25°K) was obtained by evaporat­
ing liquid hydrogen in a specially designed Dewar 
described elsewhere.4 All temperatures were measured 
using copper-constantan thermocouples. 
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