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A variational principle is proposed to determine an optimal “effective pair potential” v in liquids whose mole- 
cules actually experience nonadditive interactions. “ A formal perturbation method is outlined which in prin- 
ciple determines v iteratively. On account of the temperature and density dependence of u, and because this 
function contains a weak “tail” of macroscopic range, the usual statistical-mechanical ekpressions for energy, 
pressure, and isothermal compressibility suffer fundamental changes. The theory is applied to water, and 
tentative conclusions are offered about the way that the bare two-molecule potential differs from the liquid 
phase u for this substance. 

I. Introduction 
It is conventional to use pairwise-additive potentials 

in developing the formal theory of the liquid state.’ 
This tactic apparently preserves most qualitative fea- 
tures of the observed properties of real liquids. It is 
also justified by the remarkable simplicity of expressions 
for thermodynamic energy and pressure that result 
from the pair potential assumption. Nowadays, elec- 
tronic computer simulation of l i q ~ i d s ~ ~ ~  has become 
routine, and in that context pairwise-additive potentials 
again prove convenient. 

Unfortunately, there is evidence that the painvise- 
additivity assumption commits significant quantitative 
errors even for nonpolar  substance^.^ Surely the situa- 
tion is even worse for polar materials and ionic fluids in 
which large fluctuating electric fields exist. It is there- 
fore clear in the strict sense that precise statistical- 
mechanical theory of real liquids requires inclusion of 
many-body forces. 

We shall demonstrate nevertheless that a rational 
procedure exists for selection of a “best” approximate 
pair potential which incorporates the average effects of 
nonadditive potentials. This “effective pair potential” 
satisfies a variational principle that has been selected by 
the requirement that the sum of effective pair interac- 
tions preserves all local order as well as possible. Our 

effective pair potential therefore differs in a fundamental 
way from the one advocated by Sinanokl~,~-’ which 
was designed previously to reproduce the thermo- 
dynamic energy. 

The next section, 11, introduces the fundamental 
variational principle, and displays a few general results 
that may be derived therefrom. Section I11 provides 
details of a formal perturbative method of constructing 
the effective pair potential. The modifications of 
standard statistical-mechanical formulas for energy, 
pressure, and compressibility that result from tem- 
perature and density dependence of the effective pair 
potential are listed in section IV. 

On account of its fundamental importance in the 
physical and biological sciences, water has been selected 
here to illustrate the application of the effective poten- 
tial concept. Section V is devoted to this one liquid, 
and conclusions are offered there about the way that the 

(1) S. A. Rice and P. Gray, “The Statistical Mechanics of Simple 
Liquids,” Interscience, New York, N. Y., 1965. 
(2) W. W. Wood, J. Chem. Phys., 48, 416 (1968). 
(3) B. J. Alder and T. E. Wainwright, ibid., 33 ,  1439 (1960). 
(4) N. R. Kestner and 0. Sinanozlu, ibid., 38, 1730 (1963). 
(5) 0. Sinanozlu, Chem. Phys. Lett., 1, 340 (1967). 
(6) 0. Sinanoau, Advan. Chem. Phys., 12, 283 (1967). 
(7) T. Halcioilu and 0. Sinanozlu, J. Chem. Phys., 49, 996 (1968). 
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effective interaction differs at both large and small 
distances from the “bare” pair potential for two mole- 
cules in vacuo. 

The final discussion in section VI outlines other 
important substances to which the present concepts 
could fruitfully be applied. Also we mention there 
possible conditions under which the effective pair po- 
tential method would have substantial shortcomings. 

11. General Relations 

Although the quantum-mechanical generalization is 
straightforward, we shall use classical statistics through- 
out the following analysis. 

For any liquid of interest, we suppose that N mole- 
cules are confined to the interior of a large, but finite, 
vessel with volume 9). The configuration of each mole- 
cule will be described by a vector x whose components 
comprise coordinates of the molecular center, and a set 
of angles to fix the molecular orientation. The free 
energy F for the liquid may in principle be obtained 
from the canonical partition function 

p = l/kT; Q = fdx (2.1) 

Here, Qint  is essentially the rotational-vibrational parti- 
tion function for an isolated molecule, and ZN is the 
N-molecule configuration integral. 

We shall let VN(x1 .  . . x,) stand for the total potential 
of interaction among the N molecules in the specified 
configuration xl. . .xN, The classical configuration in- 
tegral Z N  appearing in eq 2.1 hence may be written 

Z N ( p )  = fdx . .  .J’dXy exp[--pV,(xl.. .xN)] (2.2) 

Although we do not explicitly indicate them, the inte- 
gration limits on the xI are all finite, and depend upon 
the volume 9) for molecular center positions, and upon 
the specific choice of orientation angles. It is con- 
venient to introduce now an inner product of two func- 
tions, f(x1. . .x,) and h(x1. . . x N ) ,  as the integral of 
their product with the same finite limits as used in 
eq 2.2. 

{ f , h ]  = Jdxi.. .JdXNf(XI.. .XN)h(X1.. .XN) (2.3) 

In  concordance with this definition, we can express Z N  

as the inner product of a function with itself 

~ N ( P )  = { exp(-- ‘ / 2 P V N ) ,  exp(-- l / z ~ v N )  1 (2.4) 

The generic functions and their inner product in 
eq 2.3 are quite analogous to ordinary vectors and the 
scalar product for pairs of such vectors. Indeed it is 
valid to regard functions f and h as infinite-dimensional 
vectors whose scalar product is given in eq 2.3. By 
the same token, eq 2.4 exhibits 2, as the square of an 
infinite-dimensional vector. The square of the dis- 

tance between two vectors (functions) f and h may 
also be expressed as an inner product 

D2(f,h) = {f - h, f - h )  = 

J’dxi. . . fdXN[f(Xi. . . X N )  - h ( X i .  . XN) l 2  (2.5) 
in complete analogy with ordinary vectors. 

Our central problem in this paper consists in finding 
an optimal effective pair interaction v(xi,x,) to represent 
the liquid which is actually subject to the very com- 
plicated nonadditive potential V,. In  the convention 
of eq 2.4, we seek to approximate 2, by an inner 
product of the form 

The effective pair potential v clearly should be chosen 
to minimize the distance between the function-space 
vectors appearing in eq 2.4 and 2.6 

D2{exp[-1/’2PVNI) 

exp [ - ‘/zpC v ( i j )  I] = minimum 

or 

min = s d x l . .  .JdxN{exp[ -:VN(l. .  .N) - 1 
This constitutes the basic variational principle of our 
effective potential theory. 

If it were to happen that 
N 

i < j = 1  
‘vN(x1. . . x N )  = VZ(x{,xJ) (2.9) 

in other words that the exact N-molecule potential were 
a pairwise mm of exact 2-molecule potentials, then 
certainly the variational principle (2.8) would force v to 
equal Vz identically, and the distanceD would be reduced 
to zero. However under the more realistic circum- 
tance that V, contains three-body, four-body, . . . 
contributions, the minimum attainable D in eq 2.7 
presumably is still greater than zero. We must bear in 
mind that the effective pair potential v which produces 
that minimuin D can be both temperature and density 
dependent. 

The functional equation which determines v may be 
obtained by setting equal to zero the first functional 
derivative of the right member of (2.8) with respect to 
ZJ(X~,X,).  One finds 

Jdx3.. .JdxN exp{ - ‘ /zP[VN 4- v ( i j ) l ]  = 

Jdx3.. .jdXN exp{ -PcV(’@)] (2.10) 

which must be obeyed for all x1,x2. We will suppose 
for convenience that periodic boundary conditions 
apply to 9); since V N  then possesses full translation in- 

The Journal of Physical Chemistry, Vol. 74,  No.  81, 1970 



SYMPOSIUM ON STRUCTURES OF WATER AND AQUEOUS SOLUTIONS 3679 

variance, so too will v. If ‘u is macroscopically large 
and the system is in a fluid phase exclusively, then v 
will also possess the rotational invariance expected of a 
pair of rigid bodies in space. 

In  view of the multidimensional integrals it contains, 
nonlinear integral eq 2.10 is not trivial to solve for v 
(though we outline an iterative method in the next 
section). Nevertheless, some general characteristics 
of v may be deduced directly from eq 2.10. If both 
sides of that equation are integrated with respect to x1 
and xz, one finds 

Z N {  Cv(ij,) = Z N {  ‘ / Z V N  + ‘/zCv(ij)} (2.11) 

in other words the configuration integrals are equal for 
two hypothetical assemblies of N molecules, the first of 
which interacts with the additive effective potential, 
and the second of which interacts with the average of 
V ,  and the additive effective potential. Of course 
neither of the two Z N  in eq 2.11 necessarily equals the 
liquid’s correct configuration integral, ZN{ V N )  , but 
still we can use the Schwartz inequality8 to establish 

Z N {  V N )  Z N {  c u ( G )  1 2 
Z N q  ‘ / Z V N  + l/zCv(ij)) (2.12) 

By referring to eq 2.11, we conclude that 

zN{ V N }  2 z N {  cv(ij)} (2.13) 

In  view of eq 2.1 therefore, it is clear that replacement 
of an actual V N  by its optimal effective pairwise 
potential approximation never lowers the free energy 

F(  V N )  5 F {  cwj (2.14) 

A somewhat more general result follows from 
Holder’s inequality,8 namely 

ZN1”{ l/ZpVN}ZN1’q( ’/Zyz v ( i j ) )  2 
z N (  ‘/ZVN + ‘/Z 

P,Y > 1 ;  ( V P )  + (l/d = 1 (2.15) 

The previous eq 2.12 corresponds to p = p = 2. In  
terms of free energies all computed at  the same tem- 
perature and density 

The set of n-molecule correlation functions for the 
liquid is defined as 

g‘n’(X1. . . xn) = 

In  the large ‘u limit, and as the n molecules mutually 
separate from one another, g@) approaches unity. With 

obvious modifications, definition 2.17 applies equally 
for other intermolecular potentials besides VN.  EquEtr 
tions 2.10 and 2.11 allow us to conclude 

9(2)(xI,x21c v ( i j ) )  = 

g‘2)(x1Jx2/ ‘/2 + ‘/2c v ( i j ) )  (2.18) 

so that like Z N ,  the pair correlation function is iden- 
tically the same for the additive effect potential, and 
for the average of VN with this additive effective 
potential. Unfortunately it is not possible to obtain 
g@) inequalities analogous to eq 2.12-2.16. 

111. Perturbation Expansion 
It is always possible to separate V ,  into a part at- 

tributable strictly to bare pair interactions V z  and a 
remainder Vt comprising all many-body effects 

N 

i< j  = 1 
VN(xl. . .xN) = VZ(X~,X~)  + XVt(xl.. .xN) (3.1) 

The “coupling constant” X introduced here has no 
fundamental significance, and will be used only to gen- 
erate an iterative construction for u. At the end of 
that construction, we will set X = 1. Corresponding to 
3.1, there will be a formal X series for v 

m 

where of course 

vo(x%Jxd) V2(xd,xj) (3.3) 

Insert expressions 3.1 and 3.2 into the basic v eq 
2.10, and expand the exponential functions into X power 
series. The result appears as 

0 = JdxS, . .J dx, exp[ - P  i< j= l  5 V2( i j ) ]  x 

{A [ i<j=l  5 S ( i j )  - Vt(1. , ..)I + 
N 

i<j=1 

P2 
k < l =  1 24 

N 

vz(L2) - - x 
N N 

i<j=1 

(3.4) 
Since X may be regarded at  this stage as an arbitrary 
parameter, the terms of different order in X in eq 3.4 
must separately vanish. The first-order equation 

(8) F. Riesz arid B. Sz.-Nagy, “Functional Analysis,” Frederick 
Ungar Publishing Co., New York, N. Y., 1955, pp 40-43. 
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N 

0 = l d x 3 . .  . JdxN exp[ - p  i<j=1 Vz( i j ) ]  X 

N 

[ V ' ( i j )  - V'(1. . . N ) ]  (3.5) 
i<,i=l 

is a linear integral equation for determining vl in terms 
of V'. Once v1 has been obtained, the second-order 
equation 

similarly determines v2, once Vt and the previously 
calculated 211 are inserted. This trend persists to all 
succeeding orders ; the An-order linear integral equation 
requires knowledge of Vt and each of the previously 
determined vl .  . .v,+'. Hence one has in principle an 
iterative technique for constructing the effective pair 
interaction v. 

We now examine the first-order integral eq 3.5 in 
depth. The average value of Vt in the assembly of N 
molecules interacting only via direct pair potentials Vz  
may be written thus 

N e 2  = [ Z N {  CVZ(ij,} I-' x 
N 

S d x l . .  . s d x N V t ( l . .  . N )  exp[ - p  i< j=1  V,(ij)] (3.7) 

where the average value per molecule, elt, clearly 
depends on both temperature and density. The 
analogous average of Vt when molecules 1 and 2 are 
constrained to preassigned configurations x1 and xz 
may next be expressed as 

[NE'' + fl+(xl:l,Xz) lg(2'o)(xl,xz) = 

r N 1 

Here and in the following, the g@ro) stand for correla- 
tion functions 

N 

i<j  = 1 
g("r0) = g'"'(xl. . c V&))  (3.9) 

for molecules interacting only through the V z  sum. 
The quantity fit in eq 3.8 represents the variation in 
the Vt average at  small distances between 1 and 2 due 
to local order in the liquid. We expect fit to decay 
rapidly to zero with increasing separation. 

If eq 3.5 is multiplied throughout by Q 2 / Z N {  ZVz),  
the result may be transformed to yield 

NEl+ + fl'(l2) = Vl(12) + 

(3.10) 
( N  - 2)(N - 3) 

292 

Set 

2Elt 
2rl(X',XZ) = N - 1  ___ + bl(X1,XZ) (3.11) 

when this expression is inserted in eq 3.10, the quantity 
61' drops out entirely to leave a linear integral equation 
for 81 

X 

g(4*0)(1234) 

g(a20)(123) ( N  - 2)(N - 3) 
2 w  1 g(2.0)(12) + 

(3.12) J dxaf dxA(34) 9'2 70) (12) 

Had the many-body potential Vt been at the outset a 
constant independent of molecular configurations, then 
fit would have vanished identically and the implied 
v1 would have been equal precisely to 2elt/(N - 1) for 
all pairs. Evidently 61 for more general V' will be con- 
fined primarily to small pair distances, as dictated by 
the nonvanishing of fit there. 

Although one normally is concerned with very large 
systems and hence large N ,  it is extremely important 
not to drop the very small constant term proportional 
to  ( N  - l)-' in the right member of eq 3.11. After all, 
this is a ver,y long-ranged contribution to the effective 
potential, and acts on all N ( N  - 1)/2 molecular pairs 
a t  once. The totality of these long-range effective 
interactions consequently is proportional to N ,  and 
therefore provides a nonvanishing effect on the free 
energy in the conventional large-system limit. 

A comparison of eq 3.7 and 3.8 allows one to conclude 

0 = J d x l s  dxzf~(x1,xz)g(2~o)(x1,~z) (3.13) 

Next multiply both sides of eq 3.12 by f22-1g(2,0)(12) 
and integrate with respect to x1 and xz to obtain (for 
the finite system function 61) 

fl 

This last relation allows us to put integral eq 3.12 into 
a form most suitable for passage to the conventional 
large-system limit 
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Jdx3Jdx4h(34) X 
g(310)(123) (N - 2)(N - 3) 

232 1 9‘2 ,O) (12) + 

v2 is projected out of a combination of Vt and v1 just 
as 01 before was projected out of Vt. Equation 3.19 
may be rewritten thus 

N 

PVZt(1. . . N )  = vz(ij) 
i<j=l  

- g(2vo)(34)] (3.15) N 

Vzt(l. . .N)  = ![3 i<j= 1 ~ ( i j )  + Vt(l .  . .N)] x 
Wow the integrals will become strictly confined to 
regions of molecular size. Of course 

+- ( p ( 1 ) ) 2  (3.16) (N - 2)(N - 3) 
.--p ,&), 

N - 2  
0 2Q 2 

in that large-system limit, where p( ’ )  is the fixed 
singlet density N/Q. 

Equation 3.15 is the basic first-order equation that 
must in principle be solved for 61, In  a practical sense 
that would be very difficult, though nowadays evalua- 
tion of integrals of the type it contains is becoming 
increasingly more feasible with rapid electronic com- 
puters. As section V below will illustrate, however, 
that equation may be used (without being fully solved) 
to infer important features of the effective potential 
for specific substances. 

There may well exist applications in which the many- 
body potential Vt has significant magnitude, but for 
which the error incurred in the first-order estimate 
v ( i j )  S Vz -I- vl(ij) is quite small. I n  this connection 
it should be realized that the free energy F is unchanged 
to linear order in X by replacement of Vt by the effec- 
tive pair-potential sum, due to the extremum character 
of our variational principle. Likewise, the pair cor- 
relation function will be unchanged through first order 
in X upon making that potential replacement, 

The concepts involved in the first-order equation 
which generates v1 (Le . ,  e l t  and d1) from a given Vt may 
readily be applied in succeeding orders. To do so, it is 
useful to recognize that the first-order calculation 
amounts to a linear projection operation P 

N 

i < j = 1  
PVt(l .  . .N) = ~ ( i j )  (3.17) 

P2 = P (3.18) 

The second of these relations is required for all projec- 
tions, and states in the present case that any potential 
Vt already in pairwise additive form is carried identi- 
cally into the effective potential. 

By comparing the second-order eq 3.6 with the first- 
order eq 3.5 we see that 

P{ p [ 5 v1 (ij) 1 - ; [ V(1. . . N )  + 
i<j= 1 

N N 

vl(ij)]’} = v ~ ( i j )  (3.19) 
i<j= 1 i< j=l  

in other words, the second-order effective pair potential 

vi(k2) - Vt(l .  . .N) (3.20) 1 
which shows directly that if Vt is a pairwise addi- 
tive function (which becomes identified in first order 
as Zv,(ij)), then v2 vanishes identically. One inci- 
dentally sees here from the factor p in VZt that v2 will 
tend toward zero as the temperature is raised a t  fixed 
density. 

The detailed procedure of carrying out the projec- 
tion in second order is entirely the same as before. 
The new “many-body potential” Vzt takes the place 
of Vt, and by the same strategy as shown by eq 3.7 
and 3.8 with Vzt inserted for Vt, one first computes 
ezt  and fZt(x1,x2). Then after writing 

in direct correspondence with eq 3.11 for VI, we will 
have a linear integral equation for determination of 
the short-range second-order function d2 which is iso- 
morphous with eq 3.12 above. Second-order analogs 
of integral conditions 3.13 and 3.14 are also available, 
and they lead finally to the second-order version of 
eq 3.15 

N - 2  
fit(2) = 82(12) + y J d x r  X 

In  the projection-operator terminology, the third- 
order equation is 

4Vt c V l ( i j )  + 7(C V , ( i j ) ) Z l  - 

@[Vt - 3 v ~ ( i j ) ]  v d i j ) }  = v3(i j )  (3.23) 

If Vt is pairwise additive, this relation shows that 
v3 would vanish as v2 would. In  the high temperature 
regime, v3 will be proportional to p2. 

By continuation of the procedure we have outlined, 
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we would eventually obtain (appropriate to the large- 
system limit functions 0, and g(""J))  

m 

after having set X equal to unity. The corresponding 
effective pair potential approximation to the partition 
function thereupon becomes 

IV. Effective Pair Potential Formulas 
A criterion has now been advanced for representing 

a given substance by a "model substance," whose hypo- 
thetical molecules interact by the effective pairwise- 
additive potential which optimally preserves the original 
local order. The next step must be deduction of the 
thermodynamic properties of this model substance, and 
to that end we shall now derive statistical-mechanical 
expressions for mean energy, pressure, and compressibil- 
ity. This task is rendered nontrivial by the density 
and temperature dependence of the effective pair po- 
tential. In  this section we shall denote correlation 
functions in the model system by an extra superscript 
"rn" 

and b will be strictly the infinite-system limit function. 
The thermodynamic energy E may be obtained from 

the Helmholtz free energy F by means of the thermo- 
dynamic relation 

By applying this operation to the logarithm of the 
model partition function (3.25), one finds the energy 
per particle to be 

X E Eo N - 1  
N N  

where Eo is the zero-density energy for N widely 
separated molecules. This general result is equally 
applicable to all phases, fluid or crystalline. If the 
model system is in the liquid state and is macro- 
scopically large, then both 0 and g(2,") depend only on 
relative configuration coordinates so that eq 4.3 may 
be simplified somewhat to 

The J O U T ~ U L ~  of Physical Chemistry, Vol. 74,  No. 91, 1970 

N 
p(1) = - 

Q (4.4) 

The pressure in the model system may be computed 
from 

P = - (E) 
N!P 

(4.5) 

If once again we utilize eq 3.25 for F, the result may be 
expressed in terms of a g ( z l m )  integral by using Green's 
technique for volume differentiation of configuration 
 integral^.^ One finds for the fluid phases 

The vector r12 is the spatial separation between the 
centers of molecules 1 and 2, and the gradient operator 
following it in eq 4.6 acts only on those position co- 
ordinates. 

The isothermal compressibility KT is defined as 

or equivalently 

(4.7) 

Now set 

by indicating that 0 is held h e d  in the partial deriva- 
tive of g@rm), we mean t o  include only the contribution 
due to the explicit variation in density, and not the 
implicit variation occurring through variation of the 
effective potential. We can verify from eq 4.6 and 4.8 
that kT is the isothermal compressibility for a system 
of molecules that interact at all temperatures and den- 
sities with a short-range potential that coincidentally 
equals 8 when the latter is evaluated at the actual tem- 
perature and density of interest. The general fluctua- 
tion-compressibility theoremlo applies in the case of 
such temperature and density independent interactions 
of short range, and allows us to write 

(9) H. 8. Green, "The Molecular Theory of Fluids," North-Holland 
Publishing Co., Amsterdam, 1952, p 51. 
(10) T. L. Hill, "Statistical Mechanics," McGraw-Hill, New York, 
N. Y., 1956, p 236. 
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= 1 + - d~~[g (~1" ) (12 )  - 11 (4.10) P n S 
The pair correlation function occurring here must 
strictly be taken as the infinite-system limit function, 
before the integration is carried out. 

After eq 4.6 is multiplied throughout by p, the appli- 
cation of an isothermal density derivative leads to the 
following compressibility formula 

The implicit density variation of g ( z , m )  through d enters 
this last expression via the functional derivative 

g(2~")(12)g(2~"'(34) ] - Pp") [g(3t")(124) X 

6(X1 - X3) f g(3'm'(123)6(Xz - X J ]  - 
/39'2~"'(12)6(~1 - ~ 3 ) 6 ( ~ 2  - ~ 4 )  (4.12) 

Under conventional circumstances one expects an 
expression of type 4.10 to yield the isothermal com- 
pressibility of a fluid system. Indeed that is invariably 
true with interactions of limited range, whether those 
interactions are pairwise additive or not. However 
the model system effective pair potential has essentially 
infinite range. This infinite range is clear enough in 
the constant "tail" 2e/(N - 1) of O ( X ~ , X ~ ) ,  but it is also 
manifest in the density dependence of v(x1,xZ) as extra 
particles are placed into the volume 'u macroscopically 
far from molecules 1 and 2. The terms in tT expression 
4.11 following the one containing tT are the direct 
result of these long-ranged contributions. 

The compressibility tT measures the local (but large- 
dimension) density fluctuations in the effective poten- 
tial model system. It is this local compressibility 
which determines the intensity of X-ray scattering 
extrapolated to zero scattering angle. Conventionally 
this would be identical with the thermodynamic com- 
pressibility for an overall compression of the entire 
system, but the long-range interactions induce a differ- 
ence. The magnitude of K~ - tT hence measures the 

Figure 1. 
molecules. r12 is the separation between the oxygen nuclei, and 
bl and bz are unit vectors along the molecular symmetry axes. 
Euler angles cy, p, y are an ordered set of rotations which carry the 
orientation of molecule 1 into that of molecule 2. Configurations 
for which r12 does not pierce the sphere quadrant as shown may be 
generated by reflection in symmetry planes zy or zz or both. 

Relative configuration variables for a pair of water 

inability of the model system to mimic the local density 
fluctuations of the initial real liquid. If the effective 
potential approximation has validity, this difference 
should be small. 

V. Application to Water 
Mea- 

surements indicate" that an isolatedo molecule incor- 
porates 0-H bonds of length 0.957 A, and an angle 
between these bonds at the oxygen nucleus of 104.5'. 
Consequently we treat each molecule in the liquid as a 
rigid asymmetric rotor with the same symmetry. Each 
configuration vector xi will involve six components: 
three to specify the Cartesian coordinates of the oxygen 
nucleus, plus three Euler angles to fix the molecule's 
orientation in space. 

The three normal modes of vibration, VI, v 2 ,  and v3, 

for the water molecule occur at  3656.65, 1594.59, and 
3755.79 cm-la12 At room temperature these vibra- 
tions are virtually all unexcited, so the partition func- 
tion for internal degrees of freedom will contain the 
factor 

The water molecule possesses Cz, symmetry. 

exp[-1/Z/3h(vl + v2 + v d 1  (5.1) 

The potential energy Vz for an isolated pair of water 
molecules depends irreducibly upon six relative con- 
figuration variables. Figure 1 shows that these vari- 
ables may be taken to be the polar coordinates of the 
second oxygen nucleus relative to the first, and Euler 
angles for the rotation which would carry the first 
molecule into the orientation of the second. Figure 1 
also demonstrates that the 0-0 polar coordinates need 
only be considered in one quadrant, since the other 
configurations differ only by symmetry operations 
permitted by the molecular Cz, symmetry. For fluid 
phases, the functions d and g(z ,n )  depend on the same 

(11) D. Eisenherg and W. Kauzmann, "The Structure and Properties 
of Water," Oxford University Press, New York, N. Y. ,  1969, p 4. 
(12) Reference 11, p 7. 

The Journal of Physical Chemistry, Vol. '74, No. 81, 19'70 



3684 E’. H. STILLINGER, JR. 

relative configuration variables as VZ, and exhibit the 
same symmetry properties. 

The many-body potential Vt( l .  . . N )  is surely signifi- 
cant in liquid water. Since the isolated molecules have 
a large permanent dipole moment (1.84 D), there must 
be large local fluctuating electric fields in the liquid. 
These fields polarise the molecules, and the correspond- 
ingly modified molecular moments in turn affect the 
fluctuating fields. 

At small distances, hydrogen bonding is the most 
important aspect of water molecule interactions. This 
type of interaction is already manifest in Tiz, which 
would plunge to about - 5  kcal/mol for a fully formed, 
essentially linear, hydrogen bond. l3 However it has 
been suggested14J6 that the energy of hydrogen bonding 
is not additive, and detailed quantum-mechanical cal- 
cuIations support this hypothesis. Although energy 
nonadditivity is found to be nonuniform in sign,l6 the 
predominant influence of sequential sets of hydrogen 
bonds in any condensed phase appears to amount to an 
effective strengthening of each hydrogen bond. 

Thus it appears that Vt is negative for most config- 
urations of interest in liquid water. The quantity 
e ( P , p )  is most likely dominated by e l t ( p , p ) ,  and since 
eq 3.7 shows this latter to  be a canonical average of 
Vt, we tentatively conclude that 

4 P I P )  I 0 (5.2) 

for liquid water. Although e provides an important 
contribution to the water model-system chemical po- 
tential (and therefore affects that model system’s phase 
changes) , it has the same numerical value for all molecu- 
lar configurations. Consequently it has no effect 
whatever upon the local order established by the mole- 
cules in the model system. 

On the other hand it is clear that the difference be- 
tween the bare two-molecule potential V2 and the short- 
range effective pair potential 6 i s  directly reflected in 
the local molecular arrangements. Without having to 
solve the sequence of linear 0, integral equations de- 
rived in the previous section, we can with some con- 
fidence infer the major features of the difference be- 
tween V2 and t?, by keeping in mind that this difference 
must be selected to produce substantially the same 
structural shifts as Vt. 

The best currently available ab initio Hartree-Fock 
calculations of V 2  indicat,e that the lowest energy for a 
pair of water molecules is achieved in the configuoration 
khown in Figure 2. The 0-0 distance is 3.00 A, and 
the energy of the hydrogen bond at  that nuclear con- 
figuration is -4.72 kcal/mol.16 

Within the regular hexagonal ice lattice one can 
identify sequences of hydrogen bonds of any length 
passing from oxygen to oxygen. As already pointed 
out, these sequential groupings (the most common type 
for a given large number of molecules) produce extra 
energy stabilization beyond that for just V2 interac- 

MOLECULE 2 

MOLECULE I 

:2 

Figure 2. 
Hartree-Fock calculations (ref 16). Molecules 1 and 2 lie in 
perpendicular planes. 

Stable water-molecule pair configuration according to 

tions. It has also been established (at least for se- 
quential triplets) that this hydrogen-bond nonadditivity 
contribution to Vt acts to compress distances in the 
crystal, 

The melting of ice to produce liquid water obviously 
adds configurational disorder: the new phase lacks 
long-range periodicity and exhibits fluidity. Still, the 
melting energy only amounts to about one-eighth of the 
crystal’s sublimation energy, so the liquid presumably 
consists of a random space-filling network of strained 
hydrogen bonds, incorporating occasional broken bonds 
and interstitials. Indeed the X-ray scattering from 
water’* shows that this network is spatially quite homo- 
geneous (not broken up into disconnected “clusters”) , 
and retains the local propensity for tetrahedral co- 
ordination that always appears in the ices and clath- 
rates. 

Although hydrogen-bond sequences may be some- 
what fewer in number and shorter in average length in 
the liquid compared to ice, they should still exert the 
same stabilizing and compressing effects. The short- 
range effective potential 6 can produce the same result 
by exhibiting a deeper hydrogen-bond energy minimum 
than Vz,  at  a somewhat smaller 0-0 distance. 
Figure 3 illustrates this presumption by comparing 
schematic V z  and 0 curves for ~ 1 2  variation in the con- 
figuration shown in Figure 2. One must keep in mind 
here that a deepening of the hydrogen-bond part of the 
pair potential must be compensated by a rise for some 
other configurations, since eq 3.14 and its analogs for 
O2, Os, . . . imply for liquid water that in a finite system 

0 = fdXz[Vz(Xi,Xz) - 6(Xl,X,)]g(2,0)(~l,~z) (5.3) 

But in any event the primary structural effect here is a 
strengthening of the hydrogen bonds in the random 

(13) P. A. Kollman and L. C. Allen, J .  Chem. Phys., 51,3286 (1969). 
(14) H. S. Frank and W. Y. Wen, Disc. Faraday Soc., 24, 133 (1957). 
(15) H. S. Frank, Proc. Roy. SOC., A247, 481 (1958). 
(16) D. Hankins, J. W. Moskowitz, and F. H. Stillinger, Chem. Phys. 
Lett., 4, 527 (1970). 
(17) J. DelBene and J. A. Pople, ibid., 4, 426 (1969). 
(18) A. H. Narten and H. A. Levy, Science, 165, 447 (1969). 
(19) G. A. Jeffrey and R ,  K.  McMullan, Progr. Inorg. Chem., 8 ,  
43 (1967). 
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-90’ -60’ -30° , l 

K C A L S / M O L E  

Figure 3. Qualitative shift expected between V 2  and 0. The 
hydrogen-bond nonaddivity effect of sequential groupings of 
molecules in the liquid deepen the minimum and move it to 
shorter 0-0 distance. The pair geometry is the one shown in 
Figure 2, except for the r12 variation. The V z  minimum 
parameters shown are taken from ref 16. 

0’ 30’ 60° 90’ 
e 

liquid network, so at  a given temperature 0 produces 
more hydrogen bonds on the average than V,  alone 
would produce. 

The quantity Vt very likely also affects the direc- 
tionality of hydrogen bonding in liquid water. Har- 
tree-Fock calculations13~16~20 agree that the e variation 
of V2 in the pair arrangement shown in Figure 2 (with 
fixed rI2 and maintaining the symmetry plane) gives a 
broad and flat featureless minimum. Consequently 
the lone pairs of electrons in the valence shell of the 
proton acceptor molecule must be quite delocalized. 
I n  particular this e variation of VZ fails to display rela- 
tive minima localized about 0 = +54”44‘ and e = - 54”44’, the characteristic angles for perfect tetra- 
hedral coordination about the acceptor molecule oxygen 
nucleus. 

According to Coulson21 the observed bond angle in 
water implies substantial hybridization of the oxygen 
2s and 2p orbitals involved in the bonding. The lone 
pairs of electrons on the oxygen are therefore also par- 
tially hybridized. However it is clear that the hy- 
bridization is not of the full sp3 type that obtains in 
methane,22 so indeed the full set of tetrahedral coordina- 
tion directions is not inherent in the electronic structure 
of an isolated water molecule. 

Tetrahedral coordination however appears to occur 
with high probability in the liquid. Consistent with 
this presumption, consider a pair of water molecules in 
the configuration shown in Figure 2, but with 0 equal to 
.t54”44‘. The resulting hydrogen bond along one of 
these ideal tetrahedral directions surely will increase the 
degree of hybridization of the acceptor oxygen toward 
pure sp3, and the lone pair of electrons not involved in 
that hydrogen bond will then be more localized along 
the remaining tetrahedral direction. Consequently 
the formation of a second hydrogen bond to the ac- 
ceptor oxygen (right-hand molecule in Figure 2) will be 
confined to that remaining tetrahedral direction. This 

Figure 4. Angular variation of VZ and 0. Figure 2 gives the 
relevant configurations, with only 9 varying. As a result of 
enhanced hybridization of oxygen orbitals in the liquid, one 
expects 0 to be depressed relative to VZ at the ideal 
tetrahedral angles indicated by arrows. 

argues in favor of a cooperativity to tetrahedral ge- 
ometry in that initial formation of tetrahedral hydrogen 
bonding facilitates extension of that local geometry in 
further hydrogen bonding. As advocated, this amounts 
to a three-molecule effect. 

The effective pair potential 6 consequently should 
manifest those tetrahedral angles more obviously than 
VZ. As Figure 4 indicates, we surmise that 0 should be 
depressed relative to V2 at the ideal tetrahedral angles. 
The model system would then exhibit the enhanced 
extent of local tetrahedral order that is possible in real 
water as a result of nonadditive contributions t o  the 
potential energy in the latter. 

As a final aspect of the qualitative behavior of 0 for 
water, we inquire about the large r12 regime. For 
these large distances it is known23 that the pair corre- 
lation function behaves thus 

(5.4) 

In  this expression, the b’s are unit vectors along the 
molecular symmetry axes, D is the static dielectric 
constant, and gK is the Kirkw0od2~ orientational corre- 
lation function 

(20) K. Morokuma and L. Pedersen, J. Chem. Phys., 48, 3275 
(1968). 
(21) C. A. Coulson, “Valence,” Oxford University Press, New York, 
N .  Y., 1961, p 221. 
(22) R. F. W. Bader, J. Amer. Chem. Soc., 86, 5070 (1964). 
(23) A. Ben-Naim and F. H. Stillinger, “Aspects of -the Statistical 
Mechanical Theory of Water” in “Structure and Transport Processes 
in Water and Aqueous Solutions,” R. A. Horne, Ed., Wiley, New 
York, N. Y., in press. 
(24) J .  G .  Kirkwood, J. Chem. Phys., 7, 911 (1939). 
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We shall assume that the first-order perturbation 
estimate of 0 as outlined in section I11 above 
predicts the correct qualitative trend at large r12. In  
this order of approximation we know that g(2) and 
g(z,m) agree, so in fact g, will be the same in the model 
system subject to 0 as in the real liquid. Equation 5.4 
then shows that the static dielectric constant D will 
also be the same in first order. 

The true molecular pair interaction V2 at  large 
separation possesses dipole-dipole behavior 

VcI,(Xi,xs) - pv2bl*T1z*b2 (5.6) 

appropriate for the dipole moment pv = 1.84 D of an 
isolated molecule under vacuum. Two principal modi- 
fications of this form will be produced by many-body 
interactions in the liquid. (a) There will be an en- 
hancement of the dipole moment pv to a larger average 
value pi  due to charge transfer and polarization in hy- 
drogen bonding with the molecule’s immediate neigh- 
bors. (b) A form of dielectric shielding of V2(12) by 
intervening molecules will take place, even if these 
molecules are not permitted to reorient in the electric 
field of molecules 1 and 2. This polarization is partly 
electronic, but also involves nuclear displacement in the 
three normal vibrational modes at fixed molecular 
orientation. The appropriate dielectric constant Di, 
refers experimentally t o  a wavelength range around 
0.1-1.0 mm. 

The first-order perturbation eq 3.15 is designed to 
assure that the mean value of the many-body interac- 
tions I” as a function of x1 ,xZ is the same as the mean 
of Ne1 + Zvl(Zj). In  particular the right side of that 
equation has terms giving: (1) the effective interac- 
tion acting directly between molecules 1 and 2; (2) the 
effective interaction of 1 with 2’s “correlation cloud” 
and of 2 with 1’s correlation cloud; and (3) the effec- 
tive potential between the two correlation clouds. 
Effects a and b above suggest that 0 (gV2 + 01) at large 
r12 acts as the interaction of two point dipoles p2  em- 
bedded in a dielectric medium with constant Dir, and 
each (for computational simplicity) located centrally 
in an otherwise empty spherical cavity. An elemen- 
tary computation then yields 

0(x,,xz) s V2(Xl,XZ) + 01(x , ,x2 )  

N (5.7) 

When the liquid is at or near its melting point, pz is 
probably close to  the molecular dipole moment in ice. 
This latter has been estimatedZ6 to be 2.95 D. Further- 
more, the high-frequency dielectric constant has been 
reported to be 4.5.28 Using these numbers we find 

(5.8) 

Considering the uncert’ainty of p z  and Dir, this factor 

should be regarded as currently indistinguishable from 
unity. It is curious that in the large r12 regime ap- 
parently little modification of V z  is required; effects a 
and b above essentially cancel each other. 

VI. Discussion 
(1) The N-molecule potential V N ( x l .  . . xN) was 

regarded above as temperature independent. In  most 
applications (including water at ordinary temperatures) 
this assumption is correct. But neighboring molecules 
in interaction with each other tend to  perturb their 
vibrational frequencies. If these internal vibrations 
are thermally excited under the ambient conditions, 
then the appropriate potential function, which includes 
a shift in vibrational free energy, becomes a function of 
temperature: VN(xl. . . x,;P). However this elabora- 
tion in no way changes the effective potential formalism 
presented above. 

Besides water, liquid metals provide an interest- 
ing class of fluids for application of the effective pair 
potential technique. The ions in a liquid metal move 
about under the influence of some potential function 
VN(rl . .  .rN;P) that is strongly influenced by the pres- 
ence of degenerate conduction electrons. Certainly 
this many-ion potential is not precisely resolvable into 
pair contributions, but for certain purposes it would be 
convenient to know the optimal effective pair potential 
a p p r o ~ i m a t i o n . ~ ~ * ~ ~  For these substances in particular 
it should be possible experimentally to  detect a differ- 
ence between the two isothermal compressibilities KT 

and GT. 
(3) No barrier exists in principal to the extension 

of the effective potential method to liquid mixtures. Of 
course a distinct temperature and composition depen- 
dent effective potential vab(X, ,xb)  would have to be 
introduced for each different pair of molecular species. 
The multicomponent version of variational principle 
(2.8) then would require minimization over variation of 
all these Dab. A particularly interesting application 
would be fused salts, where one would look for the di- 
electric shielding of the Coulomb interaction at large 
ion pair separation, and for the extent to which the ea 

for different ions could be identified as Born cavity 
energieseZg 

The critical region for a fluid very likely will be 
more poorly described by the effective pair potential 
model than the liquid near the triple point. This does 

(2) 

(4) 

(25) L. Onsager and M. Dupuis, “The Electrical Properties of Ice” 
in “Electrolytes,” B. Pesce, Ed., Pergamon Press, New York, N. Y., 
1962, p 27. 
(26) E. H.  Grant, T .  J. Buchanan, and H.  F. Cook, J .  Chem. Phys., 
26, 166 (1957). 
(27) M. D. Johnson, P. Hutchinson, and N. H. March, Proc. Roy. 
Soc., A282, 283 (1964). 
(28) P. Ascarelli and R. J. Harrison, Phys. Rev. Lett., 22, 385 (1969). 
(29) F. H. Stillinger, “Equilibrium Theory of Pure Fused Salts” 
in “Molten Salt Chemistry,” M. Blander, Ed., Interscience, New 
York, N. Y., 1964. 
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not mean to say that the model fluid will necessarily 
fail to exhibit nonclassical critical exponents.30 How- 
ever, a fluid in the critical state has density fluctuations 
of large spatial extent and magnitude. The definition 
of v(xl,xz;p,p) does not permit this function to adjust 
its density dependence to the local value of the density 
(which may be sensibly constant over many molecular 
diameters). Instead, only the overall density is recog- 
nized, and the average many-body structural effects 
built into v may be a significant misrepresentation. 
One possible outcome is a substantial displacement of 
the model system critical point from that of the real 
substance it attempts to imitate. 

In  order to quantify our qualitative analysis of 
0 for water, an iterated series of quantum-mechanical 
and statistical-mechanical calculations should be car- 
ried out. One might start by guessing a reasonable ap- 
proximation to 6, consistent with the few currently 
known facts about 8 2  and the qualitative changes 

( 5 )  

taking V2 to By then using high-speed electronic 
computers to simulate the corresponding model liquid 
(via either a Monte Carlo or molecular dynamics tech- 
nique), it would be possible to observe which local ar- 
rangements of molecules predominate in the liquid (at 
least as predicted by that approximate e) .  These local 
arrangements of small groupings oi, say, two to five 
molecules thereupon should be the ones examined by 
extensive and accurate quantum-mechanical calcula- 
tions of V2 and nonadditivity energies. With better 
estimates of the V N ,  the computer liquid simulation 
could be used to refine 6 (and estimate E ) ,  and finally 
the entire procedure would be recycled until con- 
vergence obtained. 

(30) M. E. Fisher, “Lectures in Theoretical Physics VI1 C,” Uni- 
versity of Colorado Press, Boulder, Cola., 1965, pp 1-159. 
(31) One such choice for an analytic fit to a for water is suggested in 
ref 23. 
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H,O and HOD Using Near-Infrared Spectroscopy 

by W. A. P. Luck” and W. Ditter 
Hauptlaboratorium der Badischen Anilin- d% Soda-Fabrik AG, LudwigshafenlRh., Germany (Received March 8, 1.970) 

Approximate methods are described for determining the H-bonded state of liquid water to  the critical region. 
It is shown that differences between spectra of solutions, and liquids in the bulk, indicate H bonds having dif- 
ferent angles and distances. Spectra from water in solution in HF and NHs and in the gas-hydrate state are also 
presented. 

Various theories of liquids have been advanced that 
assume lattice-like structures having cavity defects. A 
simple application of such liquid models can be demon- 
strated for densities under saturation conditions (Figure 
1). The upper parts of the curves show the densities 
of different liquids. At low temperatures the densities 
of normal liquids decrease with increasing temperature 
in a linear fashion. (Increasing amplitudes of thermal 
motions.) The straight lines at high temperatures are 
the geometrical locus of the sum of densities of liquid 
and vapor in the saturated state. (One consequence 
of this is known as the rule of Cailletet and Mathias.) 
I n  a simple model the straight line gives the density of 
an ideal liquid. (Density decreases only as a result of 
thermal motions.) I n  addition the model assumes 
that the density of a real liquid depends upon the num- 

ber of cavity defects. The number of these defects in 
our model is exactly equal to the number of molecules 
in the vapor state. In  liquids with hydrogen bonds 
(H bonds) we must also take orientation defects into 
account, because the H bonds are dependent upon the 
angle between the proton axis and the axis of the free 
electron pair of the H-bond acceptor.‘ Therefore, a 
lattice-like model of liquids having H bonds must also 
involve the orientational defects of open H bonds. 
These orientational defects are especially important for 
water. The goal of our experiments has thus been to 
obtain information about the concentration of these 
orientational defects in water, CH30H, and CZHSOH. 

* T o  whom correspondence should be addressed. 
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