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A fluid of rigid spheres in equilibrium is considered from a viewpoint which allows the deduced 
equation of state to reflect very sensitively the accuracy of two approximations to the triplet distribu
tion function. Specifically, these approximations are: (1) the usual Kirkwood superposition scheme, 
and (2) assumption that the correlation of excess particles near a fixed particle pair is additively 
composed of the excesses induced individually by each member of the pair (linear correlation field 
hypothesis). Granted only these hypotheses, each in turn, the rigorous statistical mechanical relations 
between rigid-sphere distribution functions and the thermodynamic pressure and compressibility 
lead unambiguously to nonlinear first-order differential equations for the pressure as a function of 
density. The simply obtained numerical solutions clearly demonstrate that assumption (1) is con
siderably superior to (2). 

I. INTRODUCTION 

T HE central quantity in analysis of the equi
librium properties of liquids and dense gases 

is the pair correlation function g(2
J. If the constituent 

molecules may be regarded as interacting in pairs, 
a complete knowledge of this function allows de
duction of all thermodynamic properties, as well as 
x-ray scattering patterns. Furthermore, the equi
librium pair correlations may serve as the starting 
point for evaluation of dense fluid transport prop
erties.1 

The function g(
2

J is experimentally accessible by 
Fourier inversion of scattering patterns. But due to 
the extreme sensitivity of computed thermodynamic 
properties (such as the isothermal compressibility) 
upon the exact form of g(2

J, as well as inherent 
interest in the statistical problem, it has been de
sirable to seek accurate and practical theoretical 
determinations of this function. A number of in
vestigators2-5 have shown that g<•J, as well as 
higher-order correlation functions, rigorously satisfy 
hierarchies of coupled functional equations. The 
relation for g(•J typically involves the triplet corre
lation function g(aJ, so that the former quantity is 
not directly determined by such analyses. 

It has therefore been necessary to seek suitable 
approximations which, in the first place, would 

* This work is based partly upon a section contained in 
a dissertation presented by the author in 1958 to the Gradu
ate School Faculty of Yale University. 

1 J. G. Kirkwood, F. P. Buff, and M. S. Green, J. Chern. 
Phys. 17, 988 (1949). 

2 J. G. Kirkwood, J. Chern. Phys. 3, 300 (1935). 
3 J. Yvon, Actualites Scientijique et lndustrielles (Hermann 

& Cie, Paris, France, 1935). 
4 M. Born and H. S. Green, A General Kinetic Theory of 

Liquids (Cambridge University Press, Cambridge, England, 
1949). 

6 L. Sarolea and J. E. Mayer, Phys. Rev. 101, 1627 (1956). 

supplant the hierarchies by functional equations 
involving only g<•J. Secondly, these approximations 
should be based upon sufficient physical evidence, 
or arguments by close analogy, to ensure (at least 
on an intuitive basis) that the resulting g( 2

J are 
fairly close to their exact forms. 

Unfortunately, the microscopic structure of dense 
fluids is complicated to the extent that such approxi
mations are hard to justify in a convincing manner. 
The purpose of the present paper is to examine, for 
the idealized fluid consisting of rigid spheres, the 
results of utilizing each of two approximations to 
the triplet correlation function. The first of these 
is the well-known Kirkwood superposition approxi
mation, wherein it is supposed that the potential 
of mean force for three particles is pairwise de
composable, similar to what is generally supposed 
for the interaction potentials themselves. The 
alternative hypothesis investigated appears to rest 
no less firmly upon the presumptive evidence for 
superposition. It claims essentially that the excess 
density local to a fixed particle plays the role of a 
linear scalar field; the excess density near a fixed 
pair, then, is additively composed of the two single 
particle contributions. 

The rigid-sphere fluid is convenient for illustra
tion's sake for two reasons. The equation of state 
for this model may be reduced, in both the super
position approximation, and linear correlation field 
cases, to nonlinear first-order differential equations. 
The other motivation for such choice, also a result 
of the singular potential, is that the particle con
figurations which contribute to the deduced equa
tions of state are precisely those for which the 
relevant approximations are expected to be poor, 
namely, when particles are in contact. Thus, by 
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choosing to aggravate imprecision in the approxi
mations, the corresponding inaccurate equations 
of state serve as sensitive indicators of the value of 
those approximations; the results must be compared 
to the known behavior of the system, determined 
accurately by independent means. 

The nonlinear differential equations have been 
solved numerically, subject to the appropriate 
boundary conditions. One concludes that the super
position approximation has greater validity than the 
linear correlation field hypothesis. 

II. GENERAL RELATIONS 

In this section, an integral equation technique for 
the pair correlation function is reviewed briefly in 
slightly generalized form. One considers, in a 
appropriate container of volume V, a set of N 
identical particles which interact through pairwise 
additive central forces. At absolute temperature T, 
the unnormalized configuration probability for a 
canonically distributed ensemble of such systems is 

[ 
1 N • J exp -kT . L: v(tJ} , 

t<1""1 

v(ij) = v(r,;), (1) 

with v(ij) the pair potential for particles i and j, 
and where k is Boltzmann's constant. 

The correlation function for a set of n « N par
ticles, g cnJ ( 1 · · · n), is defined to be proportional to 
the probability that the indicated n particles simul
taneously occupy positions r, · · · r,., irrespective of 
the configuration of the remaining N - n particles. 
For the present purposes it is sufficient to suppose 
that g'nl is normalized to unity when all the n 
particles are far from one another with respect 
to the range of intermolecular forces. Consequently, 
g'nl may be written as a partial phase space integral 
of the density (1) over the coordinates of the re
sidual N - n particles in V. Neglecting insignificant 
terms of order N- \ 6 one finds 

g'"l (1 · · · n) = exp [-k~ w'"\1 · · · n)] 

= ;: J .. · J exp [-k~ 
·,X;, v(ij)] d

3
rn+t · · · d

3
rN, (2) 

ZN = J · · · J exp [ _J__ . £ v(iJ) J dar, · · · darN. 
kT •<•-' 

Here, w'nl is the potential of mean force for n par
ticles. 

6 T. L. Hill, Statistical Mechanics (McGraw-Hill Book 
Company, Inc., New York ,1956), Chap. 6. 

The procedure for derivation of the g'2
l integral 

equation (involving g'3
)) follows through use of an 

artifice introduced by Kirkwood. 2 For one of the N 
particles (chosen to be particle 1), an accessory 
parameter X is introdu,ced which serves to decouple 
this particle from the N - 1 others. Thus one re
places the pair interaction vh;), for the chosen 
particle 1 and each of the N - 1 others, by a new 
function v(r1 ;, X) satisfying 

v(rli, X = 0) = 0, 

v(r1 ;, A = 1) = v(rli). 
(3) 

Therefore, vanishing X corresponds to complete 
decoupling of 1 from the remaining particles; setting 
X = 1, however, produces the full coupling of N 
identically interacting molecules and hence repre
sents the "real" system. For the moment, v(r, X) 
may be arbitrarily chosen, provided it is once differ
entiable in X, and satisfies Eq. (3). 

In view of the use of X, the pair correlation func
tion for particles 1 and 2 must now be written to 
indicate X dependence. When the appropriate modi
cations are introduced in definition (2), with n = 2, 
a X differentiation, followed by rearrangement and 
integration over X, 7 finally yields the desired inte
gral equation, 

-kT log g' 2 )(12, X) = w' 2 )(12, X) 

where 

= v(12, X) + p ix dX' J dara av(~:·, X2 

·{gcaJ(123, X') - (2\13 X')} 
g' 2 )(12, X') g ' ' 

p = N/V. 

(4) 

The terms on the right side of Eq. (4) may readily 
be identified in a physically understandable sense. 
The leading term is of course the contribution to the 
pair potential of mean force, w'2

J, remaining at zero 
fluid density; it is precisely the interaction potential 
for the pair 12. The integral term, in two parts, 
represents at finite p the nonvanishing effect of 
fluctuating forces on 1 and 2, provided by the 
surrounding medium of N - 2 particles. 

In general, a certain amount of reversible (iso
thermal) work is performed if the coupling param
eter X slowly varies. The local particle density at ra 

7 The derivation is covered in detail in Chap. 6 of reference 
6 for a special v(r, :>.). Generalization to the present case is 
trivial. 
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surrounding 1, when a second particle 2 is held 
fixed a distance r12 away, is given by the expression 

g<al (123, X) _ 
P g<2l(12, X) - Plz(fa,.X), (5) 

which follows from definition of the correlation 
functions. The reversible work done on volume 
element dafa at fa, when the coupling parameter 
changes from X to X + dX is therefore equal to 

av(13, X) g<a\123, X) da dX. 
P ax g< 2 l(12, X) fa ' (6) 

this is precisely the combination occurring in Eq. (4). 
When Eq. (6) is integrated over all positions fa, 
one obtains the total reversible work performed on 
the surroundings of 1 and 2. If particle 2 were 
sufficiently far from 1 (at "infinity," but still within 
the system, of course), the quantity in Eq. (5) re
duces to 

l
. g<al(123, X) (2)( ) 

p 1m (2)(12 ~) = pg 13, X 
r 2 -oo g , 1\ (7) 

= Pl(fa, X), 

with a differential work, corresponding to Eq. (6), 
which is 

Aside from a minus sign, this is the second term 
under the integral in Eq. (4). 

The contribution of the ambient medium to the 
pair potential of mean force, acting between a pair 
of particles at distance r 12, therefore has a clear 
interpretation. It is the net work that must be done 
to discharge one of the particles at very large sepa
ration from the other (X decreasing from 1 to 0), 
followed next by relocation of this discharged par
ticle at distance r 12 (no work is done in this step, 
since A~ 0 removes the relevant forces), and finally 
charging up the particle in its new location (X in
creasing from 0 to 1) with the pair interaction 
v(12, X) subtracted out of the last step since it does 
not refer to the medium contribution. A nonvanish
ing net reversible work reflects the fact that particle 
2 at fini.te distance from 1 disturbs the average 
composition in the environment of particle 1. 

We next take note of two well-known relations,6 

which will subsequently be used to connect the pair 
correlation functions to the thermodynamic pres
sure p. From the virial theorem, one establishes that 

__p__ = 1 _ 27rp 100 

a av(r) <zJ( ~ _ 1) d 
pkT 3kT o r ar g r • 1\ - r · (9) 

In addition, the compressibility may be obtained 
directly from fluctuation theory without recourse to 
differentiation of Eq. (9). One finds 

kT(~log P) 
ap r 

(10) 

It is our purpose to examine the integral, Eq. (4), 
for a fluid of rigid spheres. With this system, the 
pair interactions are either infinite, or zero, de
pending on whether or not the chosen pair of spheres 
(each with diameter a) overlap. It is especially 
convenient, for these rigid spheres, to specify the 
A-parameterized interaction by 

v(r, X) = v(r/X); 

v(8) = ro 8 < a, 

=0 8 ;:::: a. (11) 

The effect of changes in X hence is variation in the 
range (rather than strength) of the interaction. 
As X decreases to zero, the region of repulsion in 
relative pair space shrinks finally to a point, so the 
pair interaction has in essence been removed. 8 

In terms of the local densities p12 and p1 , the 
general integral equation for our special fluid is 

-1 (2)(12 X) = v(12, X) + __!_ f' dX' 
og g ' kT kT fo 

J da av(rla/X') [ ( ') ') · fa ax' P12 fa, X - Pl(fa, X ]. (12) 

The X' derivative of v appearing in the integrand 
of Eq. (12), with the singular definition, Eq. (11), 
only has proper meaning when combined with the 
square-bracketed factor. In this connection, note 
that each Plz(f3 , X') and p1(f3 , X') may be expressed 
as a function of f 3 continuous at r13 = Xa (denoted 
by bars), multiplied by the appropriate discon
tinuous Boltzmann factor (which is either 0 or 1).9 

Pdfa, X') exp [ -k~v(13, X')]iidfa, X'), 
(13) 

8 This coupling scheme has recently been used also to 
obtain accurate thermodynamic results for the hard-sphere 
fluid by a somewhat different approach; see H. Reiss, H. L. 
Frisch, and J. L. Lebowitz, J. Chern. Phys. 31, 369 (1959). 

9 Cf. Phase Transformations in Solids, edited by R. 
Smoluchowski (John Wiley & Sons, Inc., New York, 1951), 
p. 72. 
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Upon acknowledging the identity 

[ 1 (13 "'')] av(13, >..') 
exp - kT v ' 1\ ax' 

fluctuations occur in the neighborhoods of 1 and 2. 
There is a further condition on e, when A. is set 

equal to unity, that may be recognized. This arises 
from the fact that the triplet correlation function 
is unchanged upon permutation of its configuration 
arguments. By combining Eqs. (5), (17), and (18), = -kT a~' exp [-k~ v(13, A.') J 

= akT o(r13 - A.a) (14) we must have that 

[this follows from Eq. (11)], the pa1r correlation 
integral equation may be written 

_ 1 (2)(12 A.) = v(12, A.) 
og g ' kT 

One is left with an r 3 integral over just the two
dimensional surface, S(X'), of the sphere surround
ing particle 1, with radius X'a. It is precisely at the 
surface of this exclusion sphere that work of dis
placement is performed in creating cavities of the 
proper size to contain the impenetrable particle; 
for this reason, only those values of the local density 
exaetly at the surface S(X') are of significance in 
Eq. ( 15). 

Essentially the same considerations for this rigid
sphere fluid show that only the value of g <2

) (r) at 
contact (r = a) contributes to the pressure. Equa
tion (9) therefore appears, 

_1!_ = 1 + 27rpa3 (2)( 1) 
pkT 3 g a, · (16) 

III. THE SUPERPOSITION APPROXIMATION 

The average density surrounding a fixed particle, 
with associated "size" parameter A., is the quantity 
p, in Eq. (7), which we may exhibit in the form 

p,(r3 , X)= p exp [-k~v(13, A.)]r1 +<P(13, X)]. (17) 

As the density of our fluid decreases to zero, <P 

vanishes to yield the Boltzmann factor representa
tive of the pair interaction v, and unmodified by any 
surrounding medium. Similarly, p12, the density 
near a pair, can be expressed as 

pdr3,X) = pexp{-k~[v(13,A.) +v(23)]} 

· [1 + <P(13, X) + <P(23) + e(123, A.)], 
(18) 

<P(23) = <P(23, A. = 1), 

thereby defining e. When the distance r, 2 is large 
compared to the range of intermolecular forces, 
e must be zero, since then only separate density 

[1 + <P(12)][1 + <P(13) + <P(23) + e(123)] (19) 

be symmetric in its three arguments. 
Unfortunately, these considerations are not in 

themselves quantitatively illuminating; it is es
sentially the unknown character of e which prevents 
one from computing the exact behavior of g< 2

). It 
has been Kirkwood's suggestion that the triplet 
potential of mean force w<a) is approximated ade
quately by the sum of the three mean pair potentials, 

w<3)(123, X) ""w< 2)(12, A.) 

+ w< 2\13, A.) + w< 2 )(23). (20) 

This superposition approximation in triplet con
figuration space is equivalent to the statement 

e(123, X) "" <P(13, A.)<P(23). (21) 

The hypothesis (20) is suggested by analogy with 
the zero gas density situation, in which w<3) reduces 
to precisely the sum of the three pair interactions 
v. By employing a cluster expansion, furthermore, 
it may be established that the lowest-order correc
tion in density to w<3) still satisfies Eq. (20). In 
addition, if any one of the three particles 1, 2, 3 
is sufficiently far from the other two, Eq. (20) re
duces to just the remaining pair potential, as rigor
ously it must. Finally, Eq. (20) is symmetric in r" 
r2 , and r3 (when A. = 1), so the proposed approxi
mation to e satisfies condition (19). 

We now introduce the superposition approxi
mation into Eq. (15). When r 12 2:: Xa, 

>. 

-log g·cz)(12, A.) = pa 1 dX' 

The configuration integration simplifies considerably 
upon introduction of dipolar coordinates; in terms 
of reduced distances, one finds 

-log g(8, X) 

= 1rpa dtK(8- t)t[g(t) - 1], 2 31"' 
8 0 

8 2:: X; 
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K( q, X) = t dA'X' g(A.', X') if lql :$X, 
lui (23) 

=0 if \q! ~X; 
s = r12/a, t = T2a/a, g(s, X) = g(2l(r12, X), etc. 

The kernel K involves, for this rigid-sphere fluid, 
only those values of the pair correlation function 
corresponding to contact with the particle of "size" 
X' a. 

Suppose next that X becomes very large. In this 
circumstance, the interaction potential, Eq. (11), 
would produce singular repulsion over an increas
ingly large sphere surrounding the center of particle 
1. The surface of this expanding sphere displaces the 
other particles as it moves outward; eventually, a 
"bubble" of macroscopic extent could be produced 
containing only the swollen particle 1. 

When X » 1, the surface of the expanding mole
cule 1 acts, from the standpoint of those particles 
near it, as a planar impenetrable wall. Thus, when 
X is perhaps an order of magnitude or more larger 
than unity, the value of g(A., A.) is for all intensive 
purposes constant, and equal to the contact value 
for a flat wall, Yw· Aside, then, from terms of lower 
order in A. than those retained, it is permissible to 
replace g(A.', A.') by (/w inK 

K(q, A.)::::::::! Yw (X2 
- u2

) 
(24) 

= 0, 

As A. approaches infinity, introduce the following 
definitions: 

g0 )(u) = lim g(A. + u, A.), 
A->W (25) 

X= X+ u, 

Here, gm (u) is the correlation function for spherical 
particles near a hard wan; it becomes unity at large 
normal distances to the wall u. u = 0 corresponds 
to the position of closest approach to this wall. In 
view of relations, Eqs. (24) and (25), the integral, 
Eq. (23), leads to an expression for the surface 
correlation function g( 1

l involving only a quad
rature of the bulk pair correlation, g, 

-log g0 >(u) 

= 21r'p<lg"' 1"' t(t- u)[g(t) - I] dt. (26) 

Upon inserting known values for the bulk g(t) 
into Eq. (26), the resulting approximate surface 
correlations, like their bulk analogs, would be found 
to possess alternate peaks and valleys, which be-

come less and less pronounced as u increases. This 
corresponds in dense fluids to virtual crystallo
graphic planes arranged parallel to the hard surface. 
In this manner one observes the tendency toward 
local lattice-like structure in dense fluids. 

The crucial result of this section is obtained by 
setting u = 0 in Eq. (26). One obtains thereupon 
an implicit relation for (/w, 

-log (/w = 21r'pa3 g,. [' t2 [g(t) - 1] dt. (27) 

Two pointR may be noticed in connection with this 
last result. First, the integral involving g(t) is the 
same one occurring in the compressibility expres
sion (10). Furthermore, g"' itself is directly related 
to the pressure, since it gives the kinetic stress 
acting at the impenetrable wall.8 Specifically, 

p/kT = pg.,. (28) 

In view of these relations, therefore, Eq. (27) is 
seen to be equivalent to a differential equation for 
the pressure in terms of the fluid's density. Upon 
performing the requisite elementary substitutions, 
one finds 

dx x(z - 2 log z) 
dz = z(2 log z - z + 1) ' 

z = pjpkT, 3 
x = pa. 

(29) 

The superposition approximation has therefore led, 
by the requirement of consistency between essen
tially independent expressions for pressure and 
compressibility, to a nonlinear first-order differential 
relation giving the equation of state. 

IV. LINEAR CORRELATION FIELD 

The next object is to obtain a differential equation 
corresponding to Eq. (29), but deduced by use of 
the linear correlation hypothesis, rather than the 
superposition approximation. This hypothesis is 
equivalent to neglect of e in Eq. (18). e clearly 
cannot be identically zero, for then condition (19) 
would be violated. But on an a priori basis, it would 
appear no less reasonable to make this supposition 
that e is small, than it is equal to the specific form, 
Eq. (21). One must remember in this connection 
that the superposition approximation follows by 
analogy with the low-density result. In this case 
the function cp is first order in p, whereas e is second 
order; the latter is, by comparison, negligibly small. 
The linear correlation field hypothesis therefore 
attempts to extend this relationship to large values 
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of p, as being at least as reasonable an inference as 
superposition. 

By utilization of this alternative hypothesis, the 
integral, Eq. (12), is replaced by (r12 ;:::: Xa) 

-log g' 2
)(12, X) = :r i' dX' 

·J da av(13, X') [-___!_ (13 "'')] 
fa ax' exp kT v ' " 

· { exp [-k~ v(23) J [1 + ~p(13, X') + ~p(23)] 

- [1 + ~p(l3, X')]} = - pr(12, X) + :T l' dX' 

J da iiv(13, X') [ 1 ( 3 ')] 
· fa ax' exp - kT v 1 , X 

·{~p(13, x'{ exp ( -tr v(23)) - 1 J 
+ exp [-k~ v(23) J(23)} · (30) 

~p(aX', X') is essentially equal to g .. - 1, and 8' 
sweeps out half the exclusion volume of particle 2. 
Finally, the elementary fa integration over the 
planar surface 8" may be carried out to give 

21rpaa 
log gw = -

3
- [gw - 1] 

- 27rpa3 L .. t2 [g(t) - 1] dt. (33) 

Once again it is possible to relate the integral 
occurring here to the compressibility, Eq. (10), 
and g,. to the pressure. The resulting nonlinear 
first-order differential equation is not, however, 
identical to that obtained previously. One finds 

~: - 1 + [ ~ y - 2 log y J 
- [ ~ X - 2 log X J , (34) 

y = paa/kT. 

The leading term is precisely the first cluster inte- The difference obviously reflects the inequivalence 
gral obtained in rigorous expansion of -log g<2J in a of the two approximations used. 
density series: 

r(12, X) = J dafa{ exp [- k~ v(13, X) J - 1} 

·{ exp [-k~ v(23) J - 1 }· (31) 

The second term may be transformed, as before, 
by use of Eq. (14). As a result, the position f 3 is 
once again constrained to the surface 8(X'). If we 
denote by 8'(12, X') the magnitude of that part 
of the area 8 inside the exclusion sphere of par
ticle 2 (this is the only region of S where 
{ exp [- (1/kT)v(23)] - 1l is nonvanishing), and 
by 8"(12, X') the area outside (S" is thus the com
plement of S' on S), one then has 

-log g<2J(12, X) = -pr(12, X) 

>. 

- pa i dX' S'(12, X')~p(aX', X') 

+ pa i' dX' i"<t2.A'J d2f3~p(23). (32) 

In accord with the previous section, X is chosen 
to be very large relative to unity, and r 12 is set equal 
to Xa to yield contact between particle 2 and the 
"hard wall." Under this circumstance, r is easily 
found to be j1raa. In addition, S'(12, X') vanishes 
unless X - 1 < X' ::;; X; as X' covers this interval, 

V. DISCUSSION AND NUMERICAL ANALYSIS 

By restricting the preceding development to a 
fluid of impenetrable spheres, it has been necessary 
to consider values of the local density in the neigh
borhood of a fixed pair, which correspond to con
tact with one member of this pair. Since the fixed 
pair itself was eventually set in contact, the rele
vant particle triplet configurations invariable had 
all three particles close to one another. Accordingly, 
the triplet potential of mean force was about as 
large in magnitude as possible, so that the three 
particles were strongly correlated. Under such a 
circumstance, on the one hand, the superposition 
approximation would be as far from accuracy as 
possible, and on the other hand, nonlinear corre
lation effects should be maximized. Put another 
way, one could say that since the triplet configura
tions amount not to isolated, but mutually in
fluential, pairs, the errors in the approximations 
utilized should be large. 

In addition, use has been made of the relation of 
the system's pressure to the contact value of the 
pair correlation function when X = 1, Eq. (16), and 
in the case ft. = co to the wall correlation, gw, by 
Eq. (28). Now if, for arbitrary X, g< 2 J(r, X) were 
accurate to order p", but in error in the next order 
in p, Eq. (16) would yield the first n + 2 virial 
coefficients in expansion of the pressure correctly, 
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but Eq. (28) produces only n + 1 correct coefficients. 
In this sense it may be argued that Eq. (28) is a 
relatively efficient "error producer." Any use of 
this equation therefore would be expected to give 
deviations at lower density than might otherwise 
be found. 

Finally, it should be realized that the differential 
equations produced by the consistency require
ments, which appear in the form 

da/d{3 = f(a, {3), (35) 

are themselves capable of compounding errors 
introduced during their derivation. It is probably 
true that if an accurate pair of simultaneous values 
a and {3, obtained by some independent means, is 
inserted into f(a, {3), the number computed would 
check closely with the expected value for da/d{3. But 
if Eq. (35) is alone integrated over a sizable inter
val subject to zero gas density boundary conditions, 
the results can easily differ even qualitatively from 
the exact equation of state. This fact can readily 
be appreciated in view of the usual numerical 
procedures for solving differential equations of type 
Eq. (35): The result of extending the solution for 
a given increment in the independent variable 
depends upon values obtained in previous exten
sions. Errors thus tend to feed on themselves, often 
catastrophically. 

The (obvious) implication of these facts is that 
the method outlined in this article is by no means 
well designed to predict the equation of state for 
the rigid-sphere fluid. The method's considerable 
sensitivity to the inexactness of individual approxi
mations employed, however, can be used to good 
advantage as a test for the extent to which these 
approximations are in error. Probably the best 
hard-sphere equation of state obtainable from the 
foregoing integral equation formulation of distri
bution function theory would follow from solution 
of the integral equation, Eq. (23), with A = 1, then 
substitution into Eq. (16). 

It is solely for the purpose of comparing the 
exactness of the superposition approximation, and 
the linear correlation field hypothesis, that the 
numerical solutions to the differential equations, 
Eqs. (29) and (34), have been obtained. As previ
ously implied, the solutions proceed from the known 
dilute gas values of the pressure as initial condition. 
Although each of the differential equations is first 
order, their singular nature at zero density neces
sitates specification of two arbitrary constants at 
p = 0 to define unique solutions. The choice of 
constants amount to fixing the first two coefficients 

z 

o.e 
X 

1.0 1.2 

Fm. 1. Distortions in the e.!J.Uation of state as a result of 
the linear correlation hypothesiS (curve A), and the super
position approximation (curve B). Curve C represents the 
exact behavior. 

in density expansion of p; 

pjkT = p + B/ + (36) 

The well-known value of the second virial coefficient 
B can be obtained from Eq. (16), 

(37) 

The predicted virial expansion in the low-density 
region may readily be found by substitution of the 
senes 

z(x) = 1 + bx + cx2 + dx
3 + ex

4 + · · · , 
y(x) = x + bx2 + cx3 + dx

4 + ex 5 + (38) 

b = i1r, 
into the respective differential equations. Upon 
equating coefficients of the same powers of x, one 
finds for the superposition approximation 

c = b2
, 

d = 5b3/6, 

e = 7b4/18, 

and for linear correlation fields, 

c = b\ 
d = b3/3, 

e = -13b4/6. 

(39) 

(40) 
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Already the third virial coefficients are incorrect; 
the exact value is c = 5b2 /8. This results from 
use of the relation between p and gw, as already 
pointed out. 

The numerically obtained solutions to Eqs. (29) 
and (34) are presented in Fig. 1, along with a curve 
from reference 8, which is in accord with the ac
curate Monte Carlo results of Alder and Wain
wright.10 At high density, both solutions predict 
values for the pressure which are too small. But 
whereas the linear correlation field solution loses 
significance about the low density of x '"" 0.2 (x = 
1.414 gives close packing), the superposition curve 
is semi-quantitatively correct to at least twice this 
value. The latter, furthermore, is at least monotoni
cally increasing over the whole fluid density range, 

10 W. W. Wood and J. D. Jacobsen, J. Chern. Phys. 27, 
1207 ( 1957). 

but the former displays the unphysical behavior of 
negative compressibility above about x = 0.23. 

The conclusion to be drawn is simply that corre
lations induced by two or more particles in a dense 
fluid are not at all additive: the function e is far 
from negligible. Even the superposition approxi
mation appears to underestimate the magnitude of 
this quantity. In light of the rather sensitive test 
that has been devised, it would perhaps be worth 
investigating the class of functions e which lead to 
analyses similar to those preceding, with a view to
ward distinguishing accurate approximation schemes. 
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The methods of Mott-Smith and Rosen for the shock structure problem are correlated. It is found 
that the application of Rosen's restricted variational technique to the Boltzmann equation yields the 
transport equation used by Mott-Smith, and in addition determines a transport function. The ex
pression for the average translational temperature profile, as derived by Mott-Smith, is examined 
for the existence of relative minima or maxima. For a monatomic gas the temperature profiles have 
no relative extrema inside the shock wave for any Mach number. For a diatomic gas the temperature 
profiles are smooth for Mach numbers below 1.89, but above that a hump appears. 

T HE method used by Mott-Smith1 to investigate 
the structure of a normal shock wave was based 

on the Boltzmann transport equation. This equation 
is of the following form for the one-dimensional time
independent case: 

J cpu:! de = JJJ cp(f'f{ - ff1)g dQ de1 de 

= J cp(~~!) de. (1) 

The distribution function f(e, x) was taken to be 

* Present address, School of Aeronautical and Engineering 
Science, Purdue University, Lafayette, Indiana. 

1 H. M. Mott-Smith, Phys. Rev. 82, 885 (1951). 

the sum of two locally Maxwellian distribution func
tions, each of which had constant but different values 
of temperature and mass velocity. The number den
sity in each of these two distributions was taken 
to be a function of position. Thus the velocity de
pendence of the distribution function was specified, 
and substitution into Eq. (1) provided an ordinary 
differential equation which was solved for the den
sity profile once the transport function had been 
chosen. 

A restricted variational technique was used by 
Rosen2

'
3 to study the same problem. The advantage 

2 P. Rosen, J. Appl. Phys. 25, 336 (1954). 
3 P. Rosen, J. Chern. Phys. 22, 1045 (195!). 


