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A fluid of rigid spheres in equilibrium is considered from a viewpoint which allows the deduced
equation of state to reflect very sensitively the accuracy of two approximations to the triplet distribu-
tion funection. Specifically, these approximations are: (1) the usual Kirkwood superposition scheme,
and (2) assumption that the correlation of excess particles near a fixed particle pair is additively
composed of the excesses induced individually by each member of the pair (linear correlation field
hypothesis). Granted only these hypotheses, each in turn, the rigorous statistical mechanical relations
between rigid-sphere distribution functions and the thermodynamic pressure and compressibility
lead unambiguously to nonlinear first-order differential equations for the pressure as a function of
density. The simply obtained numerical solutions clearly demonstrate that assumption (1) is con-

siderably superior to (2).

1. INTRODUCTION

HE central quantity in analysis of the equi-

librium properties of liquids and dense gases
is the pair correlation function g’ . If the constituent
molecules may be regarded as interacting in pairs,
a complete knowledge of this function allows de-
duction of all thermodynamic properties, as well as
x-ray scattering patterns. Furthermore, the equi-
librium pair correlations may serve as the starting
point for evaluation of dense fluid transport prop-
erties.

The function ¢ is experimentally accessible by
Fourier inversion of scattering patterns. But due to
the extreme sensitivity of computed thermodynamic
properties (such as the isothermal compressibility)
upon the exact form of ¢*’, as well as inherent
interest in the statistical problem, it has been de-
sirable to seek accurate and practical theoretical
determinations of this funetion. A number of in-
vestigators’~® have shown that ¢®, as well as
higher-order correlation functions, rigorously satisfy
hierarchies of coupled functional equations. The
relation for ¢ typically involves the triplet corre-
lation function g, so that the former quantity is
not directly determined by such analyses.

It has therefore been necessary to seek suitable
approximations which, in the first place, would
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supplant the hierarchies by funectional equations
involving only g®. Secondly, these approximations
should be based upon sufficient physical evidence,
or arguments by close analogy, to ensure (at least
on an intuitive basis) that the resulting ¢® are
fairly close to their exact forms.

Unfortunately, the microscopic structure of dense
fluids is complicated to the extent that such approxi-
mations are hard to justify in a convincing manner.
The purpose of the present paper is to examine, for
the idealized fluid consisting of rigid spheres, the
results of utilizing each of two approximations to
the triplet correlation function. The first of these
is the well-known Kirkwood superposition approxi-
mation, wherein it is supposed that the potential
of mean force for three particles is pairwise de- .
composable, similar to what is generally supposed
for the interaction potentials themselves. The
alternative hypothesis investigated appears to rest
no less firmly upon the presumptive evidence for
superposition. It claims essentially that the excess
density local to a fixed particle plays the role of a
linear scalar field; the excess density near a fixed
pair, then, is additively composed of the two single
particle contributions.

The rigid-sphere fluid is convenient for illustra-
tion’s sake for two reasons. The equation of state
for this model may be reduced, in both the super-
position approximation, and linear correlation field
cases, to nonlinear first-order differential equations.
The other motivation for such choice, also a result
of the singular potential, is that the particle con-
figurations which contribute to the deduced equa-
tions of state are precisely those for which the
relevant approximations are expected to be poor,
namely, when particles are in contact. Thus, by
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choosing to aggravate imprecision in the approxi-
mations, the corresponding inaccurate equations
of state serve as sensitive indicators of the value of
those approximations; the results must be compared
to the known behavior of the system, determined
accurately by independent means.

The nonlinear differential equations have been
solved numerically, subject to the appropriate
boundary conditions. One concludes that the super-
position approximation has greater validity than the
linear correlation field hypothesis.

II. GENERAL RELATIONS

In this section, an integral equation technique for
the pair correlation function is reviewed briefly in
slightly generalized form. One considers, in a
appropriate container of volume V, a set of N
identical particles which interact through pairwise
additive central forces. At absolute temperature T,
the unnormalized configuration probability for a
canonically distributed ensemble of such systems is

exp [—ﬁ f. v(m] : ()

<ji=1
with v(7j) the pair potential for particles ¢ and j,
and where k is Boltzmann’s constant.

The correlation function for a set of n < N par-
ticles, g™ (1 --- m), is defined to be proportional to
the probability that the indicated n particles simul-
taneously occupy positions r, - -- r,, irrespective of
the configuration of the remaining N — n particles.
For the present purposes it is sufficient to suppose
that ¢™ is normalized to unity when all the =
particles are far from one another with respect
to the range of intermolecular forces. Consequently,
¢™ may be written as a partial phase space integral
of the density (1) over the coordinates of the re-
sidual N — n particles in V. Neglecting insignificant
terms of order N~',° one finds

v(ig) = o(riy),

g(n)(l n) = exp[ k%[l (n)(l n):l

=Z£;f...fexp[___

. i v(ij):l ey -0 dtw, (2)

i<i=1
3 3
f f exp [ T P 11)(1])] dxr, -+ dry.
Here, w™ is the potential of mean force for n par-
ticles.

s T. L. Hill, Statistical Mechanics (McGraw-Hill Book
Company, Inc., 'New York ,1956), Chap. 6.
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The procedure for derivation of the ¢** integral

equation (involving ¢g’) follows through use of an
artifice introduced by Kirkwood.” For one of the N
particles (chosen to be particle 1), an accessory
parameter A is introduced which serves to decouple
this particle from the N — 1 others. Thus one re-
places the pair interaction »(r;), for the chosen
particle 1 and each of the N — 1 others, by a new
function v(r,;, A) satisfying

0) =0,
A =1 = o).

Therefore, vanishing A corresponds to complete
decoupling of 1 from the remaining particles; setting
A = 1, however, produces the full coupling of N
identically interacting molecules and hence repre-
sents the ‘“‘real” system. For the moment, »(r, \)
may be arbitrarily chosen, provided it is once differ-
entiable in A, and satisfies Eq. (3).

In view of the use of A, the pair correlation func-
tion for particles 1 and 2 must now be written to
indicate A dependence. When the appropriate modi-
cations are introduced in definition (2), with n = 2,
a X differentiation, followed by rearrangement and
integration over A,” finally yields the desired inte-
gral equation,

/, —_
vy, A =

3

7)(7'1i,

—kT log ¢ (12, )) = w®(12, N)

)y
— / 3 QB@Q
— (12, N) + pfo dr fdrg A
(3)
a23,3) _ o } ,
{ (2)(12 )\) (137)‘) 3 (4)
where
p=N/V.

The terms on the right side of Eq. (4) may readily
be identified in a physically understandable sense.
The leading term is of course the contribution to the
pair potential of mean force, w*”, remaining at zero
fluid density; it is precisely the interaction potential
for the pair 12. The integral term, in two parts,
represents at finite p the nonvanishing effect of
fluctuating forces on 1 and 2, provided by the
surrounding medium of N — 2 particles.

In general, a certain amount of reversible (iso-
thermal) work is performed if the coupling param-
eter A slowly varies. The local particle density at r;

7 The derivation is covered in detail in Chap. 6 of reference
6 fmz‘a,l a special v(r A). Generalization to the present case is
trivi
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surrounding 1, when a second particle 2 is held
fixed a distance r,, away, is given by the expression

(123, A
P”i](—z)((lzx'))‘ = p1a(T3,.N), (5)

which follows from definition of the correlation
functions. The reversible work done on volume
element d’r; at r;, when the coupling parameter
changes from A to A + dX is therefore equal to

(13, N) ¢®(123, \)
o ¢g®ag, N

this is precisely the combination occurring in Eq. (4).
When Eq. (6) is integrated over all positions 1,
one obtains the total reversible work performed on
the surroundings of 1 and 2. If particle 2 were
sufficiently far from 1 (at “infinity,” but still within
the system, of course), the quantity in Eq. (5) re-
duces to

d’rs dX; (6)

)
p lim £ (123, M)

(2)
S g(2)(12’ )\) Pg (13) )\)

()
= Pl(r3> )‘):

with a differential work, corresponding to Eq. (6),
which is

(13, N)
ppit.iny

(2) 3
a9 (13, A) d'rs dX. 8

Aside from a minus sign, this is the second term
under the integral in Eq. (4).

The contribution of the ambient medium to the
pair potential of mean force, acting between a pair
of particles at distance r,,, therefore has a clear
interpretation. It is the net work that must be done
to discharge one of the particles at very large sepa-
ration from the other (A decreasing from 1 to 0),
followed next by relocation of this discharged par-
ticle at distance r,, (no work is done in this step,
since A — 0 removes the relevant forces), and finally
charging up the particle in its new location (A in-
creasing from 0 to 1) with the pair interaction
v(12, \) subtracted out of the last step since it does
not refer to the medium contribution. A nonvanish-~
ing net reversible work reflects the fact that particle
2 at finite distance from 1 disturbs the average
composition in the environment of particle 1.

We next take note of two well-known relations,®
which will subsequently be used to connect the pair
correlation functions to the thermodynamic pres-
sure p. From the virial theorem, one establishes that

0]

B _Zm [, “ar g@@, N = 1) dr. 9

okT 3kT Jo
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In addition, the compressibility may be obtained
directly from fluctuation theory without recourse to
differentiation of Eq. (9). One finds
kT(f’—*‘Llo ”)
6}) T
= % + 47rf r’lgP, = 1) — 1]dr.  (10)
0
It is our purpose to examine the integral, Eq. (4),
for a fluid of rigid spheres. With this system, the
pair interactions are either infinite, or zero, de-
pending on whether or not the chosen pair of spheres
(each with diameter a) overlap. It is especially
convenient, for these rigid spheres, to specify the
A-parameterized interaction by

o, N) = o(r/N);

o(s) = o s < a,

=0 (11

The effect of changes in A hence is variation in the
range (rather than strength) of the interaction.
As ) decreases to zero, the region of repulsion in
relative pair space shrinks finally to a point, so the
pair interaction has in essence been removed.”

In terms of the local densities p;, and p,, the
general integral equation for our special fluid is

v(12,%) , 1 [,
T ka(,dA

[ e, 2D e, ) — e, VL.

s > a.

—log g®(12,\) =

(12)

The A derivative of » appearing in the integrand
of Eq. (12), with the singular definition, Eq. (11),
only has proper meaning when combined with the
square-bracketed factor. In this connection, note
that each p,,(r;, N') and p,(rs;, ') may be expressed
as a function of r; continuous at r,; = Aa (denoted
by bars), multiplied by the appropriate discon-
tinuous Boltzmann factor (which is either 0 or 1).°

1
P12(r37 )‘,) = exp [*Wv(135 )‘,)]512(1'3; >‘,)7
(13)

1
pilrs, ) = exp ["W v(13, N):‘ﬁl(rm N).

8 This coupling scheme has recently been used also to
obtain accurate thermodynamic results for the hard-sphere
fluid by a somewhat different approach; see H. Reiss, H. L.
Frisch, and J. L. Lebowitz, J, Chem. Phys, 31, 369 (1959).

9 Cf. Phase Transformations in Solids, edited by R.
Sm';)zluchowski (John Wiley & Sons, Inc., New York, 1951),
p. 72.
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Upon acknowledging the identity

1 (13, \)
exp [__kT v(13, )\’):| N
9 L ,
akT 8(rys — \a) (14)

[this follows from Eq. (11)], the pair correlation
integral equation may be written

v(12, A)
kT

A
ta f N’ [ &L Falta, M) — pults, N)]. (15)
0 S\

I

—log g (12, %) =

One is left with an r; integral over just the two-
dimensional surface, S(\’), of the sphere surround-
ing particle 1, with radius Na. It is precisely at the
surface of this exclusion sphere that work of dis-
placement is performed in creating cavities of the
proper size to contain the impenetrable particle;
for this reason, only those values of the local density
exactly at the surface S(\') are of significance in
Eq. (15).

Essentially the same considerations for this rigid-
sphere fluid show that only the value of ¢*’(r) at
contact (r = a) contributes to the pressure. Equa-
tion (9) therefore appears,
27rpa

=14 5= ¢%@, 1). (16)

ka

III. THE SUPERPOSITION APPROXIMATION

The average density surrounding a fixed particle,
with associated ‘‘size” parameter A, is the quantity
p in Eq. (7), which we may exhibit in the form

1
pi(rs, \) = p exp [—k—T v(13, K)][l + (13, M. (17)
As the density of our fluid decreases to zero, ¢
vanishes to yield the Boltzmann factor representa-
tive of the pair interaction v, and unmodified by any

surrounding medium. Similarly, p,,, the density
near a pair, can be expressed as

pr2(Ts, \) = p exp {"EIT (13, N + '”(23)]}

1+ 0(13,N) + (23) + (123, V],
0(23) = ¢(23,x = 1),

(18)

thereby defining e. When the distance r,, is large
compared to the range of intermolecular forces,
e must be zero, since then only separate density
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fluctuations occur in the neighborhoods of 1 and 2.

There is a further condition on ¢, when X is set
equal to unity, that may be recognized. This arises
from the fact that the triplet correlation function
is unchanged upon permutation of its configuration
arguments. By combining Eqs. (5), (17), and (18),
we must have that

(1 + ¢(12)][1 + ¢(13) + «(23) + €(123)]

be symmetric in its three arguments.

Unfortunately, these considerations are not in
themselves quantitatively illuminating; it is es-
sentially the unknown character of e which prevents
one from computing the exact behavior of ¢®. It
has been Kirkwood’s suggestion that the triplet
potential of mean force w'* is approximated ade-
quately by the sum of the three mean pair potentials,

(19)

w® (123, ) = wP (12, )\)

4+ w®(13,N) + w*”(23). (20)

This superposition approximation in triplet con-
figuration space is equivalent to the statement

(123, \) 2= (13, Np(23). 1)

The hypothesis (20) is suggested by analogy with
the zero gas density situation, in which w'® reduces
to precisely the sum of the three pair interactions
v. By employing a cluster expansion, furthermore,
it may be established that the lowest-order correc-
tion in density to w'® still satisfies Eq. (20). In
addition, if any one of the three particles 1, 2, 3
is sufficiently far from the other two, Eq. (20) re-
duces to just the remaining pair potential, as rigor-
ously it must. Finally, Eq. (20) is symmetric in r,,
I;, and r; (when A = 1), so the proposed approxi-
mation to e satisfies condition (19).

We now introduce the superposition approxi-
mation into Eq. (15). When r,, > Aa,

. by
—log ¢®(12, ) = paf aN’
0

: f Prag®(13, Vg™ (@23) — 1] (22)
SN

The configuration integration simplifies considerably
upon introduction of dipolar coordinates; in terms
of reduced distances, one finds

—log g(s, M)

2’”’“ f dtK(s — Hfgld) — 1], s > \;
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K@M = [ v, v) it gl <3,
tal (23)

=0 if gl 2N

g(s; )\) = 9(2)@’12; )\)7

The kernel K involves, for this rigid-sphere fluid,
only those values of the pair correlation function
corresponding to contact with the particle of “size”
Na.

Suppose next that A becomes very large. In this
cireumstance, the interaction potential, Eq. (11),
would produce singular repulsion over an increas-
ingly large sphere surrounding the center of particle
1. The surface of this expanding sphere displaces the
other particles as it moves outward; eventually, a
“bubble” of macroscopic extent could be produced
containing only the swollen particle 1.

When X 3> 1, the surface of the expanding mole-
cule 1 acts, from the standpoint of those particles
near it, as a planar impenetrable wall. Thus, when
M is perhaps an order of magnitude or more larger
than unity, the value of g(A, A) is for all intensive
purposes constant, and equal to the contact value
for a flat wall, g,. Aside, then, from terms of lower
order in A than those retained, it is permissible to
replace g\, M) by g, in K

K(g, ) =39, N — ) lgl <N\,
=0, 19! > M

As ) approaches infinity, introduce the following
definitions:

8§ = '."12/(1,, { = 7'23/0', etc.

29

9w = lim g\ + u, N),
A0

z=x+u g0 = g..

Here, ¢' ' (u) is the correlation function for spherical
particles near a hard wall; it becomes unity at large
normal distances to the wall u. 4 = 0 corresponds
to the position of closest approach to this wall. In
view of relations, Eqs. (24) and (25), the integral,
Eq. (23), leads to an expression for the surface
correlation function ¢'” involving only a quad-
rature of the bulk pair correlation, g,

(25)

$ )

—log ¢ (w)

= 2pa’g, [ 0~ 0)lg) — 111, (26)
. Upon inserting known values for the bulk g(2)
into Eq. (26), the resulting approximate surface
correlations, like their bulk analogs, would be found
to possess alternate peaks and valleys, which be-
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come less and less pronounced as u increases. This
corresponds in dense fluids to virtual crystallo-
graphic planes arranged parallel to the hard surface.
In this manner one observes the tendency toward
loeal lattice-like structure in dense fluids.

The crucial result of this section is obtained by
setting » = 0 in Eq. (26). One obtains thereupon
an implieit relation for g,

~log g, = 2wpa’g, fo g — 1] dt. 27

Two points may be noticed in connection with this
last result. First, the integral involving g(f) is the
same one occurring in the compressibility expres-
sion (10). Furthermore, g, itself is directly related
to the pressure, since it gives the kinetic stress
acting at the impenetrable wall.® Specifically,

p/kT = pg.,.

In view of these relations, therefore, Eq. (27) is
seen to be equivalent to a differential equation for
the pressure in terms of the fluid’s density. Upon
performing the requisite elementary substitutions,
one finds

(28)

dz _ 2z — 2 log )
dze  22logz—2+1)" (29)
2= p/okT, =z = pa’.

The superposition approximation has therefore led,
by the requirement of consistency between essen-
tially independent expressions for pressure and
compressibility, to a nonlinear first-order differential
relation giving the equation of state.

IV. LINEAR CORRELATION FIELD

The next object is to obtain a differential equation
corresponding to Eq. (29), but deduced by use of
the linear correlation hypothesis, rather than the
superposition approximation. This hypothesis is
equivalent to neglect of ¢ in Eq. (18). ¢ clearly
cannot be identically zero, for then condition (19)
would be violated. But on an a prior: basis, it would
appear no less reasonable to make this supposition
that e is small, than it is equal to the specific form,
Eq. (21). One must remember in this connection
that the superposition approximation follows by
analogy with the low-density result. In this case
the function ¢ is first order in p, whereas ¢ is second
order; the latter is, by comparison, negligibly small.
The linear correlation field hypothesis therefore
attempts to extend this relationship to large values
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of p, as being at least as reasonable an inference as
superposition.

By utilization of this alternative hypothesis, the
integral, Eq. (12), is replaced by (r, > Aa)

A
“log (12, ) = %BT-f N
0

exp [_kiT v(13, )\’)]

-{exp [—,%Tv(z@]u + o(13,N) + ¢(23)]

[ g 00(13, N)
f 4t — oV

= [1 4 ¢(13, R’)]} = —pr(12,N) + ?%fo dN’

[ g 00(13,0) [__1_ ]
f d I3 a)\/ exp kT 1)(13, >‘)

-{¢(13, )\’)[exp (‘Eliﬁ v(23)) - 1}

+ exp [—% v(23) ]¢(23)}'

The leading term is precisely the first cluster inte-

(30)

gral obtained in rigorous expansion of —log ¢* in a
density series:
7(12,N) = fd3r3{exp li—-k—lT v(13, )\):| — 1}

-{e -[—i v(23)} - 1}- 31

The second term may be transformed, as before,
by use of Eq. (14). As a result, the position r, is
once again constrained to the surface S(\"). If we
denote by S’(12, ') the magnitude of that part
of the area S inside the exclusion sphere of par-
ticle 2 (this is the only region of S where
{exp [—(1/kT)v(23)] — 1} is nonvanishing), and
by 8”(12, \’) the area outside (S” is thus the com-
plement of S’ on S), one then has

—log ¢®(12,N) = —pr(12, )

A
— oa f AN S7(12, Ng(aN, )
0

by
+ e f N’ f Pro(23).  (32)
0 S’ 12,0%)

‘In accord with the previous section, A is chosen
to be very large relative to unity, and r,, is set equal
to Aa to yield contact between particle 2 and the
“hard wall.” Under this circumstance, 7 is easily
found to be %ra®. In addition, 8’(12, \') vanishes
unless A — 1 < N < \; as N covers this interval,
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e(aN’, \') is essentially equal to ¢, — 1, and §
sweeps out half the exclusion volume of particle 2.
Finally, the elementary r; integration over the
planar surface 8’ may be carried out to give

2 pa®
log g, = ?,j

lg. — 1]

— 2rpa® fo i £lg® — 11dt.  (33)

Once again it is possible to relate the integral
occurring here to the compressibility, Eq. (10),
and g, to the pressure. The resulting nonlinear
first-order differential equation is not, however,
identical to that obtained previously. One finds

dx 47
iy 1+[3 y—2logy]
4
— [E-x — 2 log x] , (34)
y = pa’/kT.

The difference obviously reflects the inequivalence
of the two approximations used.

V. DISCUSSION AND NUMERICAL ANALYSIS

By restricting the preceding development to a
fluid of impenetrable spheres, it has been necessary
to consider values of the local density in the neigh-
borhood of a fixed pair, which correspond to con-
tact with one member of this pair. Since the fixed
pair itself was eventually set in contact, the rele-
vant particle triplet configurations invariable had
all three particles close to one another. Accordingly,
the triplet potential of mean force was about as
large in magnitude as possible, so that the three
particles were strongly correlated. Under such a
circumstance, on the one hand, the superposition
approximation would be as far from aceuracy as
possible, and on the other hand, nonlinear corre-
lation effects should be maximized. Put another
way, one could say that since the triplet configura-
tions amount not to isolated, but mutually in-
fluential, pairs, the errors in the approximations
utilized should be large.

In addition, use has been made of the relation of
the system’s pressure to the contact value of the
pair correlation function when A = 1, Eq. (16), and
in the case A = « to the wall correlation, g,, by
Eq. (28). Now if, for arbitrary N\, g®'(r, \) were
accurate to order p”, but in error in the next order
in p, Eq. (16) would yield the first n + 2 virial
coefficients in expansion of the pressure correctly,
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but Eq. (28) produces only n 4 1 correct coefficients.
In this sense it may be argued that Eq. (28) is a
relatively efficient “error producer.” Any use of
this equation therefore would be expected to give
deviations at lower density than might otherwise
be found.

Finally, it should be realized that the differential
equations produced by the consistency require-
ments, which appear in the form

da/dg = f(e, B), (35)

are themselves capable of compounding errors
introduced during their derivation. It is probably
true that if an accurate pair of simultaneous values
« and B, obtained by some independent means, is
inserted into f(a, 8), the number computed would
check closely with the expected value for de/d8. But
if Eq. (35) is alone integrated over a sizable inter-
val subject to zero gas density boundary conditions,
the results can easily differ even qualitatively from
the exact equation of state. This fact can readily
be appreciated in view of the usual numerical
procedures for solving differential equations of type
Eqg. (35): The result of extending the solution for
a given increment in the independent variable
depends upon values obtained in previous exten-
sions. Errors thus tend to feed on themselves, often
catastrophically.

The (obvious) implication of these facts is that
the method outlined in this article is by no means
well designed to predict the equation of state for
the rigid-sphere fluid. The method’s considerable
sensitivity to the inexactness of individual approxi-
mations employed, however, can be used to good
advantage as a test for the extent to which these
approximations are in error. Probably the best
hard-sphere equation of state obtainable from the
foregoing integral equation formulation of distri-
bution function theory would follow from solution
of the integral equation, Eq. (23), with N = 1, then
substitution into Eq. (16).

It is solely for the purpose of comparing the
exactness of the superposition approximation, and
the linear correlation field hypothesis, that the
numerical solutions to the differential equations,
Eqs. (29) and (34), have been obtained. As previ-
ously implied, the solutions proceed from the known
dilute gas values of the pressure as initial condition.
Although each of the differential equations is first
order, their singular nature at zero density neces-
sitates specification of two arbitrary constants at
p = 0 to define unique solutions. The choice of
constants amount to fixing the first two coefficients
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Fic. 1. Distortions in the eguation of state as a result of
the linear correlation hypothesis (curve A), and the super-
position approximation (curve B). Curve C represents the
exact behavior.

in density expansion of p;
pAT = o+ Be . (0

The well-known value of the second virial coefficient
B can be obtained from Eq. (16),
B = %xd’.

37)

The predicted virial expansion in the low-density
region may readily be found by substitution of the
series

2(x) = 1 + br +cz® +d2® +ex* + -+,
y(x) =$+bx2+cx3+dm4+ex5+ cee

b = %r,

(38)

into the respective differential equations. Upon
equating coefficients of the same powers of x, one
finds for the superposition approximation

c = b
d = 5b%/6, (39)
e = 7b*/18,
and for linear correlation fields,
c =0,
d = b*/3, (40)
e = —13b*/6.
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Already the third virial coefficients are incorrect;
the exact value is ¢ 5b%/8. This results from
use of the relation between p and g,, as already
pointed out.

The numerically obtained solutions to Egs. (29)
and (34) are presented in Fig. 1, along with a curve
from reference 8, which is in accord with the ac-
curate Monte Carlo results of Alder and Wain-
wright.’® At high density, both solutions predict
values for the pressure which are too small. But
whereas the linear correlation field solution loses
significance about the low density of z = 0.2 (x
1.414 gives close packing), the superposition curve
is semi-quantitatively correct to at least twice this
value. The latter, furthermore, is at least monotoni-
cally increasing over the whole fiuid density range,

10 W, W. Wood and J. D. Jacobsen, J. Chem. Phys. 27,
1207 (1957).
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but the former displays the unphysical behavior of
negative compressibility above about = 0.23.

The conclusion to be drawn is simply that corre-
lations induced by two or more particles in a dense
fluid are not at all additive: the function e is far
from negligible. Even the superposition approxi-
mation appears to underestimate the magnitude of
this quantity. In light of the rather sensitive test
that has been devised, it would perhaps be worth
investigating the class of functions e which lead to
analyses similar to those preceding, with a view to-
ward distinguishing accurate approximation schemes.
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The methods of Mott-Smith and Rosen for the shock structure problem are correlated. It is found
that the application of Rosen’s restricted variational technique to the Boltzmann equation yields the
transport equation used by Mott-Smith, and in addition determines a transport function. The ex-
pression for the average translational temperature profile, as derived by Mott-Smith, is examined
for the existence of relative minima or maxima. For a monatomic gas the temperature profiles have
no relative extrema inside the shock wave for any Mach number. For a diatomic gas the temperature
profiles are smooth for Mach numbers below 1.89, but above that a hump appears.

HE method used by Mott-Smith' to investigate

the structure of a normal shock wave was based
on the Boltzmann transport equation. This equation
is of the following form for the one-dimensional time-
independent case:

[ouihac = [[f ot = 1199 2 de. de

= [olif)ee o

The distribution function f(c, x) was taken to be

* Present address, School of Aeronautical and Engineering
Science, Purdue University, Lafayette, Indiana.
UH. M. Mott-Smith, Phys. Rev. 82, 885 (1951).

the sum of two locally Maxwellian distribution func-
tions, each of which had constant but different values
of temperature and mass velocity. The number den-
sity in each of these two distributions was taken
to be a function of position. Thus the velocity de-
pendence of the distribution function was specified,
and substitution into Eq. (1) provided an ordinary
differential equation which was solved for the den-
sity profile once the transport function had been
chosen.

A restricted variational technique was used by
Rosen®'® to study the same problem. The advantage

2 P. Rosen, J. Appl. Phys. 25, 336 (1954).
3 P. Rosen, J. Chem. Phys. 22, 1045 (1954).



