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Electron correlation in three-electron atoms and ions is studied in two important regions of
configuration space: the vicinity of the nucleus, and the vicinity of three-electron coalescence
away from the nucleus. In both cases, weakly singular logarithmic behavior of the wave func-

tion obtains. A study is made of the nodal characteristics of the wave function near the nu-

cleus. Model systems are introduced which reflect some of the salient features present in the

actual atomic system. Suggestions are made as to the utility of the present type of analysis
with special attention to the recent transcorrelated approach to the Schrodinger equation.

I. INTRODUCTION

Two-electron atomic systems have been studied
extensively by both numerical (variational)' and
analytical ' techniques. The analytical approaches
have sought to determine the structure of the wave
function itself in certain singular regions of config-
uration space and in so doing to serve as an aid to
those engaged in performing extremely accurate
variational calculations.

Three-electron atomic systems have not yet been
subjected to so thorough an analysis. These sys-
tems have been approached almost exclusively by
variational' techniques, and the results obtained
are not yet comparable in accuracy to those obtained
for the two-electron systems.

Jt is the purpose of this paper to present a non-
variational study of three-electron atoms and ions
in order to guide possible future work on small
atomic systems. %e use model atomic systems to
lead us to the salient features of the actual atomic
systems, and then we use a modification of a tech-
nique introduced by Fock to study the three-elec-
tron atoms and ions themselves.

%'e are able to discover and make explicit the an-
alytic structure of the wave function in two impor-
tant regions of configuration space: that region in
which the three electrons are near the nucleus, and
that region in which the three electrons are near
each other, but not necessarily near the nucleus.
These are regions in which correlation effects are

of great importance, and since the three-body ef-
fects discovered here surely obtain in many-elec-
tron situations their explicit structure has wide in-
terest.

In Sec. II we discuss the coordinate systems that
we intend to employ as well as the effect of spin
when using a spin-free Hamiltonian. Section III is
concerned with a simple, exactly solvable model
atomic system obtained by requiring ail interactions
to be harmonic. In Sec. IV we treat a somewhat
more realistic model obtained by replacing only the
electron-nucleus Coulombic interactions by harmon-
ic interactions, while retaining the Coulombic elec-
tron- electron interactions.

Section V discusses the actual atomic system by
means of Z perturbation theory. In Sec. VI we
examine the nodal surface of the spatial eigenfunc-
tion in the vicinity of the nucleus, while in Sec. VII
we discuss the effect of electron coalescence away
from the nucleus.

The final section, Sec. VIII, is concerned with the
relevance of the results obtained here to present
computational efforts and to future researches.

II. SPIN RESTRICTIONS AND SPATIAL COORDINATES

Consider a system whose Hamiltonian is an oper-
ator on three (vector) spatial variables only,
H(l, 2, 3). It is well knowna'9 that a "spin-free"
formulation of the corresponding eigenvalue prob-
lem is possible. It is perhaps less mell known that
this spin-free formulation may be cast into a form
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4(1, 2 I 3}= —4(2, 1I 3)

4(I, 2I 3) = 4(1, 312) +4(3, 211).

(2)

(3)

Restriction (2) is necessary and sufficient for the
satisfaction of the Pauli principle, while restric-
tion (3) is necessary and sufficient for 4 to repre-
sent a pure doublet state.

lending itself to ready geometric interpretation (we
shall exploit this feature later). Thus if 4' repre-
sents the total wave function, a function of both
space and spin variables, and if the states with S
=S2= —,

' (doublet states) are of interest, we may
write the wave function as

q'(T, 5, 5)=4 (1, 2l 3) n(1)n(2)P(3)

—@(1,3 I 2) a(1) iI(2) o(3)

- C (3, 2I I}tI(I)o(2) ~(3),
where 4 is a function of the spatial variables only
which satisfies the restrictions

Owing to the independence of the spin functions
in Eq. (1), the eigenvalue problem is equivalent to
the pure spatial problem

(4)

where 4 must obey Eq. (2} and Eq. (3), In this
way we are able to effect a separation of the spatial
arA spin coordinates, insofar as the eigenvalue
problem itself is concerned.

In the sections that follow, the Hamiltonian will
always have the structure

H = —2 (V1 + V2+ V3} + U(1 11 r21 1 3)

and we find it convenient to utilize the following co-
ordinate systems.

The ground state of the three-electron system is
an S(L =0) state, and hence depends on only six
variables specifying the relative orientation of the
three electrons and the nucleus. For such states
we n1ay write the Laplacian directly in terms of the
interelectron coordinates (r1, r2, r„r,2, r„,r2,). The
result is'2'"

1 8' 1 8' 1 8' 2 8' 2 8' 2 8' r'„+r', -r', 8'
V9 = Vl+ Va+ Vs = ss 1+ ara+ sfrs+ ~ rla+ ~ rls+18rl r28r2 y3 rs r12 ~12 yls yls ras 8r23 ylr12 rl r12

13+ ~1 ~3 ~12+ 2 ~1 ~23+ 2 ~$ 8 2$+ r3 r2+ + + +rlr]38r18yl syay 128y28ylayayasray23rsra
2 2 =~ 2 2 2 2 2 2 .2 2 g 2 ~ 82rls+rs l 1 r12+r13- y23 8 r12+ r23- r 13 8 r13+ r23, 12+ + + + r ]6%

rsr» 8y, 8r» yla ls 8 128 ls 12r23 8r128ras r13r» 8 ls8 as

For some purposes it will be more convenient
to use the full set of nine hyperspherical coordinates
chosen as follows:

~a» a a—Sin ya COS yaSin yacos ya 8/2

p = '&1+ ra+ ys
2 2 P(p( oo

L'(81, q1) L'(82, ~)x
8ya cos Xa sin )(2

(10)

1 8
V9 —

8 P ——
P 8P 8p p

(6)

where the generalized angular momentum operator
—Ag 1S

1 8

Sin )(1COS p 1 8q,

L (83, (P3) A3

ey, cos2y, sin y,
'

In this last expression —A& is given by

r, = pcosy»

r, =p»ny, cosX2, O'-Xl, X2 2~

y2 = p»nX1»nXa

together with

~is~is ~2s+as ~ss~s s

the usual spherical angles of particles 1, 2, and 3.
Then the Laplacian has the form4

and —L (H„y,) is defined to be

—L'(8;, %1)= . —sinH, + . 2, . (11}
8 . 8 1 8'

sine& 88, ' 88, sina8, 8@~2

We will also have occasion to use an orthogonal
transformation of the (r1, r2, r3) system defined by

R1 = 3 (r1+ r2+ r3}, R2 = 2 (r1 —r2},'(12)
R3 = 6 (2r3 —r1 —1'2) ~

This will be called the center-of-mass system. Its
utility arises from the fact that restrictions (2) and

(3) concern only R2 and R,.
III. NODAL HYPERSURFACES IN A MODEL

ATOMIC SYSTEM

Mathematically speaking, one of the simplest mod-
els of atomic systems obtains obtains from the fol-
lowing simple rule: Replace every Coulomb inter-
action by a corresponding harinonic interaction. We
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will caQ this simple model the harmonic model. A

similar model has been studied in the case of mole-
cules. "

The Hamiltonian for the harmonic model of three-
electron atomic systems is thus

H = —3 (Vj+ V2+ V3) + 2(&1+32+ r3)

—2X(3 j2+ 'Yjj + 3 23} (13)

in appropriate units.
For Sing states, which are of interest here, the

problem is to solve the eigenvalue equation

(H E)—4'= 0, (14)

with 4 chosen to obey restrictions (2) and (3) as well
as to correspond to an L = O(S) state U.se of the
center-of-mass system of coordinates (12} allows
(14) to be written

(20)

+13 +23 3(+1 ~2 }

For fixed n-spin electrons 1 and 2, (21) is satis-
fied when the P-spin electron 3 moves in a plane
such that

(21}

+23 +13 ~

If the positions of electrons 1 and 2, the n-spin
electrons are fixed in space (20} is satisfied when

electron 3, the P-spin electron, moves in the plane
which perpendicularly bisects r». But if the posi-
tions of one e-spin electron and one P-spinelectron,
say electrons 2 and 3, are fixed in space, (20) is
satisfied when the other a-spin electron, electron
1, moves on the surface of a sphere with its center
at particle 3 and radius 3 23 (Fig. 1).

ln the case of 42 (19) the nodal surface is de-
scribed by the equation

[ 2(V1+ V2+V3) + 3(R1+R2+R3) r, 2 (rj+r2+r3 (22)

—TX(R2+R3) —E]4=0, (15)

where the subscripts on the Laplacians now refer to
the new R coordinates. The eigenfunction 4 is sep-
arable in these coordinates and the separable solu-
tions can be easily written down.

For our purposes it is sufficient to write the first
two eigenfunctions corresponding to doublet S states.
The ground state is described by the eigenfunction

41=Nj(j'23 313) exp[- 3(3j+&2+33)

+ jl(x)(r'12+ 3 13+ r2'3) ], (16)

where N, =Nj(X} is a normalization constant and q(X)

=/[1 —(1—3&)" ]. We use interelectronic coordin-
ates here for convenience. The energy of this state
is

E (X) +5(1 3X) x2

For X =0 this solution is degenerate with the eigen-
function

4, = N2[3(r'j —r'2) + (3'~ - r'13)]

xexp[- ', (r, + rz+ r, ) + ji(X)(rj2+3-13+3 23)] ~
(18)

with eigenvalue

E,(~) = —,'+ 4(1 —3~}"'.

(a)

(b)

12

I

I
I

'2

Although the model here is very simple, it has one
feature worth looking at in some detail. The 4„for
this model possess nodes when viewed in the full co-
ordinate configuration space. We expect the spatial
eigenfunctions for the actual (Coulombic} three-elec-
tron system to possess some type of analogous nodal
structure as well, and so we will examine the nodal
surfaces of 41 (16) and 42 (18) in order to gain fa-
miliarity with the concepts involved.

The nodal surface of 4& is particularly simple.
From (16) 41=0 (for finite r, ) occurs when

FIG. l. (a) Surface P on which the lowest S eigen-
function for the harmonic model f Eq. (16)] vanishes for
fixed positions of n-spin electrons 1 and 2. The plane
P is (r3 I r&3 ——r23), P perpendicularly bisects r&2 ~ The
nucleus is indicated by 0. (b) Surface on which the lowest
S eigenfunction for the harmonic model I Eq. (16)] vanishes

for fixed positions of one o-spin electron 2, and one P-
spin electron 3. The sphere shown is centered at electron
3 and has radius r». The nucleus is indicated by 0.
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l2

significant to note that none of the nodal surfaces for

the model are the same as would be obtained from

a simple orbital product description (restricted
Hartree-Fock} of this system. ~s

IV. ELECTRON-ELECTRON-ELECTRON COALESCENCE IN

ANOTHER MODEL ATOMIC SYSTEM

A somewhat more realistic model atomic system
is obtained by the following rule: Replace all nu-

clear-electron Coulomb interactions by harmonic

interactions, but retain all Coulombic electron-
electron interactions. We call this model the Hooke

model for atomic systems. For two-electron sys-
tems this model has been studied both numerically'

and analytically'7 (by perturbation theory).
The Hamiltonian for the Hooke model of three-

electron atomic systems is

H= ——,(V', + V', + V,')+ ,(r, +r,—+r,)+), —+—+
+12 +13 23

(23)
in appropriate units.

The eigenvalue problem for $1/2 states is once
again to find those spatial functions C for which

(H- E)4 = 0, (24}

FIG. 2. (a) Surface on which the first excited S eigen-
function for the harmonic model [Eq. (18)] vanishes for

~bt

fixed positions of G.-spin electrons 1 and 2. The plane P
is [r3i r,z' (r&+r, +r3] =0] and is perpendicular to r&&

The nucleus is indicated by 0. (b) Surface on which the

first excited ~S eigenfunction for the harmonic model

fEq. (18)] vanishes for fixed positions of one n-spin elec-
tron 2; and one P-spin electron 3. The sphere shown is
centered at —

~ r3 and has radius I r&+& r31. The nucleus

is indicated by 0.

Thus the plane in which 3 moves has the vector to
the center of mass of the three-electron triangle
perpendicular to r, s. If the positions of electrons
2 and 3 are fixed instead, electron 1 must move on

a spherical surface with center --,'r, and radius
I ra+-,'rs I (Fig. 2).

Although the nodal characteristics are certainly
not directly transferable from this simple model to
the actual three-electron system, they are an in-
dication of the kinds of features we can expect when

we treat the true atomic system. It is especially

with 4 satisfying restrictions (2) and (3), and cor-
responding to a zero angular momentum state.

It is convenient to use the center-of-mass sys-
tem of coordinates (12) here just as it was in Sec.
III. Note that

r12 —- 2 R2,1/2

r, 3
= 2 (Ra+ SRs —2WRsRs cos8»)'

r»=2 '"(R'+SR' 2+ABBR+, cos8)'"

where e» is the angle between R2 and R,.
The eigenvalue problem (24) thus becomes

[- a(Vf+ Vs+ V3)+ a(Ri+Rs+Rs)

(26}

where

+ XV(R„R„cos8»)-E]4 =0, (26)

2-1/2
V(Rs, R, cos8») =

2

21/2

(R', + 3R,'- 2v SR', cos8„)'"
21/2

[Rs+ SRs+ 2(3)'~sRs Rs cos8»]" (27)

RaR,cos8» exp[- ,'(R,'+ Rs+ R,)], — (28)

Let us concentrate on the ground-state solution of
(26). For X =0, there are two degenerate solutions
of (26) corresponding in fact to the X = 0 limit of
(16) and (18). In terms of the center-of-mass co-
ordinates (12) these two eigenfunctions are propor-
tional to
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R,R,cose, 2 exp[- —,'(R, + R2+ R, )] . (29)

C =2 e & p(R2, R3 cose23) (so)

The perturbation V (27) is a function only of R2, R2,
cose23 and thus never connects these degenerate
states. In fact, the ground state for X &0 corre-
sponds to (28) alone (as it did in the previous mod-
el).

Of more importance perhaps is the fact that the
center-of-mass motion 8,, of the model can be sep-
arated. Since restrictions (2) and (3) do not con-
cern R„ the ground-state solution of (26) must have
the form

V, + V, =,+ ———-2A (a, 8),
~P p ~P P

where the angular operator A is

1 (8 . , 8 1 a 8
I
—sin'(y —+ . —sin8-

sin2n 'en Ba sin8 88 88

The potential energy term in (31} is

2
2P + z/2 IcsczQ +2'"p ~

' (2+ cosa+ 3'"sine cos8) "'
2

+ (2 ~ os —3'"s' case)'"

(33)

(34)

(ss)

p =R +A

tan —,'a =R2/R2,

cos8 = cos9»,

oo &p ~0

m &cy &0

w-8 0

(32)

the condition that A~ and A3 simultaneously be small
corresponds to small p.

In terms of the coordinates (32) the Laplacian in
(31) has the form

where the eigenvalue problem for P is

[-Hzv2+ V2) + 2(R2+ R3) + XV(R2, R3) cos&22) —e ]g = 0,

e =Z--,' . (31}

This reduces our problem to a pseudo-two-elec-
tron problem in only three variables, a situation
we are more able to cope with mathematically.

Although the Hooke model is not expected to be
accurate in its description of global properties of
the actual (Coulombic) atomic system, it should be
approximately correct in its description of certain
local properties in configuration space. In partic-
ular, in the region of space where the three elec-
trons coalesce away from the nucleus, the poten-
tial of (23) possesses the same singular terms as
does the potential of the true Coulombic atom.
These singular terms must certainly have dominant
importance in "shaping" the wave function for the
actual Coulombic atom in that region of space far
enough removed from the nucleus. In this region
of space for both the Hooke model and the actual
Coulombic atom the role of the nuclear-electron in-
teraction terms is to bind the electrons to the nu-
cleus, while the interaction among the electrons in
both cases is the same and serves to determine the
local form of the wave function. We are thus led
to study our model in the region R, &0, R~ and R,
small.

The factorization of the center- of-mass motion
(30) allows us to consider any R„while the desire
to study R2 and R, small suggests we change coor-
dinate systems slightly in (31). If we use an ana-
log of the coordinates introduced by Fock for
two- electron systems

and we desire to find the solution of (31) for small
p. Recall that the solution must be chosen to sat-
isfy restrictions (2) and (3). (It is already guaran-
teed to correspond to a zero angular momentum
state. )

Although we could proceed in the same way that
Fock' did for the ground state of the two-electron
atom, we choose to follow Hylleraas' instead.
Thus we write (31) as

[V2+ V2 —p' —(2"'~/p) U(a, 8)+ 2e) 0= o

where

U a, 8 = csc-, a+j. 2
(2+ cos a+ 3'~2 sina cos8)'~2

(s6)

+
(2+ cos a —3'~2 sinn cos8)'~2 ' (37)

(= 42+ A+ 6+". (36)

(where the g„ forms a series of functions with as-
cending p order) and solve the equations
(V2 V2+ V2)

~64o= o

V'. C, = (2"'~/p) U(a, 8) C„

V22$2 = (2's)./p) U(a, 8)g, —2e g2,

(»)
(4o)

(41)

in turn for the |t)„. The g„are required to be finite,
continuous, and square integrable over the surface
of an appropriate sphere (not over all space}, and
must satisfy the symmetry restrictions (2) and (3).
In general, this will lead to a formal solution of
the original equation (36). It would be possible to
make this formal solution an actual solution of the
quantum-mechanical problem if the degrees of
freedom remaining in the g„could be chosen so
that the resulting function is actually a member of
the appropriate Hilbert space. We are not pre-
pared to undertake a study of this complex point,

and observe that the Laplacian operator is formally
of degree —2 in p.

We then formally expand g as
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but will assume that such convergence can be ob-
tained.

In Sec. V we will demonstrate this technique for
two-electron systems where results are available
by other means3 and show that the present scheme
leads to the known results.

All of the solutions of (39) are easily found' and

the one corresponding to the ground state of this
system is

$0= Np sinecos8

=2NR R, cose „ (42)

where N is a constant not determined by this pro-
cedure. The equation for g, then becomes

(V22+ V2$}r/r, = 2' ~2M1pU(a, 8) sine cos8. (43)

g, should contain terms of at most p3 order and

there are no new homogeneous solutions to (43)
with this characteristic. Thus, we need a particu-
lar solution to (43) which satisfies the auxiliary
conditions (2) and (3). Sucha particular solution is

g, = 2 ' 2NXp$$3 ' sin —,
' a[(2+ cosa —3'~ sine cos&)'~ —(2+ cosa+ 3~2 sine cos&)~2] —sin-,' a sine cos&

+ 3 sine cos&[sin-,' a+ —,
' (2+ cosa+ 3'~ sine cos&)'@+ —,

' (2+ cosa —31~2 sine cos&)1~2])

2$1$}(12+ 1$+ 2$)(3 1$+ 322212)& (44}

where the last result is written in the more familiar interparticle coordinates. Our next task is to examine

1!I2, insofar as we are able. First, we write (41) using (42) and (44):

(V2+ V$)$2= ,'NX p U(a—,8)F(a, 8) —2Nep sinacos&,

where

F(a, 8) = 3 '~2 sin —,a[(2+ cosa —3'~ sinacos&)'~ —(2+ cosa+ 3'~2 sine cos&)'~2] —sin —,
' a sine cos&

+ 3 sine cos&[sin-,' a+ —,
' (2+ cosa+ 3'~ sine cos&)'~2+ —,

' (2+ cosa —3'~2 sinecos&)'~2].

(45)

(46}

(1 2 2 &)1y2
= QP, ( sco)X8

ln0
(46)

and the C'„" are Gegenbauer polynomials defined by

, = Q C„"'(cosa)x", l o0. (49)
1

1+x —2xcosn '

The eigenvalues of A~ are

A24„, =n(n+ 2)4 „,, (50)

The inhomogeneous part of (45) is now too com-
plicated to expect a direct solution by simple meth-
ods. However, we can generate a solution in the
following way. The angular operator A2, (34), has
the complete set

4„,(e, 8) = N„,(sine) 'C„","(cosa)P, (cos8),

n = 0, 1, 2, .. . , l = 0, 1, . . . , n (47)

of finite continuous square-integrable eigenfunc-
tions. 4 The P, are Legendre polynomials defined
by

can expand the inhomogeneous part of (45) in terms
of the 4„,, and we get

(V2+ Vs)la= P+ +R., 14'., 1(» 8),
n& l$$0

where the R„,, are

R„,, = ,'NX (4n „—UF)„—2 ~ ¹511, (54)

the notation (, )„ implying angular integrations as
in (52). Let us expand !!I2 in the set 4 „,as well:

a oo

g= Q Qq„,(p)4„,(a, &).
nW l=O

(55)

Using (50) and (52) we obtain an ordinary differen-
tial equation for the y„, .

d 5 d 4n(n+2)
2 inl n1P1 (56)

which may be integrated directly. The homogeneous
solutions are p" and p "~, and if nn$2, particular
solutions are

with degeneracy n+ 1, and the normalization con-
stant is

1 R„,p4

4 (n —2)(n+ 4)
' (57)

(2l+ 1)(n+ 1)(n —l)!
2$(n+ l+ 1)!

corresponding to the normalization

(51)

1$R2,p lnp. (56)

However, if n = 2 then the particular solution must
be

v f da f d&i sn2sai n&„4,4 2=5„5,$. (52)

By virtue of the completeness of the set (47}we

Corresponding to n= 2 there are three hyperspheri-
cal harmonics (l = 0, 1, 2). They are

42 2= $~~2(4cos2a —1),
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42, =2' 3' m
' sin2ncos6),

C = 2i/ps&/2sjnpir(3cospg —1).

(59)

By symmetry (e -v —8), Rp p and Rp p must be
zero. The constant R» does not vanish by sym-
metry and, in fact, we compute this constant to be

p 6323 / 17@ /

2, 1 2V/2)( 7)( 5 23/2)( 3l/2
= -ÃX'

= -2. 67996 &&

25/2 3/2

5

(6o)

Thus we have discovered a three-body effect in the
Hooke model atom which has primary importance
when the three electrons coalesce. This type of
logarithmic wave-function singularity (58) is anal-
ogous to the one first found by Fock for the actual
two-electron atom.

Writing out the wave function in interparticle co-
ordinates we have

g = 3 '"&[(r» —«ip)+ p&(r» —«ip) («12+ rip+ r»)

x(3«ip+3«» —rp}+(6v) N 'Rp, i(r» -rip)

1 = '/'e ' 2s=-,'(2s) '/'(2 —r)e~/P (67)

are hydrogenic functions. It is, perhaps, not so
clear that solutions to (65} in the form of appro-
priately chosen first-order two-electron functions
(multiplied by hydrogenic functions) obtain. Never-
theless, it can be shown ' that

4i(1, 2l 3)=2"'[yi(1
l
3)»(2) -41(2l 3)»(1)]

+ p[2gi(1, 2}ls(3)+pi(1, 3)ls(2) —gi(2, 3)ls(1)]
+ p [ g, (2

l
3)1s (1) —g i (1

l
3)1s (2) ], (68)

where

and must correspond to an L = 0 (S) state. The first
equation in this hierarchy, (64), is separable in
the coordinates r, , r2, and r3 of the individual
electrons, and the 4p for the ground state is easily
seen to be

ep(l, 2 I 3) = 2 '/P [ls(1)2s(2) —2s(1)ls(2)] ls(3),
(66)

where

x(r,p+ r» —2«ip)ln(r ip+ r ip+ «,', )+ 0(p') ] .
(61)

We will see in Sec. VII that the form discovered
here for the Hooke model has direct application to
the actual (Coulombic) three-electron atom.

V. Z 1 PERTURBATION THEORY AND GROUND

STATE OF THREE-ELECTRON ATOMIC SYSTEM

——(V +V)-—1 2 2 1
2 1 2 y

E
—(V +V )-—1 p 2 1
2 1 2

— (E, —')

A. 1 2
r2

ls(1)ls(2),

+
8 fi(1, 2)

1 5
'V2

[ls(1)2s(2) -2s(1)ls(2)]
21/2

(69)

(7o)
The Hamiltonian which describes the motion of

three electrons in the vicinity of a fixed center of
charge Z is

1 1 1H= —p(V i+ Vp+ V p) ——————
r1 r2 r3

--(V+V)- ———+- Ci(il 2}(
1 2 2 1 1 5 c

r1 ~2

1 [ls(1)2s(2) + 2s(1)ls(2)]
%1P 21/2 (71)

t 1 1 1
+X

r12 r13 y'23
~= Z-' (62)

4 = 4)'P+ A, C 1+ ~ ~ o

E=Ep+ AE1+~ F.2+X E3+ ~ ~ ~
(63)

we are led to seek solutions of the set of equa-
tions '

(Hp Ep)4p= 0 (64)

(65)(Hp -Ep)4i = (Ei -Hi)4p ~

For the ground state of this atomic system,
each of the C„must obey restrictions (2) and (3)

in Z-scaled atomic units. Obviously ~ can serve
as a natural perturbation parameter and with this
partitioning of H(=Hp+XHi) and the corresponding
expansions of the spatial eigenfunction and eigen-
value

The "A." label thus refers to the 1s 'S state of
the two-electron atomic system, while "I3" refers
to the 1s2s S state, and "C" refers to the 1s2s S
state. Note that E", =-', , E,= Qg, E, = +, and that
the E, of (65) is

A 3 B 1 CEl=El+ PE1+ F1 . (72)

The problem now, at this level, has thus been
reduced from a single three-electron problem to
three two-electron problems.

Variational techniques ' ' ' can now be used to
calculate the gi, P, , and g if global properties of
the system are of interest. We are here more
interested in local properties of the wave function
in configuration space, and thus we intend to study
(69)-(71) by a method' essentially equivalent to
that used by Fockp and then to relate these results
to the three-electron system through 4 i (68).

We will use the Fock coordinates

P =t'1+f2 &P —02 2 2
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1tan 2(2 = rz/r1,
2 2 2+1+ &2 —&12cose =

2f 1/2

g& o. ~0

~'e'0
(73)

A A A A A A
~4 1

= Po + %1 + ('pz + ('pz + P4 + ' ' '
b (74)

in our treatment and will analyze (69)-(71) for
small p. In terms of (p, n, 8} the Laplacian has
the same form (33) used in Sec. 1V.

We treat (69) by writing a formal expansion of
as

Vo (p", = —(2/p)(sec 2 c(+ csc 2 o() ('po

+ (211 '/p)(1 -sinn cos&) '
(76)

Vo 1p", = —(2/p)(secz'(2+ csczo() (p1" + 2(po" —2w 'E
1

—22 (sino(2+ cos zo()(1 —sino( cos&} '

The results of solving these equations are [note
that (p„"(r, I rz) = (p„(rz I r, ) for singlet states]

and determining the y„ from the equations
(Vo ——V1+ Vz)

~e90 =o2 A (75)

('po (1 I 2) = N„,

('p, (1 I 2) = —N„(r, + rz) + zn 'r, z,

(78)

(79)

('pz (1 I 2) = N2(r-1+ rz) —
2 2 'E,"(r,+ rz ) —[(w —2)/32 ]r1rzcossln(r, + rz)

'o n RA
+(4 ) Zi 5 1,

"'
3} P4(„,(, e) (80)

&2(1 I ) = -2 NB(r1+ rz) +1'2 w 'E1 (2r, +3r,rz+3r1rz+2rz)+2411 'r
z

——,
' a, (r, +rz)r1r, cosg+ X", (li 2),

y4 (1 I 2) = —[(2 - 2)/6(hr ](4r 1+ 5r1rz + 4r z)r rz cos & ln(r1+ r z) + az(sr, —r z) (r1 —3r 2)ln(r, + r 2)

+ (zzr, rz(3 cos 8 —1)ln(rz+ rzz)+O(p4) .

(81)

(82)

(83)

where

&"((2, e) = (seczn+ csczo()(1 —sinn cose)'~

The constants NA and a1 are not determined by
this type of analysis. The constants R"„,are de-
fined by

&"„,, = &@„,,(42, e), ft"((2, s)&o

-1

+ (r1+ rz) —(211) p(sec zQ+ csc~zQ)
r12

n AR.. r

( 1)( 3) tlcl( r )
n~1

Note that X3 must contain the term

+ [(2 -2)/sw ](r1+ rz)r, rz coseln(r, + rz)

(85)

+ 2(sino(2+ cosza)(1 —sinn cos&) '~ (84)

and the 4'„, , are defined by (47). The integral(, ) „
in (83) refers to an angular integration [as in (52)] .
The constants ~ and ~ are given by similar angular
integrations, but we have not evaluated them ex-
plicitly. They are fixed numbers, however, and
could be determined. It is even possible for them
to be zero, but we feel that this is not very likely.
The function Xz [in (81)] is the solution to the equa-
tion

('po (1, 2) = NB(r, —r z), (86)

as well as terms of order p3. We will find, how-
ever, that we do not need y", for our particular ap-
plication.

These results, (78)-(82), agree with similar re-
sults obtained by the use of Pock's original meth-

32 22 ~ 23

Applying a similar technique to (70) yields
[(p„(r1, rz) = —(p„(rz, r1) for triplet states]

2(z —2) 2 2Vo Xz = z (r1+ r'2) coseln(r1+ rz)3r

rp, (1, 2) = —,' NB(r1 —rz) (r—1+r2+ ,' r,rz)—
+ 122 11 (1 1 rz) 'Y12

2 2 (87)

Pz(1, 2)=NB[/(r, -rz)+-, r,rz(r, —rz) ) - (32011) E, (r, —rz)+ (r, —rz)r, z+—
B 4 4 2 2 2 -1 B 4 4 1 2 2 2(7m —20)

n R
x(r', —r'(r, r, cosbb ( ', +r'( ——

O r Z, ,",S, , (s, b)I b (r', —r' , ,(cobe
(n 02)

The constants N~ and b, are not determined by this anaylsis, but the R„,are given by

(ss)
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R„,= (4 „,(n, 8), R (ca, 8})„,
where

R (n, 8) = 5(csc a'o. cos —ao. —sec an sin —,
' n)(1 —sinn cos 8)'~ + 11(cos —ao, —sin —,'a)(1 —sinn cos 8)

+ 19(sinao. cos —an —cosan sin an)(1 —sino, cos8)

(69)

(90)

and where the (, )„integration is the same angular integration as in (63). This state has also been analyzed
by the Fock technique.

Proceeding to analyze (71) we obtain

y o(1
I
2) = N, ,

+1(112)= -N. (r1+ra) + 4w r1$,

(91)

(92)

ya(1I 2) =N, [ $$ (r, +ra)+r, ra] —Tw. w E,(r, +ra) —
6 a r, racos81n(r, +ra)c ~ 2 2 a a 2 3

n A

+(6w) + +, "1,', , p 4„,(o., 8)+c,r, r cos8,
(ff41)

8$'$(1I 2) = — $$N, (2r,'+ Vr, ra+ Vr, ra+ 2ra)++so w 'E'j(2r', + 3r, ra+ 3r, ra+ 2ra)

+ &$$3w 'r', a
—ot-w 'r, a(r, +ra ) —', c,(r, + ra-)r, ra cos8+ —,

' 1$"(1I 2),

ys(1
I
2) = —[(w —2)/480w ](13r,+ 20r, ra+ 13ra)r, ra cos 8 ln(r, + ra) + ca(3r, —ra)(r, —3ra)ln(r, + ra)

+ csrsra(3 cos 8 —l)ln(r,'+ ra) + O(p )

(94)

(95)

N, and c, are undetermined, R„, is given by (63), y, is the solution to (65), and the constants ca and c,
have not been determined (but could have been).

Combining the results of (V6)-(82), (86)-(66), and (91)—(95) according to (68) and expanding the result
near the nucleus (r, +r', +r, =0) we obtain

4$(1, 2I 3) = ,'w '
($N„—+6Na+$N, + aas —c$ —E$ /6w+E$/Gw)[(rs —ra)+ —,

' (r, —ra} - (r, + ra+ ra)(r, —ra)+ O(p )]

+ w (c$ Qs) f(rss ras) o (rs ra) (rf + ra + $ $)(rss ras) + [rss(rf + ra} rgas(ra+ rs)]

(ri ra)(rs+ra+rs)rs+O(p )]
+ st w Or1$+ r1$+ ras)(rs ra) +1(r1$ ras} [2r,a(rs —ra) + rss(rs —rs}+ ras(rs —ra)]+ O(p )}
+ —,'w Ow —2)/80w [(ra+ra)rara cos8$$ —(r$+ ra)r$rs cos8,$]lnp —(7w —20)/240w

x [2(r$ —ra)r, racos8, $+ (r, —r3)l sl $ cos8$$+ (Ys ra}rara cos8$]

x lnp + (aa —2ca)(rs —ra)(3rs+ 3ra —10rs)lnp

+ (as —2cs)[r&rs(3cos 8„—1) —rar, (3cos 8$$ —1)]lnp +O(p )],

where p = ri+ &2+ &3 ~
2 3 2 2

By expanding 4o, Eq. (66), as

4'o(» 2I 3)= sa-" [(rs-r2)+ $(rs ra)

—(r$+ ra+ rs)(rs —ra)+ o(p')]

(97)

and combining this result with (96) we obtain an
expansion of the three-electron atomic wave func-
tion

C(» 2I»=4o(» 2I»+~4$(» 2I»+O(~')
correct to O(Z ) and O(ps). The terms of O(p )
in this result reflect the two-body interactions
("cusplike" behavior), while the terms of O(p lnp)

are manifestations of three-body effects (electron-
electron-nucleus). The fact that the wave function
has a leading-order p2 term is a simple consequence
of the restrictions [Eqs. (2) and (3)] imposed by
the Fermi statistics and the requirement that 4
represent a pure spin state.

VI. NODAL HYPERSURFACE IN THREE-ELECTRON ATOM

In recent years it has become possible to per-
form variational calculations of the Hartree-Fock-
type routinely for small atoms and molecules.
However, it has also become clear that theoreti-
cians must progress beyond the Hartree-Fock
level and account for the correlation effects in
these small systems if an ab initio theory is to be
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used to explain experiment accurately. One of
the more interesting attempts to include correla-
tion effects directly in wave-mechanical calcula-
tions has been advocated recently by Boys and
Handy ss-28 The technique they introduce, called
the transcorrelated method, expresses the wave
function for an electronic system as the product
of a "correlation function" C and an "orbital func-
tion" 4:

C4 . (99)

The correlation function C is required to be a
completely symmetric function of the spatial vari-
ables and the orbital function C possesses the
symmetry required by the Pauli principle and by
the fact that the function CC should represent a
pure spin state, as well as any other symmetry
peculiar to the particular system being studied.
In actual practice the orbital function 4 has taken
the form of a simple antisymmetrized product of
spin orbitals. This last restriction is imposed
for computational convenience and is certainly
not necessary to the general method.

This limitation on 4 (to a simple antisymme-
trized product) can have one effect that may be
unfortunate in certain cases. Since the function C
is chosen to be positive and completely symmetric,
it can possess no nodes. Thus the nodal hyper-
surfaces of the true wave function must be reflected
in the orbital function 4 if equality of the approxi-
mate function CC and the exact function is to ob-
tain. Let us examine the effect that limiting 4
to a simple antisymmetrized product has for the
case of the ground state of the three-electron
atomic system being studied in this paper. In
spin-free terms the approximation (99) with 4
limited to a simple doubly filled orbital function
would be

~~(r f rs~r, ) =E@(r„rs~r ), (101)

where H is given by Eq. (61) and 4 (1, 2) 3) repre-
sents the exact spatial eigenfunction [not an orbital
product as in (99)].

The result we obtain [ the coordinate system
given by Eq. (7) is relevant to this analysis] is

C(r3, rs rs)[P, (ri)%3(rs) —93(rs)V, (rs)]93(rs). (100)

It is obvious that this function has a nodal surface
at rg=rp.

The question now arises as to the character of
the true nodal surface for this system. The wave
function, in general, for this state of a three-elec-
tron atomic system is a function of six variables
and must obey Eqs. (2) and (6). It must also cor-
respond to a solution of the Schrodinger equation,
but Eqs. (2) and (3) alone partially dictate the
nature of the nodal structure (since the Hamilton-
ian is a completely symmetric function). From
Eq. (2) we can conclude that the exact eigenfunc-
tion possesses a nodal surface containing r&= r2.
We might at first guess that this is all we need
to know, but the harmonic model studied in Sec.
III indicates this is not the case.

We are not equipped mathematically to study
the general nodal implications of Eqs. (2) and
(3) taken together, but we can examine the
character of the wave function for the ground state
of our three-electron atomic system in the vicin-
ity of the nucleus and determine the nature of the
nodal structure in this region at least.

In Sec. V we obtained the leading-order terms
(in p) of the wave function near the nucleus cor-
rect to O(Z ). We can do a little better than this
by applying our expansion technique' directly to
the Schrodinger equation

rs) =A((r, —rs)+-,'(r, —rs) —(r, +rs+ rs)(r, —rs)+-,' X(r,3+ r»+r»)(r, —rs)++).(r» —ass)

——,'X[2r,s(rf ss)+r»(r, —r, )+rss(rs —ss)]+O(p lnp)]+B/(rss —rss) —3(r', —rs)

3+ 3+ 3)( 13 ss) + [ 13( 1+ 3) 3 ss(3 3+3 3)] s(s g &s)(s 3+3 3+3 3)s 3

+ 3 &(&»+&»+&33)(&»—3'ss) —3' X(r,3+r„+rss)(r» —rss)r»+O(p Inp)], (102)

where p =r~+rz+r3. We still do not know the
values of A and B except that B must be of order
& [by Eqs. (96) and (96)]while A is of order Xs.
Their ratio is what matters here, and we estimate
this ratio (in the particular case of the neutral
atom, X = —', ) to be

@y
' 1s 2s configuration and 42: 1s2p configuration

with the orbitals taken as scaled hydrogenics and by
comparing this with the corresponding ratio calcu-
lated for the case

43 =Ns (33 —rs) e

B/A:—0. 04. (102) @3=Ns Krscos8is —rsrscos833) 8

We obtained this estimate by calculating the ratio
B/A for the simple wave function C, @,+C, Cs where

where p =r&+r2+r, and n is a variational param-
eter. Since this latter function is a very poor wave
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3

A+B

FIG. 3. Nodal character of the ground-state eigenfunc-

tion of the three-electron atom for sufficiently small

p (p =r&+r&+r3). The positions of one n-electron f, and

one P-electron 3, are fixed. [See the discussion after
Eq. (107).] The sphere shown is centered at [B/Q+B))r3
and has radius t r2 —[B/(A+B))r3 I .

function from an energy standpoint and since the
ratio 8/A was of the same order of magnitude as
in the former more accurat:e calculation (8/A
=0.036, hydrogenics; 8/A=0. 020, hyperspherical)
we have made the choice (103). The calculations
to be mentioned below were checked with values of
8/A in the range 0. 02-0. 04 and the same qualita-
tive effect was noticed for each case.

We approach the nodal surface problem near the
nucleus by considering the nodal structure of
4(1, 21 3) for p & po, where p'= r', + rz+ rg and po
is a constant. If we choose po small enough, then
the wave function

4 (1, 213) = p'F2(II)+p'F~(fI)+ (104)

is effectively described by the term p2F2 (II). Here
0 denotes the set of hyperspherical angles given by
Eq. (7). Furthermore for small p~ we can consis-
tently consider the term p~ Fs (0) as a perturbative
effect in estimating the next-order behavior.

Vfe thus first examine the nodal character of the
term

p'F, (II) =A(r,' —r,')+B(rf3 r'„) .

When p Fm = 0 we have (A4 0)

(105)

r', -r,'=(8/A) (r»-r») . (106)

For fixed-a-spin electrons 1 and 2, Eq. (106) is
satisfied when electron 3 moves in a plane such that

r, 2
~ [(1+8/A) (r, + r~) —2 (8/A) r~] = 0 . (107)

If the positions of one n electron, say r~, and
one P electron r3 are fixed, the quadratic equation
(106) implies that the remaining o. electron 1 is re-
stricted to a spherical surface. In fact, this r,
sphere has its center at [ 8/(A+8) ] r, and its ra-
dius is 1r2 —[8/(A+B}]r~l. In Fig. 3 we have

drawn this nodal surface for particular fixed r2 and

r3. To this order in p we have already discovered
nodal surfaces different from those predicted by
the orbital approximation' or by the simple trans-
correlated model, Eq. (100).

We now inquire into the effect of the cubic terms
in p (104) on the spherical nodal surface just ob-
tained. For fixed r2 and r3 we write Eg. (104) as

4 (1, 213)=fz(r, )+fs(r, )+ ~ ~ ~ (108)

where p'F, =f„p'—F,=f, and —only the dependence
on r, has been explicitly indicated. Let r, denote
those r, for which f2(r, ) =0 (the sphere discussed
above and shown in Fig. 3). We wish to investigate
the nodal character of fz+ f3, and so we write r,
= r*, + pr, and inquire into the effect produced by this
change in r, . We have, including terms of O(p3},

f2(rf +5rg)+fg(rf +5rg)=f2(rj)

+ Vfa(r f ) ~ 5r, +. .. +f,(rf ) + ~ ~ ~ = 0 . (109)

But rf is chosen so that f2(rf ) =0 and the surface
described by fa(rf ) = 0 is spherical. This means
the gradient of f2 evaluated on r*, is normal to the
spherical surface and is constant in magnitude
[= I Vf2(rf) I]. From Eq. (109) we have (neglecting
higher-order terms)

Vf, (rf) ~ 5r, =-f,(rf) . (110)

This is the desired result. Equation (110) states
that the change in the spherical nodal surface in-
duced by the cubic terms (in p) is proportional to
the value of the cubic terms on the original spheri-
cal nodal surface.

Thus, we fix r~ and r, at various positions, eval-
uate the cubic terms implied by Eq. (102) on the
spherical surface shown in Fig. 3, and obtain es-
sentially the shift in the nodal surface. When we
repeat this procedure for a wide variety of r2, r,
we find that the result indicates definite asphericity
present in the nodal surface.

For example, if we fix r~ = rs and evaluate the
cubic terms on the original spherical surface, we
arrive at Fig. 4. If this displacement were to cor-
respond to a simple expansion or contraction plus
translation of the original spherical surface we
would expect a simple sine curve. To show that
this does not obtain we have also plotted the differ-
ence between the actual result and the simple sine
curve

0. 220 (1 —sing),

chosen to fit the maximum and minimum of the ac-
tual displacement curve. Note that the definite
presence of higher harmonics (asphericity) is in-
dicated.

In Fig. 5, we examine the case where r2 = —2rs.
A displacement curve similar to the previous one
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Does this mean that we expect an approximation,
like the simple transcorrelation approximation Eq.
(100), to be seriously in error? The answer to this
question probably depends on the meaning imparted
to the word "seriously. " The effect of the nodal
surface is undoubtedly a small one [owing to the
ratio (103)] as far as the tots, l energy goes. But it
may be that certain properties are much more sen-
sitive to the nodal character of the approximation
employed for the wave function, and for these prop-
erties the effect may be serious if very accurate
results are desired. It would be very interesting
to study this point in more detail.

00 60' I20' I 80 240' 300 360'

FIG. 4. Displacement of the spherical nodal surface
near the nucleus as given by the cubic terms of Eq. (102),
for the particular case r2 ——r3 (solid line) ~ Also shown is
the error made by Eq. (111) (dashed line). The two
curves are not drawn to the same scale; the maximum
error is about 15% of the actual displacement.

VII. THREE-ELECTRON COALESCENCE AWAY FROM
NUCLEUS

We now wish to examine the effect that bringing
the three electrons together away from the nucleus
has on the wave function for the atomic system de-
scribed by the Hamiltonian of Eq. (62). This Ham-
iltonian may be written in the form (in appropriate
units)

H = —
~ (Pq+ +2+ vg)+ Up(rg r2 ra)+ XV(r& rp r3),

(115)
where

—0. 632 (1+sincp), (112)

is found. The difference between the true displace-
ment and that given by the simple sine curve, U = —1/x, —1/r, —1/r, ,

V = 1/r)2+ 1/rtq" / qs ~

(116)

is also shown and indicates asphericity once more.
Finally, we fix x~=$3 823 Qg and look at the

displacement given by the cubic terms in two per-
pendicular planes. Figure 6 portrays the displace-
ment in the plane containing r~ and r3, and also
shows the difference between this displacement and
that given by the sinusoidal representation

Since we wish to limit our considerations to the

—0. 693 sing . (113)

Figure 7 shows the displacement in a, plane contain-
ing r3 and perpendicular to r2. Also shown is the
difference between the displacement curve and the
curve

—0. 689siny . (l i4}

Note that the difference curves shown in Figs. 4-
7 have been scaled so as to be more legible.
Also, we have not labeled the ordinate because the
ultimate magnitude of the displacement depends on
the choice of po.

These cases, and other similar cases considered,
lead us to believe that the nodal hypersurface (cor-
responding to one fixed-n-spin and one fixed-P-spin
electron) in general is definitely aspherical. Of
course, our study here has been confined, of ne-
cessity, to small p only. But it is difficult to see
why one would obtain qualitatively different results
for any finite p.

QO 60' I20' I 80 240' 300 ' 360'

FIG. 5. Negative of the displacement of the spherical
nodal surface near the nucIeus as given by the cubic
terms of Eq. (102), for the particular case r2 ———2r3
(solid line). Also shown is the error made by Eq. (112)
(dashed line). The two curves are not drawn to the same
scale; the maximum error is about 7. 6% of the actual
displac ement.
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H' =su 3/R, —1/r, —1/r, —1/r, -0(p'/R, '),

V= (1/p}[2-'"csc-,' a

+2' '(2+cosa+3' 'sinacosea, )
' '

+2'/'(2+cosa —3' 'sinacose, )
'/

]

We now treat the Schrodinger equation

(H —E) 4=0 (120)
I t

240 300 / 360'
/

0 /
/

/
/

/

/
/

/
/

FIG. 6. Displacement of the spherical nodal surface
near the nucleus as given by the cubic terms of Eq. (102),
for the particular case r2=2r3, e&3=~~. The displace-
ment drawn here (solid line) is in the plane containing
r2 and r3. The error made by Eq. (113) is also shown
(dashed line). The two curves are not drawn to the same
scale; the maximum error is about 21% of the actual dis-
placement.

by perturbation theory, with H' as the perturbation.
Owing to the order of H' in both p and R„we ex-
pect the effect of this perturbation to be particularly
small when R, is large and p is small. Thus if we
set

H = Hp+H' (121)

and expand the wave function and energy similarly
(4=4q+4»+ ~ ~, E= ED+ E, + ~ ~ ~ ), we are led to
the zeroth-order problem

(H, —E,)e,=o. (122)

We now observe that the center-of-mass motion Ry

may be separated off, and for the ground state (8»
= 8) we have

39/4 -1/2 e-3 Ry g(p a 8) (12s)

where g is the solution to
particular situation where all three electrons are
a finite distance away from the nucleus, it is con-
venient to introduce the center-of-mass coordinates
(12). Note that

R + 2 R2 + 6 R3+ 6 RgR2 cose»2 2 2 Q 2
y

—-', &2R,R, cose„- —,
' W3R/, cose„,

x2= —,'R, +-,'R2+e R3 3 ~ 6 R,R2cose»2 & 2 I 2 Q 2

[ —
g (V2+ Vg)+XV —e]/ = 0, (124)

1 /—
3 v 2 R,R, cose, ~

'
v+3 R2R, cosea, ,

R~+ R3+—v 2 R,R, cosegg,2 & 2 2 2- 2 I

and that the r, / are given by Eq. (25). 8, / repre-
sents the angle between R, and R&.

It is also convenient to introduce the coordinates
[cf. Eq. (32)]

p =R +R, ~&p~0
(118)

tan —,
' a = Rz/R~, v —a —0

in place of R, and R, because our interest here lies
in that region of configuration space where R2 and
R~ are simultaneously small (p small). In terms
of these coordinates (R„p, a, 8,~, 8,3, ez~) we
have

H=--,'(V]+ V,'+ V', ) —Sv S/R, +~V(p, a, e„)+H',
(119)

where

FIG. 7. Displacement of the spherical nodal surface
near the nucleus as given by the cubic terms of Eq. (102),
for the particular case r2 ——2r3, 823 27r. The displace-
ment drawn here (solid line) is in the plane containing
r3 and perpendicular to r&. The error made by Eq. (114)
is also shown. The two curves are not drawn to the
same scale; the maximum error is about 19/p of the
actual displacement.
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with c = 83+221. The Laplacian in (124) has previ-
ously been given by Eqs. (33) and (34).

proceeding to analyze Eq. (124), following Eqs.
(36)-(61)step by sfsp (7=2 Ulp), we find exactly
the same result, Eq. (61) (to this order in p). Thus
we have (in interparticle coordinates)

+0 23 13)+3 ~ ( 2S 1$) ( 12+ 13 2$)

(3r1$+3r2$ "12)+ (6v) + 'RS (r -r )

13+r23 2 12) +(r12+ 13+ 2s) p ~ (126)

where R, , is given by Eq. (60).
This result reinforces the intuitive notion intro-

duced in Sec. IV that, as long as the electrons were
not in the immediate vicinity of the nucleus, the
main effect of the nuclear-electron interaction
terms is to bind the electrons to the nucleus.

In that region of configuration space where 8, & 0
and 8,» p, the perturbation H' affects the wave
function only in higher-order terms (than p ln p),
and CS (123) should thus exhibit precisely the be-
havior of the exact wave function to this p order.

VIII. DISCUSSION

Qf the features of electron correlation in three-
electron atoms and ions that we have examined in
this paper, perhaps the most interesting is the nod-
al structure of the spatial wave function. We have
been able to study the problem only in a relatively
crude way, confining ourselves to simple models
and to a study of the actual atomic system near the
nucleus. The real importance of the nodal struc-
ture in actual calculations, both of the energy and
of various properties is yet to be decided. It would
be extremely interesting to study the nodal surface
implied by large configuration interaction treat-
ments or by direct analysis using r, &

(Hylleraas)
coordinates, and then to determine just what the
convergence properties of the simple transcorre-
lated method are (where the nodal surfaces are in-
correctly placed).

It should also prove interesting to study the nodal
characteristics of simple molecular systems and to
correlate the nodal surfaces with those of the atom
to clarify the effect of chemical bond formation. In
this connection, nodal surfaces for a, hydrogen atom
in a static magnetic field have recently found ap-

plication to exciton magneto-optical spectra in
semiconductors. ~~ Here the simple idea of conser-
vation of the number of nodal surfaces leads to an
appealing interpretation of the fine structure of the
observed spectra of GaSe.

The fact that the exact expansion of the wave func-
tion in the vicinity of the nucleus can be rather
easily obtained may be of some use to those who
perform large variational calculations on this three-
electron system, both by offering suggestions as
to the type of terms of dominant importance and by
checking the convergence in one region of configura-
tion space.

The explicit form of the various logarithmic sin-
gularities in the wave function are interesting as
well, since these terms represent the leading-order
three-body effects in the wave function. The uni-
versality of these terms for all atoms and mole-
cules is worth mentioning, and, for example, when-
ever two n-spin electrons and one P-spin electron
coalesce, away from other particles, terms of the
form p4lnp must be present in the wave function
(p- small distance variable for the coalescence).
There is one further three-body effect to be ex-
amined: that present when three e-spin electrons
coalesce away from other particles. We have not
investigated this effect, but feel that it certainly
produces nonanalytic terms of higher order than

p lnp. Computationally speaking, variational cal-
culations have probably not yet progressed to the
point where direct incorporation of the various
three-electron logarithmic terms is currently re-
quired. However, they may be of some importance
as the ability to perform highly accurate calcula-
tions improves, since the inefficient representation
of these singular terms is probably responsible for
the ultimate slowness of the wave-function conver-
gence, even in applications using direct x,&

coordi-
nates.

It would also be interesting to explore the nature
of true four-body effects in small systems, but this
may have to await development of new approaches
to the quantum-mechanical theory.
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Approximations to the Hartree-Fock (HF) exchange energy density have been derived di-
rectly from the HF exchange energy density. The approximations involving two free param-
eters take the form of a Kohn-Sham-Gaspar (KSG) exchange energy density plus inhomoge-
neity corrections. The approximation including lowest-order inhomogeneity corrections only
is equivalent to the approximation recently proposed by Herman, Van Dyke, and Ortenburger.
An approximation including the next-higher-order inhomogeneity corrections with no addi-
tional parameters is also derived. The approximations have been evaluated by direct com-
parison with the actual HF exchange energy density for Ar and Cu'. The optimum choices of
parameters in the case of the approximation including lowest-order inhomogeneity correc-
tions are in excellent agreement with the corresponding values found by Herman et al ~ and
are independent of the atomic system considered. The approximation including higher-order
inhomogeneity corrections did not significantly improve the approximation including lowest-
order inhomogeneity corrections. However, the higher-order approximation is of interest
in that it does lead to an angular-momentum-dependent exchange potential.

I. INTRODUCTION

Simplified forms of the Hartree-Fock (HF) model
of a many-electron system have been used in a
variety of applications. In particular, approxi-
mations to the exchange terms of the HF model
along lines similar to that originally proposed by
Slater' have received considerable attention.
Exchange approximations derived in this paper are
similar to approximations which have been previously
suggested. One purpose of this paper is to present
simple derivations of the Kohn-Sham-Gaspar'
(KSG) and Herman-Van Dyke-Ortenburger (HDO)
exchange approximations. The derivations are of
interest in themselves in that they provide insight
into the exchange approximations mentioned above
and readily lend themselves to generalization.

Common to all work on exchange approximations

has been the difficulty of evaluating a given approxi-
mation. For example, total energy has been of-
fered as a criterion for evaluating exchange approxi-
mations. A similar approach has been to compare
various matrix elements or combina, tions of matrix
elements to those obtained from HF calculations.
As far as they go, these methods of comparison do
enable a judgment to be made as to the relative
merits of a given approximation. However, it is
often difficult to decide why one approximation is
"better" than another for one set of matrix elements
while the converse may be true for another set.
Obviously, a simple easily visualized comparison
scheme in itself would be a useful addition to the
literature of exchange approximations.

A second objective of this paper is to present
evaluations of exchange approximations in atoms
obtained from a very simple but highly informa-


