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Two major contributions are devised for that theory of concentrated electrolytes which by convention 
regards the ions as completely paired into uncharged dipolar "molecules." First, a more satisfactory ex­
pression is obtained for the wavelength-dependent static dielectric "constant" • (k). Second, a variational 
principle for Helmholtz free energy F is displayed whose minimization with respect to the ion-pair size 
distribution p(l) serves to determine both F and p(l). In anticipation of future numerical applications, a 
binary collision approximation is specified for the short-range interaction aspect of the functional F[p(!)]. 

1. INTRODUCTION 

Two earlier papers in this seriesl ,2 have developed a 
reformulation of equilibrium electrolyte theory, which 
promises to clarify the nature of concentrated solutions3 

and fused salts. This approach employs a rigorous ex­
tension of the Bjerrum ion-pair concept4 ,5 to the point 
where all ions are paired (in a symmetrical electrolyte) 
to form dipolar "molecules" of variable size and orien­
tation. Local structure in the fluid is then described by 
means of the static linear dielectric response function 
E(k) for electrostatic field components of arbitrary spa­
tial wave vector k. 

The present paper augments its predecessors in two 
major ways. First, an improved calculation for E(k) 
has been devised. Second, the entire theory has been 
recast into a variational form wherein minimization of 
the Helmholtz free energy with respect to the ion-pair 
size distribution function p(l)(r) serves to determine 
this function uniquely; no such determination was pre­
viously possible. 

rectly to the electrostatic free energy for the electro­
lyte. Section IV therefore exhibits the full Helmholtz 
free energy F as a pel) functional. Since the condition 
of thermal equilibrium requires that this free energy 
be at a minimum, one thus has a variational principle 
for simultaneous determination of free energy F and 
of p(l). This minimum principle is analogous to the 
familiar energy minimization in quantum mechanics, 
but now p(J) occurs in place of the wavefunction. 

Section V contains a detailed analysis of the binary 
collision kernel which arises in the nonelectrostatic por­
tion of the F variational principle. Its conclusions 
should be useful ultimately in numerical applications 
of the theory. 

The following paper7 applies some of the present re­
sults to examination of the charge distribution in ion 
atmospheres. 

II. PAIRING PROCESS 

A. Homogeneous Electrolyte 

Attention will be confined as before to the "primitive Let V denote the system volume. Except for zero-
model" symmetrical electrolyte. This model involves probability coincidences, any instantaneous configura­
uniformly charged rigid-sphere ions all with diameter tion rl· .. r2N of the ions leads to a unique pairing that 
a, suspended in a structureless solvent with dielectric assigns to each ion one (and only one) ion of the 
constant EO. The anions and cations each number N, opposite species. First, the smallest anion-cation dis­
and, respectively, bear charges -Ze and +Ze so that distance is identified, and the two ions producing it 
the interaction potential can be written6 are regarded as paired. Within the remainder set of 

[
(Ze)2] 2N (-l)i+ j N-l anions and N-l cations, the new (now larger) 

VN,N(rl·· ·r2N) = -- L (1.1) minimum anion-cation distance is next identified and 
Eo i<j=! rij used to define a second ion pair. This remainder-set 

if all rij> a. Although generalization of our analysis to minimum anion-cation distance criterion is subse­
a far wider class of models (even including unsymmet- quently reapplied until all ions are paired. 
rical electrolytes and mixtures) is certainly possible, It is obvious that the vector separations of the ion 
this could only be done at the expense of reduced pairs8 will vary depending on the initial ion configura­
clarity. For those concepts which we wish to stress tion rl··· r2N chosen. Indeed N! different pairings 
here, that expense would be entirely unwarranted. could arise, if the particles are treated as distinguish-

In order to provide a suitable background for our able. But in thermal equilibrium, with fixed tempera­
improved E(k) calculation, the probabilistic basis of ture and density, a well-defined distribution of pair 
the fundamental ion pairing process is reviewed in Sec. separations should exist. If N and V are macroscopic 
II for both the homogeneous electrolyte and for the in size, furthermore, and the electrolyte is fluid, then 
inhomogeneous electrolyte subject to a weak sinusoidal this distribution involves only scalar distance r, and 
external field which induces charge separation. Section we shall denote it by p(l) (r). The normalization 
III incorporates these results into a self-consistent 
torque calculation of E(k). c= N =411" LX> r2p(l) (r)dr 

The fact that E(k) is a functional of the ion-pair size V 0 

(2.1) 

distribution p(l) (r) is suggestive since E(k) leads di- is convenient, for then p(l) (rij) dr;drj represents the prob-
3395 
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FIG. 1. Fixed hard-sphere anion with concentric spherical shell. 
One requires the probability that the cationic (+) partner center 
lies within the shell. 

ability that differential volume elements dri and dr, 
simultaneously and, respectively, contain the anion and 
cation of a single ion pair. 

At that stage of the pairing process which involves 
forming ion pairs with size r, the density of as-yet­
unpaired anions or cations is 

where of course 

per) =411' J'" s2p(l)(s)ds, 
r 

p(O) =c, 

lim per) =0. 

(2.2) 

(2.3) 

The rigid-sphere repulsions in the "primitive model" 
to be considered force pCl)(r) to vanish in the interval 
O::::;r<a, and so per) remains equal to c in this interval. 

We now inquire about the probability that a given 
anion (-) has its cationic partner (+) within a spher­
ical shell of differential width dr, at radial distance r 
(see Fig. 1). By definition, this is 

(2.4) 

The probability that the anion is not paired at a dis­
tance smaller than r is 

1-c-1 [ p(l)(s)411'S2ds=c-1p(r). (2.5) 
o 

The probability that it is paired in the requisite spher­
ical shell must equal the expected number of available 
cations in that shell, i.e., cations which themselves 
have not been paired at distance less than r. The 
over-all density of such cations throughout the entire 
system is p(r), and within a factor of unity order this 
is also correct for the spherical shell. Still, we must 
acknowledge the necessity of a local correlation factor 
fer) operative here, so that the expression 

411'r2drp(r) fer) (2.6) 

gives the expected number of cations. 

By equating (2.4) to the product of (2.5) and (2.6), 
we find the relation 

peller) = [411' [" s2p(l)(s)ds J fer). (2.7) 

Set 
p2(r) = f(r)/pCl)(r) , 

so that (2.7) transforms to 

(2.8) 

P-l(r) =411' j'" s2f(s)P-2(S)ds. (2.9) 

Application of an r differentiation next produces the 
elementary differential equation 

P'(r) = 411'r2 f(r) . (2.10) 

This may easily be integrated with the help of normal­
ization condition (2.1) to yield the result (for r?:. a) 

pCl)(r) = [[c2 f(r)] / (1 + 411'c { s2r(s)ds YJ. (2.11) 

Equation (2.11) does not of course constitute a "solu­
tion" for pCl)(r) since r(r) remains unspecified. Still, 
we know that f (a) must be related to the density of 
contact pairs,2 so that -

(2.12) 

where g+ _(2)(r) is the conventional anion-cation pair 
correlation function. 9 In addition, it is reasonable to 
expect r(r) to be continuous and differentiable at 
least once. 

Equation (2.11) may be inverted to give fer) III 

terms of pCl) (r) 

r(r) = [[c-2pCl)(r)] / (1-411'C-1 {s2P(l)(S)dsYJ. 

( 2.13) 

In the absence of the Coulomb interactions between 
ions (so that particles behave only as uncharged rigid 
spheres), arguments have been advanced2 to indicate 
that for large r, 

(2.14) 

Expression (2.13) subsequently implies that fer) ap­
proaches some positive constant as r increases to in­
finity, for discharged ions. For the moment we leave 
aside the question of how fer) behaves in the electro­
lyte, though it is clear that (2.13) will give this func­
tion provided an independent means for determining 
the electrolyte p(l) (r) is available. 

B. Inhomogeneous Electrolyte 

The next step requires that the initially homogeneous 
electrolyte be perturbed by the external potential 

2N 

Co L (-1) i sin(k'r,), (2.15) 
i=l 

111 which ['0 is sufficiently small that the response is 
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linear. This potential produces charge separation in the 
form of sinusoidal concentration variations in space 
that are just out of phase with one another for anions 
( -) and for cations (+). One readily finds that these 
perturbed concentrations have the following forms: 

L(r) = c+{3UoG(k) c sin(k o r), 

c+(r) =c-{3UoG(k)c sin(kor), (2.16) 
where 

{3= (knT)-I, 

G(k) = 1+cJdr cos(kor)[g+ +(2)(r) -g+ _(2)(r)] (2.17) 

involves the Fourier transform of the standard ionic 
correlation functions.9 

We seek to analyze the changes in the ion pairing 
process brought about by the inhomogeneity. The size 
distribution function may be written as the homo­
geneous fluid function plus a perturbation: 

(2.18) 

where that perturbation will depend both on the posi­
tion R of the center of the ion pair and on the vector 
separation s of that pair. 

The remanent densities of anions or cations at stage 
s in the pairing were previously denoted by pes), but 
now at position r we must write 

p_(r I s) =p(s) [1+{3UoG(k)f(k, s) sin(kor)], 

p+(r I s) =p(s) [1-{3['oG(k)f(k, s) sin(kor)]. (2.19) 

These expressions manifest persistence of sinusoidal 
concentration variation during the pairing, and by in­
clusion of a factor f( k, s) the possibility of relative 
amplitude change during the pairing process is ad­
mitted. 

We shall tentatively assume that the same correla­
tion factor res) applies in the presence of weak in­
homogeneity, that arises in the homogeneous fluid. As 
a result, the analog of previous Eq. (2.7) will be 

pCI)(s)+opCl)(R, s) =p+(R+!s I s)p_(R-!s I s)r(s). 

( 2.20) 

its length). Divide both sides by Dos, and then let this 
increment go to zero; if expression (2.21) is employed 
one obtains 

ap+(r I s)/as= -47rs2p(1)(s) (1+{3UoG(k)f(k, s) 

X {[sin(ks)/ks]-11 sin(kor». (2.23) 

If we compare this relation with the s partial derivative 
of p+Cr I s) in Eq. C2.19), we conclude 

(a/as) [p(s)f(k, s) J 
= 47rs2pCl) (s) ([sin(ks)/ks]-1lf(k, s). (2.24) 

This may be integrated with the help of definition (2.2), 
and the requirement 

f(k, 0) = 1, ( 2.25) 

to produce finally an expression for f(k, s): 

f(k, s) = exp {47rk-1 f t sin(kt) p(l) (t) [pC t) ]-ldt} . 

(2.26) 

The pCl) perturbation expression (2.21) could be re­
garded as the term linear in Uo in the generating formula 

p(1)(s) exp( -(3UoG(k)f(k, s) 

X {sin[k o (R-+ !s) ]-sin[ko (R-!s)]l). (2.27) 

This, however, is precisely the form expected in the 
fluid for a dipole (ion pair) orientation distribution 
under the influence of an external potential of type 
(2.15). The coupling strength of that potential is 
f(k, s) Uo, rather than just Uo alone. For this reason 
we shall refer to f(k, s) as the "external field renormal­
iza tion factor." 

Owing to the fact that pCI) (t) vanishes for t< a, we 
have 

f(k,s)=1 (O::::;s<a) . ( 2.28) 

Furthermore, one can readily verify that for s just 
exceeding a, 

f(k, s) = 1 + (47ra/ck) pCl) (a) sin(ka) (s-a) 

+O[(s-a)2]. (2.29) 
Both this equation and (2.7) reflect the "second-order" 
character of the pairing, in that the product of concen- When s is held fixed, we also have 
trations at two spatially distinct points is involved. limf(k, s) = l. 
After expressions (2.19) are inserted into Eq. (2.20), k-oo 

( 2.30) 

it is possible to separate terms linear in Uo to obtain The opposite limit is also simple: 

op(l)(R, s) =(3UoG(k)f(k, s) p(l)(s) limf(k, s) =c/p(s). (2.31 ) 

x {sin[k o (R-!s) J-sin[ko (R+!s) Jl. (2.21) 

As the pairing process proceeds by a small amount 
Dos, p+ (r Is) will change by the following: 

Dop+(r I s) = - (Dos) JilQ,S2[pCl)(S) +opCl)(r-!s, s)], 

(2.22) 

where one integrates over the direction of s (but not 

k-O 

The most striking feature offCk, s) is that it depends 
on interactions between ions only through its functional 
dependence on pCl). In fact expression (2.26) depends 
in no way on the rigid-sphere character of the ions; 
any other core force common to all pairs of ions would 
produce the same result. This universality of f(k, s) 
forms one of the essential ingredients in the dielectric 
response calculation to follow. 
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III. STATIC DIELECTRIC RESPONSE 

The externally applied interaction (2.15) can be gen­
erated by using an applied electrostatic potential ..pap 
that has the form 

..pap(r) = (..po/€o) sin(k·r), (3.1) 

provided ..po=€oUo/Ze. The linear response of the con­
ducting electrolyte tends to shield ..pap to an extent 
varying with k, but the resulting average electrostatic 
potentiall/i may always be written 

l/i(r)=[..po/€(k)Jsin(k.r). (3.2) 

This constitutes the definition of the static wavelength­
dependent dielectric function for the electrolyte, €(kL 
By virtue of Poisson's equation, the corresponding in­
duced ionic charge density resulting from ..pap must be 

Pin (r) = (..pOk2/411') {[€o/€(k) J-l} sin(k· r). (3.3) 

The induced charge density may also be expressed 
as a Fourier transform of the homogeneous electrolyte 
pair correlation function difference g+ _(2) - g+ + (2). We 
therefore have a conjugate pair of relations linking this 
difference with €(k)1: 

Eo = 1- ~ {1- ~11'_~ f"" r sin(kr) 
E (k) k2 k 0 

X [g+ _(2) (r) - g+ +(2) (r) Jdr} 

== 1-[K2G(k)/k2J; (3.4) 

g+ _ (2) (r) - g+ + (2) (r) = (211'2cr)-1 

X f"" k sin(kr) {~[-~ -1J +1} dk, (3.5) 
o K2 Eek) 

...... 
........ 

" 

FIG. 2. Fixed ion pair in electrolyte 
polarized by of"p' The surrounding 
ionic charge density is sinusoidal, 
with nodal planes explicitly shown. It 
is assumed that this density persists 
unaltered up to the exclusion spheres 
w+ and w_. 

where K is the Debye parameter 

K2= 811'(Ze) 2C/ Eokl1T. (3.6) 

The dielectric function €(k) therefore contains all the 
information required to specify the ion atmosphere 
charge density in the primitive model. 

We now proceed to calculate E(I?). Our approach 
will be patterned after the one used in Ref. 2 for a 
cruder estimate of this dielectric function. However, 
we shall now incorporate knowledge of the external 
field renormalization function I(k, s) that was devel­
oped in the preceding section. 

From the standpoint of equilibrium properties, it is 
possible and convenient to consider the ion pairs as 
stable diatomic molecules not subject to partner ex-

FIG. 3. Region n(Sl, S2, Ii) inaccessible to the center of pair 2 
due to presence of pair 1. In the example shown, with s[ consider­
ably greater than S2, n consists of the two disconnected congruent 
portions with heavy outlines. The steric hindrance restriction 
accounts for the large radius-s2 spheres, while ion-core repUlsion 
produces the extra radius-a spherical caps (these caps are due 
to ions of the same type, since a spheres for unlike-ion repUlsion 
are buried centrally in the s2-spheres as shown). 
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changes. These pairs change size and orientation under 
the influence of thermal agitation, and a self-consistent 
torque calculation is required in the presence of 1j;ap to 
produce an expression for Op(I), and subsequently one 
for~(k). 

The requirement that a given pairing of ions be 
maintained implies that oppositely charged ends of two 
ion pairs, with sizes S1 and S2, can approach each other 
no more closely than the minimum of SI and S2. If this 
were violated, it is clear that the fixed pairing would 
not be consistent with the sequential character of the 
pairing process as specified in Sec. III.A. Thus, the 
pairs are subject to a form of "steric hindrance" above 
and beyond their hard-sphere and Coulombic ion-ion 
interactions. These steric hindrance interactions en­
courage local parallel alignment of ion pairs, and the 
orientational response of these correlated pairs is co­
operative. The steric hindrances are thus the primary 
source of the external field renormalization factor f(k, s). 

We shall employ f(k, s) to provide the correct re­
normalization for the local average potential acting on 
an ion pair in the presence of 1j;up. Figure 2 shows this 
chosen pair at a fixed position in the surrounding elec­
trolytic medium. 1j;ap has induced this medium to ex­
hibit the sinusoidal charge density Pin shown in Eq. 

(3.3), and we shall assume that this density persists 
up to the spherical exclusion envelopes of radius a sur­
rounding the ions of the fixed pair (w_ and w+ in Fig. 2). 

Let 1j;*(r, s) denote the electrostatic potential, both 
applied and due to surrounding induced charge, at 
the center of w_ at r, when w+ is centered at position s 
relative to w_. Then we may write the perturbed size 
distribution function as follows: 

p(l)(s)+op(I)(R, s) = p(l)(s) exp( -(3Zef(k, s) 

X[1j;*(R+ts, -s)-1j;*(R-ts, s)Jl. (3.7) 

One is obliged to linearize: 

op(1)(R, s) =(3Zef(k, s) p(1)(s) 

X [1j;*(R-ts, s) -1j;*(R+ts, -s)]. (3.8) 

The induced charge density, whose phenomenological 
form is provided by Eq. (3.3), arises entirely from the 
perturbation Op(l): 

Piner) =ZeJds[op(l)(r-ts, s) -ap(l)(r+ts, s) J 

= 2{3(Ze)2 Jdsf(k, s) p(l)(s) 

X[1j;*(r+s, -s) -1j;*(r, s)]. (3.9) 

It is a straightforward matter2 to show 

1j;0 . {~O [ ~o J 1 Pin (r') } 1j;*(r, s) = - sm(k.r) - + 1- (k) [1-cos(ka) J- dr' I ' I ' 
EO ~(k) ~ w*(r,s) r-r 

(3.10) 

where w*(r, s) is that portion of the exclusion cavity surrounding the point r+s(w+) which is external to the 
one surrounding r(w_)lO: 

w*(r, s) =w+(r+s) -w+(r+s) (\w_(r) . (3.11) 

If expression (3.10) is employed in (3.9), the induced charge may be expressed as follows: 

Piner) =2{3(Ze)2c 'f!. {-~ + [~ -1J [1-cos(ka) J} sin(k·r)+2{3(Ze)2 f dsf(k, s) p(1)(s) 
EO ~(k) ~(k) 

x {f dr' Piner') - f dr' ~ Pin(r'_) -}. (3.12) 
w*(r,s) I r-r' I w*(r+s,-s) I r+s-r' I ' 

in obtaining this form we have relied upon Eqs. (2.24) and (2.25) to effect simplifications. 
The two integrals remaining in Eq. (3.12) may be carried out after (3.3) is used for Pin (r'). Following this 

transformation, the result is required to equal the expression (3.3) itself. That requirement allows us to solve for 
E(k), with the result 

~o/~(k) = l-K2/{k2+K2[cos(ka) -kp.(k) Jl, 
where 

p.(k) = (47rc)-IJdsp(1) (s)f(k, S)[II(k, s) -12(k, s)J, 
and 

7r ls+a sin(kt) 
ll(k, s) = - dt[a2- (s-t)2J --, 

S max(a ,8-a) t 

27r fa 
12(k, s) = - dt[s+t-max(a, I s-t I ) ] sin(kt). 

s 0 

(3.13) 

(3.14) 

(3.15) 

Equation (3.13) constitutes the desired objective. ~(k) is indicated by that result to be a functional of pel) through 
the latter's occurrence in the p.(k) integrand both explicitly and implicitly [through f(k, s)]. 

IV. VARIATIONAL PRINCIPLE 

If the ionic Coulomb interactions (1.1) were reversibly switched on in an initially uncharged fluid of spheres, 
the size distribution function pel) (s) would surely change its form. In particular, one would expect that attrac-

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to

IP:  128.112.66.66 On: Fri, 03 Jan 2014 02:40:38



3400 F. H. STILLINGER AND R. J. WHITE 

tion between oppositely charged ions would reduce the mean size of the ion pairs. Still, we may imagine that some 
external agency is present to prevent any change in p(ll (s) from its initially assigned form during the charging 
process. Under this artificial restraint, it is possible to derive an expression for the amount of electrical work ex­
pended in that charging. 

Let ±~Ze be the fractional charges present in the course of the uniform charging procedure (O.::::;t:::: 1). The 
electrical work (i.e., electrical free energy Fel ) exclusive of the self-energy of the ions may be exhibited as a ~ 
integral 

( 4.1) 

Required here is the difference of pair correlation functions for the partially charged assembly of ions. In accord 
with Eq. (3.5), that difference may be expressed in terms of t:(k, ~), the dielectric response function for fixed 
p(ll (r), but fractional charge 

4N(Ze)2iJ 11 1'" 1'" JkZ [t:o ]} (3Fel[p(1)]=- d~ dr dk~ksin(kr) l~ -- -1 +1 
7rt:o 0 0 0 K-~ f(k, 0 

4N(Ze)Z{31
1 1'" JkZ [t:o J} = - d~ dk~ l- -- -1 + 1 . 

7rfo 0 0 Kze f(k,~) 
( 4.2) 

Here we have carried out the r integral according to the required prescription: 

lim 1'" dr exp( -ar) sin(kr) =1<-1. (4.3) 
a---»O 0 

The only way that f(k, ~) differs from the expression (3.13) derived for f(k, 1) ==f(1<) in the preceding section 
is by replacement of KZ by ~ZKz: 

[fO/f(k, ~)]-1=-K2e/{kz+KZe[cos(ka)-kJ.L(k)]I. (4.4) 

This simple ~ dependence permits one further integration (over~) to be carried out in Eg. (4.2): 

2V(Ze)2{31'" i3Fel[p(I)]=- 1 dk{l-B-l(k) In[l+B(k)]1, 
7rt:o 0 

K2 
B(k) = "ji2 [cos(ka) -!lJ.L(l<)]. ( 4.5) 

Since the equation of state for uncharged rigid spheres is accurately known at all densities below close pack­
ing,u.lz we may consider the Helmholtz free energy F for our 2~Y spheres in volume V to be known when ~=O: 

Fa=O) ==Fo. ( 4.6) 

Even in concentrated solutions, it should suffice for most purposes to represent Fo by the first few terms in its 
virial expansion. 

We shall regard the actual electrolyte free energy F(~= 1) ==F[p(ll] as composed of three parts. The first is 
just Fo, the uncharged rigid-sphere part, for which the appropriate size distribution will be denoted by Po(l) (r). 
The second part, ~F[p(I)] represents the amount of reversible work that must be expended in varying the size 
distribution for the uncharged spheres from poOler) to p(l)(r). Finally, one has Fel[p(l)], Eq. (4.5), for the elec­
trical charging work. Thus we write 

(4.7) 

The condition of equilibrium requires that this combination be minimized with respect to variations in p(l) (r), 
where those variations are constrained to obey the basic normalization condition (2.1). Only the last two contribu­
tions to F in Eg. (4.7) are functionals of pCl), so our fundamental variational principle reads 

o{~F[p(l)]+Fcl[pCl)]1 =0. (4.8) 

We still need to exhibit ~F[p(l)J in sufficiently explicit detail ultimately to permit the variational principle to 
be used in specific computations. Fortunately, the cluster theory generalized to molecules with internal degrees 
of freedom supplies a suitable expression for this quantity. In the present context, the "molecules" of course are 
the discharged ion pairs, and from Eq. (19) in Ref. 1 we immediately have 

'" (3~F[p(l)J = J dXI[P(l) (Sl) lnp(l) (Sl) - Poll) (Sl) lnpo(l) (SI) J- L [(11+ 1) !J-l J dXl' , , JdXn+ls(n) (Xl' , 'Xn+1) 
n=l 
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Here the six-dimensional vector Xi comprises both center-of-mass position Ri and vector separation Si for the 
ith pair: 

(4.10) 

The quantity S(n) (Xl· •• Xn+l) is the irreducible (i.e., at least doubly connected) cluster sum of Mayer J-function 
products for n+ 1 discharged ion pairsl3; it is zero if neither rigid-sphere overlaps nor steric hindrance violations 
occur, and -1 otherwise 

J(x;, Xj) = - U[a- I Ri-tSi-Rj+tSj I ]U[a- I Ri-tSi-Rj-tSj I] 
X U[a- I Ri+tSi-Rj+tSj I ]U[a- I Ri+tSi-Rj-hj I] 

XU[min(si, S})- I Ri-tSi-Rj-tSj I ]U[min(si' Sj)- I Ri+tSi-Rj+tSj I]; (4.11) 

U(x) =0 

=1 

(x<O) 

(x~O). ( 4.12) 

Since expression (4.9) refers only to uncharged particles, one need not be concerned with the necessity for infinite­
order summations that apply in the presence of long-range electrostatic interactions.14

•
15 

We are now in a position to write down the formal Euler equation that solves variational principle (4.8). By 
employing expressions (4.5) and (4.9), we find 

p(O (SI) = yU (SI- a) exp { El (n !)-1 f dX2··· f dXn+1S(n) (Xl· •• Xn+l) p(O (S2) ••• p(O (Sn+l) 

( 4.13) 

The constant y must be selected to enforce the normalization (2.1) required of p(I). The k integral appearing in 
Eq. (4.13) comprises the entire influence on p(O (Sl) of electrostatic interactions, including both the direct attrac­
tion between the ions forming the pair, as well as the indirect effect of the surrounding polarizable medium of 
other ion pairs. 

The remaining functional derivative op./op(O in Eq. (4.13) can be evaluated by using Eq. (3.14). One ulti­
mately finds 

op.(k) [ 411" sin(kr) f'" 
op(I)(r) =c-1r2 J(k, r)[Il(k, r)-I2(k, r)]+ krp(r) r dss2p(1)(s)J(k, S)[Il(k, s)-I2(k, s)] 

-(411")2f dt i'" dSS2t2(P(1)(:;(~;I)(t»)J(k, s)[Il(k, s)-I2(k, s)] ei~~~t»)J. 

v. BINARY COLLISION APPROXIMATION 

The cluster integrals shown in Eq. (4.9) for ~F[p(l)] become successively more difficult to handle as their 
order n increases. The same is true for their analogs in the nonlinear p(1) integral equation (4.13). We shall there­
fore investigate in this section the approximation which disregards all cluster integrals beyond the first (n = 1) , 
the binary collision integral. 

A crude argument is available which indicates that this binary collision approximation is reasonable, at least 
if the rigid spheres are not densely packed. In the two-component ideal gas limit (a=O, Ze= 0), the binary colli­
sion approximation to Euler equation (4.13) has previously been worked out2 : 

P(l)(Sl) =c2 exp [- ~'" H(Sl' S2)P(1) (S2)dS2] , (5.1) 

where the kernel H has the form 
(5.2) 

with 
hex) =x3 (O::;x::;t), 

= (1/64) (8x2[4-3(l-x)2]+4x[8x3- (l-x)3]+ (l/5x) [(1-x)5-32x5]} 

= (l/64x) (8[4x2-3(x-1)2J+4[8- (x-1)3J+![(x-1)5-32]} 

=1 (3::;x). (5.3) 
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The function hex) is numerically close to the simpler function l6 

ho(x) =x3 

=1 

(0'::; x'::; 1), 

(1'::; x) ; ( 5.4) 

if ho is used in place of h in (5.2), the integral equation (5.1) may be solved exactly to yield 

c2 

PCl)(S)- ----- (5.5) 
1 -1+(41r/3) cs13 

The logarithm of the configuration integral for 2N ideal gas particles is obviously 

In {(lV!)-2 Iv drl""" Iv dr2N } =2N[ln(V/1V)+1+o(1)]' (5.6) 

This same quantity could alternatively be calculated as the configuration integral for a set of "diatomic mole­
cules" whose bond lengths are distributed according to (5.5). If we account for the steric hindrances between 
these molecules just in the binary collision approximation, we find 

fdxlpCI) (Sl) [l-lnpCl) (Sl) J+t fdxlf dx2S(l) (Xl, X2) p(l) (Sl) pCl) (Sz) = 2N[ln (V /~Y) +JJ+t V f dslPCI) (sd InpCI) (Sl) 

Here Eqs. (5.1) and (5.5) have been used to carry out 
the integrals. Thus we obtain the correct answer- with 
the binary collision approximation, even though the 
steric hindrances playa nontrivial role in this simple 
test example. 

We therefore proceed to examine the approximation 
for a~O. The relevant integral in the pCI) Eq. (4.13) is 
as follows: 

L(Sl) = f dxd(Xl, X2) pCI)(S2), (5.8) 

where the Mayer f function occurring here [S(l)""f] 
has been previously displayed in Eq. (4.12). Since f is 
nonzero (and identically -1) only when the two pair 
configurations Xl and X2 lead to rigid-sphere or steric­
hindrance overlap, 

L (Sl) = - 21r 1'" ds2s2
2
p(l) (S2) j" dO sinO n (Sl, S2, 0) , 

a 0 

( 5.9) 

FIG. 4. Sphere overlap that can occur when s, <3s2, and 
appropriate (J. 

= 2i\'[ln( V/N) + 1]. (5.7) 

where 0 is the angle between Sl and S2, and n is the 
total volume excluded to the center of pair 2 when Xl 
and S2, 0 are fixed. 

Figure 3 shows n for a specific choice of Sl, S2, and O. 
The size Sl of the fixed pair in this example is consider­
ably larger than S2, and n falls into two disconnected 
regions. These regions are identical in shape, and con­
sist of spheres with radii Sz that have "bumps" of 
radius a on their surfaces. It is easy to show for this 
class of configurations that n is 0 independent and has 
the value 

The two terms here are, respectively, the volumes of 
the large radius-sz spheres, and the extra contribution 
of the radius-a spherical caps. 

If Sl> 3s2 the two regions contributing to n remain 

5, 

FIG. S. Region n for s,>s,. The larger spheres maintain radii 
equal to Sl, and the radius-a spherical caps have transferred from 
one of these larger spheres (see Fig. 4) to the other. 
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distinct for all 0:::;0:::;11". However when S2 begins to 
exceed sJ/3, the regions can overlap for some ranges 
of o. Figure 4 illustrates one possibility, while SI still 
exceeds S2, in which the larger spheres intersect. In this 
new set of configurations the small spherical caps are 
undisturbed, so we can still write 

(5.11) 

for this case, where Qo is the volume of the intersecting 
larger spheres without caps: 

(5.12) 

When S2 begins to exceed SI, the larger spheres deter­
mining Q remain at radius SI on account of occurrence 
of min(sl, S2) in the Mayer f function, Eq. (4.11). 
Unless S2> 3s1, these large fixed-size spheres can still 
intersect one another for certain 0 values. The radius-a 
caps continue to adhere to the surfaces of the larger 
spheres, but comparison of Fig. 5 with the preceding 
Fig. 4 shows that in effect these caps have transferred 
from one large sphere to the other. For those values of 
S2 and 0 such that only the larger spheres might overlap, 
Q may be represented in a form directly analogous to 
(5.10) and (5.11): 

Q( SI, S2, 0) =Qo( SI, S2, 0) + 11"a3 [ (4/3) + (a/2s1)]. (5.13) 

Finally, when S2> 3s1, the two capped spheres remain 
distinct for all o. 

For each of the cases considered thus far, 

+11"a3 { (4/3) + [a/2 mine SI, S2) ]J. (5.14) 

Exceptions to this Q form will occur for those relatively 
restricted sets of values of SI, S2, and (j which permit 
the a caps to intersect one another or to intersect the 
large sphere upon which they do not formally reside. 
Figures 6 and 7 illustrate these two possibilities. It 
should be noted in this context that the centers of the 
a caps cannot enter these other large spheres. In view 

FIG. 6. Intersection of a caps with each other to render the region 
fl connected. 

FIG. 7. Intersection of the a caps with the larger spheres on 
whose surfaces their centers are not located. These a-sphere 
centers are never interior to the larger spheres. 

of the consequent improbability of these exceptions, it 
seems reasonable to adopt expression (5.14) as a valid 
approximation for all SI, S2, and (j.!7 As a result the 
integral L(SI), Eq. (5.9), adopts the following simple 
form 

L(SI) = - {O dS2 {H(SI, S2) 

+211"a3S22[~+ . a ]}P(l)(S2), 
3 2 mm(sl, S2) 

( 5.15) 

where H (SI, S2) has been previously defined in Eqs. 
(5.2) and (5.3). The corresponding binary collision 
integrals occurring in ~F[p(l)] subsequently may be 
obtained from L(SI) by a further integration. 

VI. DISCUSSION 

A variational form of the theory of electrolytes, such 
as we have advocated in this paper, presents obvious 
advantages. The free energy F[p(!)] may be computed 
from a trial family of model p(l) functions containing, 
say, a set of linear variational parameters. After F is 
minimized with respect to these parameters, one can 
be assured that error remaining in p(l) will only affect 
F in second and higher orders. Just as relatively crude 
wavefunctions in atomic and molecular quantum me­
chanics can yield relatively accurate energies in the 
usual energy variational minimization, one need not 
have determined pel) with high precision to obtain F 
accurately for the electrolyte. In some applications, 
therefore, it may be considerably easier working di­
rectly with trial p(!)'s in the variational principal (4.8), 
rather than trying to solve the complicated Euler equa­
tion (4.13). 

Trial p(l) functions of course must be nonnegative, 
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and must always satisfy the normalization condition 
(2.1). It is furthermore reawnable to expect that 
electrostatic attraction between oppositely charged ions 
will increase p(l)(r) near r=a above the po(I)(r) values, 
perhaps even producing a very large maximum at con­
tact (r=a); sufficient flexibility should be present in 
the trial family to accommodate this possibility. The 
following paper7 additionally argues that p(l)(r) main­
tains the same type of r~6 tail at large r exhibited by 
po(l)(r) , albeit with diminished numerical magnitude. 

One of the most interesting applications to which 
the present variational technique might be adapted is 
molten salts. These materials are clearly the most con­
centrated fluid electrolytes available, and would afford 
a stringent test of the theory. Potassium fluoride fits 
the primitive model assumptions rather well since it is 
charge symmetric and has monatomic ions of verv 
nearly equal size (a=2.69 A). At its melting poin"'t 
(1119°K) the reduced density of ion cores III liquid 
KF is 

( 6.1) 

somewhat over half the close-packed maximum (\12). 
Under this circumstance one must question the validity 
of the binary collision approximation outlined in the 
previous section, but still we wish to propose that this 
approximation preserves the qualitative sense of the 
fused salt behavior, and should provide a useful work­
ing tool. 

The dielectric constant EO that should be used in a 
fused salt calculation with the primitive model is the 
square of the refractive index (Eo"'-'1.62 for molten KF 
at its melting point). In elucidating fused salt structure 
it would eventually be useful to dispense with the primi­
tive model's dielectric continuum assumption. The al­
ternative would involve explicit consideration of indi­
vidual ion polarizabilities, and our E(k) calculation 
might then be reworked along the lines indicated by 
Onsager's theory of dielectric fluids. IS 

The tentative assumption used in Eq. (2.20) that 
the pairing correlation factor r may always be carried 
over from the homogeneous to the inhomogeneous 
regime, is not fully consistent with our E(k) calcula­
tion. If it were true, comparison of expressions (2.21) 

and (3.8) would require for fixed k that 

f*(R-ts, s) -f*(R+ts, -s) 

ex: sin[k. (R-ts) ]-sin[k. (R+ts)], (6.2) 

for all Rand s. The average potentials f* acting on 
the ions, however, do not have this simple structure 
when a> 0, so it is clear that long-range Coulomb inter­
actions induce a shift in the factor r which violates 
the assumption. This does not mean that our E(k) cal­
culation is inconsistent, however, since the r invariance 
has only been used for short-range interactions (rigid 
sphere and steric hindrance) to obtain f(k, s), and 
then the electrostatic interactions have been subse­
quently grafted onto the analysis in the self-consistent 
field calculation. Therefore, we needed initiallv onl\' to 
have proposed the assumption in the narrow~r con'text 
of uncharged particles. 
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