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A sample of water, consisting of 216 rigid molecules at mass density 1 gm/cm”,  has been simulated by
computer using the molecular dynamics technique. The system evolves in time by the laws of classical
dynamics, subject to an effective pair potential that incorporates the principal structural effects of many-
body interactions in real water. Both static structural properties and the kinetic behavior have
been examined in considerable detail for a dynamics “run” at nominal temperature 34.3”C. In those few
cases where direct comparisons with experiment can be made, agreement is moderately good; a simple energy
resealing of the potential (using the factor 1.06) however improves the closeness of agreement considerably.
A sequence of stereoscopic pictures of the system’s intermediate configurations reinforces conclusions
inferred from the various “run” averages: (a) The liquid structure consists of a highly strained random
hydrogen-bond network which bears little structural resemblance to known aqueous crystals; (b)
the diffusion process proceeds continuously by cooperative interaction of neighbors, rather than through
a seauence of discrete hons between Dositions  of temnorarv  residence. A nreliminarv  assessment
of temperature variations confirms the’ ability of
realistically.

I .  I N T R O D U C T I O N

Although water occupies a preeminent position
among liquids, this substance has not enjoyed the
attention of a rapidly developing body of statistical
mechanical theory devoted specifically to its own
properties.’ One obvious reason for this retardation
is the internal structure of the water molecule, which
at the very least requires considering orientational
degrees of freedom. In addition, the potentials of
interaction for water molecules have until very re-
cently2-5  been imperfectly known. Furthermore, it now
appears that these interactions are nonadditive to a
significant degree.6--9 Finally, the maximum cohesive
binding between pairs of molecules, in units of kaT
at the triple point, is roughly an order of magnitude
greater than the same quantity for the theoretically
popular liquified noble gases.

This combination of complications renders imprac-
tical a large part of conventional liquid state theory
for studying water. One must forego reliance on the
integral equation approaches to static pair correlation
functions on the one hand, while it is clear on the
other hand that the fundamental theory of kinetic
processes becomes even more complex than usual.

Under these circumstances, the most promising ap-
proach at present seems to be the direct simulation
of liquid water by electronic computer. Both the
“Monte Carlo” method”’  and the technique of rrmo-
lecular dynamics”” are available for this purpose. The
former offers the possibility of generating canonical
ensembles of given temperature, but it is entirely
restricted to a study of static structural properties.
Molecular dynamics (which is nominally microcanon-
ical) however can probe both static and kinetic be-

. -
this dynamical model to represent -liquid  water

havior, so in -principle it is the more powerful tool.
We have therefore chosen to utilize this more powerful
approach. This paper provides details of computa-
tional strate,v, and initial results, in our molecular
dynamics investigation of liquid water.

The following Sec. II specifies the Hamiltonian
used for our dynamical water model. The individual
molecules are treated as rigid asymmetric rotors,
i.e., their internal bond lengths and bond angles are
invariant.

Classical mechanics describes the temporal evolu-
tion of our model system. The coupled differential
equations for translational and rotational motion are
considered in Sec. III for the model water system.
Special choices are introduced there for system size
(216 molecules), boundary conditions (periodic unit
cell corresponding to liquid at 1 gm/cm3),  and time
increment for numerical integration of the coupled
dynamical equations (AI=4.355X  lo-l6 set). Discussed
as well in Sec. III is a force truncation scheme.

Section IV presents a body of results thus far ac-
cumulated which specifically bears on the static mo-
lecular structure for our water model. Separate radial
correlation functions are reported for the three dis-
tinct types of nuclear pairs present (O-O, O-H, and
H-H), and these are used to synthesize the hypo-
thetical x-ray scattering pattern for the model liquid.
Several aspects of the elaborate local orientational
order are presented in Sec. IV by examining dipole
direction correlation in successive concentric shells
about a given molecule and by analyzing the oxygen-
oxygen pairs in separate icosahedral sectors about a
fixed molecule. The character of hydrogen bonding in
the liquid has also been examined using the distribu-
tion function for pair interaction energy.
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Having thus described the main features of equi-
librium molecular order, we pass on to kinetic prop-
erties of the water model in Sec. V. Several autocorre-
lation functions are presented which reveal distinctive
characteristics of translational and rotational motion.
These autocorrelation functions permit one in prin-
ciple to calculate the self-diffusion constant, the di-
electric relaxation spectrum, neutron inelastic scat-
tering, and NMR spin-lattice relaxation.

In order to supplement these conventional molecular
dynamics quantities, we have also produced stereo-
scopic photographs (of a cathode-ray display) which
visually present instantaneous configurations of the
216 molecules during the system’s temporal evolution.
Unfortunately, a printed paper such as this one does
not provide an effective direct way to communicate
these elaborate stereoscopic pictures. However, we
have attempted verbally to summarize their contribu-
tion to our own understanding of liquid water at the
appropriate points in Sets. IV and V. In particular,
these pictures allow one to perceive the global fea-
tures of liquid water hydrogen-bond patterns, and to
appreciate details of local cooperativity in molecular
Brownian  motion.

The results in Sets. IV and V refer to a single
computer “run” corresponding to water at a fixed
temperature. Some early results for a substantially
lower temperature are mentioned in Sec. VI. Although
we reserve  most of the details concerning temperature
variations for a later publication, these few observa-
tions strengthen our conviction that the model used is
a relatively faithful representation of real water.

Several items are taken up for discussion in the
final Sec. VII. We list there some estensions of the
present project that appear to us to have relatively
high scientific merit. Included among these are pos-
sible modifications of the Hamiltonian that could well
be required at the nest precision level of computer
simulation for aqueous fluids. In particular, we stress
a simple energy resealing  that may be applied to the
present results, which seems to produce substantial
improvement in agreement with experiment.

II. WATER MODEL HAMILTONIAN

Neutron diffraction studies on heavy iceI have con-
firmed earlier reasoning by Bernal  and Fowlerr  and
b\- Pauling14  that water molecules maintain their
identity in condensed phases with very little distor-
tion of their molecular geometry. In other words, the
forces of interaction between neighbors tend to be
largely ineffective in perturbing the stiff covalent
bonds within the molecules. From our point of view
this offers the distinct advantage that the water mole-
cules may be treated as rigid asymmetric rotors (six
degrees of mechanical freedom), rather than explicit
triads of nuclei (nine degrees of freedom).

The classical Hamiltonian HN for a collection of N
rigid-rotor molecules consists of kinetic energy for
translational and rotational motions, plus interaction
potential energy v~:

27N=$f  (mIVj12+oj’Ij’Oj)+VN(X1”‘XN).  ( 2 . 1 )
j=l

The molecules all have mass m. Their linear and
angular velocities are, respectively, denoted by vj
and w;, while the inertial moment tensors (whose
elements depend on the molecular orientation) are
symbolized by I+ The configurational vectors x1. - -xN
for the rigid molecules each comprise six components:
three specify the center-of-mass position and three
Euler angles fix the spatial orientation about the
center of mass.

The potential energy function for any substance
may always be resolved systematically into pair,
triplet, quadruplet, - * - , contributionP:

IIN(X1’  * - XN) = E Yc2’ (Xi, X j )  +  E v”3’(X;,  Xj, X/c)
i< j=l i< j<k=l

+ 5 vc4’(Xi, Xj, Xl;, Xl)+“.+V’*“(Xl.‘-XN).
i<j<k<l=l

( 2 . 2 )

The component subset functions Tlcn)  occurring here
have unique definitions that are generated by succes-
sive reversion of expressions (2.2) for two, three,
four, sm., molecules:

P”‘(X;, Xj)sv2(X<, X j ) ,

V(‘) (Xi, Xj, Xk) = V3(Xi, Xj, Xk) - V(‘) (Xi,  Xj)

- ‘v(‘) (Xi, Xl;) - Vc2’ (Xj, Xk) 7

p” (iI. . . in) = v,L (il. - - i,)

71-l

-C 2 W)(j~-.ajm).  ( 2 . 3 )
m=2 j,<. ..<j,=l

In the case of fluids which consist of simple non-
polar particles, such as liquid argon, it is widely
believed that VN  is nearly pairwise  additive. In other
words, the functions I/Ttn)  for gz>2  are small and
hence exert insignificant ,influence  on the local struc-
ture of the fluid. We have already noted though that
water fails to conform to this sort of simplification
in the strict sense. Local structure in liquid water
and its solutions thus depends to a significant degree
on the character of at least the three-body terms T/o)
in Eq. (2.3)) if not those of even higher order.

While it is thus unrealistic to terminate the exact
water VN after the pair terms in Eq. (2.3), it is still
legitimate to employ the format of a pairwise  ad-
ditive potential, provided one understands that the
pair functions are effeclire  pair potentials, TIeno)  (Xi, Xj)  .
-4 variational criterion is availablelG  which optimall?



3338 A .  R A H M A N  A N D  I;. H .  S T I L L I N G E R

assigns a sum of effective pair potentials to any given
function V&x1. - -xN);  the assignment causes V&n
to differ from V”)  in such a way that it creates es-
sentially the same structural shifts at equilibrium that
would be produced by the aggregate of triplet, quad-
ruplet, - * - , terms in Eq. (2.3). Specit%ally  V.&2) is
to be chosen so as to minimize the nonnegative
quantityr6:

/ /[
. . . exp[-%Wdxl---xN)l

Our molecular dynamics calculations have been
based upon a specific estimate for the liquid water
Verfc2) that has been proposed by Ben-Naim and
Stillinger.”  This estimate consists of a part om de-
pending only on oxygen-oxygen separation rij, plus
a function v,l [modulated by a factor S(rij)]  that
sensitively depends upon orientations about the oxy-
gen nuclei:

V&(2’(%,  Xj) =vIJ(7;j)+S(7ij)‘u,l(Xi, Xj). (2.5)

The quantity ‘um  is a potential of the Lennard-Jones
(12-6) type:

Z&J(Yij)  =4E[(Q/rij)12-  (U/rij)6J* (2.6)

Since the water molecule and the neon atom are
isoelectronic closed-shell systems, parameters e and u
in Eq. (2.6) were chosen by Ben-Naim and Stillinger
to be the accepted neon values?:

r=5.01X10-15  erg=7.21X1W2 kcal/mole,

u = 2.82 ;i. (2.7)

Four point charges, each exactly 1 d from the oxy-
gen nucleus, are imagined to be embedded in each
water molecule in order to produce r,r. These charges
are arranged to form the vertices of a regular tetra-
hedron. Two of them are positive (+O.l9e  each) to
simulate partially shielded protons, while the remain-
ing two (-0.19e  each) act roughly as unshared elec-
tron pairs. The set of 16 charge pair interactions
between two molecules forms r,r:

&1(X<,  Xj) =(0.19e)2  2 (-l)a’+aj/d,,(Xi,  Xj). ( 2 . 8 )
oi,njpl

Here the indices ai and aj are even for positive charges,
odd for negative charges. The distance cE,i,j between
the subscripted charges obviously depends on the full
set of relative configurational variables for molecules
i and j.

If the radial distance rij between oxygen nuclei
were 2 A or less, it would be possible for one of the

distances u&j to be zero. The resultant divergence
of ~~1 surely would be physically meaningless. The
“switching function” S(rij)  however suppresses this
possibility by vanishing identically at these small
separations. In fact S varies continuously and dif-
ferentially between 0 (small rij) and 1 (large rij) :

=l

where”

(Ru<r& * ), (2.9)

R~=2.0379 ;I, Rv=3.1877  d. (2.10)

The effective pair potential (2.5) incorporates the
tendency of water molecules to associate by hydrogen
bonding. The absolute minimum of V,ff(2)  (xi, Xi) is
achieved when one molecule forms a linear H bond
(of length rijz2.76  8) to the rear of the other mole-
cule, i.e., when 0a charge +O.l9e on one is lined up
with (but 0.76 A distant from) a charge -0.19e on
the other. In this minimum energy configuration, the
fully formed H bond has energyI

Veffc2)(Xi,  Xj) (min=  -4..514X10-‘3 erg

= -6.50 kcal/mole  pairs. (2.11)

Figure 1 illustrates this pair configuration, which after
identification of its positive charges as proton posi-
tions agrees rather well with the stable dimer geom-
etry predicted by ab initio  quantum mechanical cal-
culations.Gg

The distribution of mass in each molecule follows
the tetrahedral geometry utilized in V,#). The oxy-
gen atom mass (2.65.5.5X 10-B  g) is concentrated at
the center of the tetrahedron (the force center for
urn).  A mass equal to & this value is placed at each
of Othe  two positions bearing charges +0_19e  that are
1 A away from the tetrahedron center, to act as

r/
i

r’
:’

+(H) -
)_____----

,’ I’
-4’ ‘ - f(H)

+(H)

FIG. 1. Minimum enerfiy configuration for two water molecules,
according to potential (2.5) _ Each oxygen nucleus is symmetrically
surrounded by a tetrad of four-point charges (fO.l9e),  the
positive members of which represent partially shielded protons.
The configuration shown has a plane of symmetry and incorporates
a single linear H bond.
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hydrogen atom masses. I9 The center of mass is there-
fore disp!aced along the molecular symmetry axis by
0.06415 A, away from the oxygen mass. This rigid
mass distribution of course fixes the inertial moment
tensor for each molecule.

Investigation of the structure of ice crystals and
the clathrate hydrates is not our primary objective
in this paper. But the tetrahedral charge arrangements
which underlie I’,rP strongly favor the local tetra-
hedral pattern of H bonds about each molecule ob-
served in these aqueous solids. Therefore there can
be little doubt that T”c#)  in Eq. (2.8) will permit
the existence of mechanically stable H-bond networks
filling space in the ice and clathrate patterns. Our
task now is to employ the effective pair potential
version of the Hamiltonian:

1JN=+$  (fl2 (Vj 12+Wj’Ij’Oj)+  5 Voffc2)(Xi,  X j )
j=l i<j=l

(2.12)

under liquid-phase conditions, to see what type of
nonperiodic, strained, and defective H-bond networks
spontaneously appear.

III. DYNAMICAL EQUATIONS AND METHOD
OF SOLUTION

The configurational vector Xj for molecule j involves
the following components:

xj= (xj, yj, zj, aj, Pj, ri) . (3.1)

The first three are the Cartesian coordinates of the
molecule’s center of mass. The Euler angles aj, pj,
and yj specify the orientation of the molecule’s prin-
cipal axes relative to a standard laboratory fixed
orientation in the manner shown by Fig. 2. These
angles have the following limits:

OlcY,  r<2?r, 0<p<?r. (3.2)

The dynamical equations required to describe the
temporal evolution of a set of rigid-rotor molecules
are the coupled Newton-Euler equations. In the case
of the center-of-mass position Rj= (Xj, Yj, Zj) for
molecule j we have

wz (d’Rj/dP)  = Fj, (3.3)

where Fj is the total force exerted on that molecule
by all others:

Fj= - VR~ C P’crr(2)  (Xj, Xk) .
k&i)

(3.4)

In an analogous fashion, rotational motion involves
the torque Nj exerted on molecule j. The inertial
moment tensor Ij is diagonal (1r,12,  IT3) in a Carte-
sian coordinate system affixed to the molecule as
shown in Fig. 2. If we denote this molecule fixed

t=

HAto ” y
C.O.M.

x

STANDARD

CONFIGURATION

zl:s  =

* LI69’ __ ___----  ,
I CD.M Y

Y ’
P x’

Y

EULER

ANGLES

FIG.  2. Euler angle definition for waler molecule orientation.
The “standard configuration” relative to laboratory fixed co-
ordinate system has cu=@=r=O;  the molecule lies in the ys
plane, and s is the twofold mo1ec:;s.r axis. The arcs denoted bv
o[, 8, and y on the sphere surface are the path described by thk
molecule fixed axis 2’. LY is an angle of rotation about the initial
z=z’ axis, 0 gives a rotation about the resulting y’ axis, and
finally, y is a rotation angle about the displaced z’ axis.

system by primes, then the corresponding torque com-
ponents are

NY=  (Arjzf,  Nju,, NjZt). (3.5)

In the same coordinate system, the angular velocity
components must obey the Euler equations20:

Il(dUjzf/dt)  -Wjy’Wjz*  (12-13) =Njzr,

I&2(dUjut/dt)  -Wj2’Wjzt(13--11)  =Njv*,

13(dbJj*t/dt)  -OjztWjyf (11-12) =Nj,t. (3.6)

The angular velocity components have the following
representation in terms of the Euler angles of Fig. 221:

Ujz’ = (dClj/dt) Six$j siWfj+  (dpj/dt)  COSyj,

Wjf = (dCtj/dt) SiX@j  COSyj- (dpj,/dt) Sinyj,

Wjz’ = (dLuj/dt)  COSpj+ (d+fj/dt)  . (3.7)

From the computational point of view, it is con-
venient to cast the dynamical equations into dimen-
sionless form. The parameters E and u, Eqs. (2.7),
serve as units for energ  and length. Then by in-
voking the total molecular mass nz, the natural time
unit becomes u(m/~)r/~; for water this is 2.179X
lo-r2 sec.

Our calculations involve N=216  water molecules
placed in a cubical container and subject to periodic
boundary conditions so as to eliminate undesirable
wall effects. This assembly is maintained at mass
density 1 g/cm3  by fixing the cube side at 6.604u=
18.62 A. The corresponding number density p is
3.344X 10B/cm3.

Under periodic boundary conditions, each molecule
would interact with .an infinite number of others,
including the remaining 215 in the same unit cell as
well as all periodic images filling the entire space.
In principle, then, Ewald sums would have to be
carried out to evaluate the potential energy. In order
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to facilitate the moIecular dynamics calculation,22 it
is advisable instead to include interactions only up to
some finite limiting distance. In the present work,
each moIecuIe’s  oxygen nucleus is regarded as residing
at the center of a sphere with radius 3.25u, and only
those other molecules having oxygens within this
sphere are considered in computing the force and
torque on the central molecule. By experimentation
with various cutoff radii, it seems that the choice of
cutoff at 3.2% probabIy  commits little error in pre-
dicted liquid structure, relative to a full Ewald sum
(infinite cutoff radius). As with the full Ewald sum,
the truncated dynamical equations maintain the ini-
tial periodicity at all times.

In the case of a substance such as Ar, with spheri-
cally symmetric particles, a force cutoff in the New-
tonian equations of motion does not affect the role
of energy as a constant of the motion, i.e., the system
remains conservative. However with noncentral inter-
actions as water requires, a truncation of force and
torque terms in the coupled Newton-Euler equations
leads in principIe to a nonconservative situation.29
Over a long dynamical run, this irreversibility would
lead to a secular rise in temperature, as though the
system were weakly coupled to a high-temperature
heat reservoir. We have found, however, that this
effect is manageable for the runs involved in the
present investigation.

The calculations were carried out at the Argonne
National Laboratory on an IBM 360-50-75 computer.24
Details of the algorithm utilized to integrate the dif-
ferential equations of motion are contained in Ap-
pendix A. By experimenting with two-molecule dy-
namics, an appropriate choice for the basic time
increment for the numerical integration was found to
be the following:

At=2X10-4Xa(m/~)“”

=4.353X 1O-1G  sec. (3.8)

The smallness of this increment (relative to that re-
quired in liquid Ar calculationsz2)  stems from the
rapid angular velocity of the water molecules, which
in turn derives from the small mass of the protons.
To advance the system by At, the computer requires
about 40 set, so a time dilation factor of about 101’
applies in the relationship of real water molecule mo-
tions to those in our computation.

The 216 molecules were placed initially within the
periodic cell at arbitrary positions, with random
orientations, and with no translational or rotational
velocities. Since this configuration corresponded to a
very large potential energy, the velocities quickly
increased to a distribution characteristic of about
2X104  “K within a few At steps. The system was then
interrupted, and all velocities set to zero at the mo-
mentary configuration that obtained. This served to

remove some of the excess energy. After several more
At steps, the molecules again had achieved high ve-
locities, so once again they were set equal to zero.
Several repetitions of this ener,y reduction procedure
were required to bring the ambient temperature near
to the desired range. Thereafter, fractional uniform
adjustment of all velocities permitted fine temperature
control. In all, over 5000 steps of length At were es-
pended in achieving the proper system ener,gy  and in
allowing the system to “age.” After this interval, the
subsequent period of 5000 At was actually the time
interval over which the molecular dynamics statistical
averages reported below were calculated. We believe
that the system had developed in time long enough
to eliminate any undesirable remanent effects due to
the choice of initial conditions.

Temperature is inferred from the average values of
the translational and rotational kinetic energies over
the molecular dynamics run; in a sufficiently long run:

(~~~m!vilz)=(t~~~j.lj’~j)

= ;NknT. (3.9)

Temperature variations for a new calculation can be
implemented by suitably modifying linear and angular
momenta at the end of a previous run, provided the
system is allowed to ‘<age”  appropriately.

Integrating the dynamical equations in dimension-
less form has the advantage that if length or strength
resealing of the potential ultimately proves to be re-
quired, results may be trivially renormalized to accom-
modate those changes. Thus if P’&2)  were to be
multiplied by the scalar factor I+[,  the energy unit
would become (l+{)~,  and the unit of time would
change t’o a[m/(l+<)~]*‘~.  In view of Eq. (3.9), this
would require that the temperature T originally as-
signed to a given molecular dynamics run be reinter-
preted as (l+r)T.

IV. STATIC STRUCTURE

From the average kinetic energy calculated for the
5000  step molecular dynamics run, the temperature
of the system was determined to be 307S”K (34.3”(Z).
The force-torque cutoff irreversibility actually caused
the total ener,y to drift upward by 1.5% during the
run, with a mean value per molecule:

(HN)/N  = - 101.85 e; (4.1)

the potential energy contribution to this total was

(VN)/J=  -127.3 e

= -9.184 kcal/mole. (4.2)

(The experimental value of this last quantity at
34.3”C is -9.84 kcal/mole.) Though the temperature
effectively drifted upward during the computation,
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the structural features to be reported as run averages
should correspond to the computed mean temperature
34.3”C for the run.

A. Radial Pair Correlation Functions

In water the three distinct types of nuclear pairs
lead to three corresponding radial pair correlation
functions, go,@)(r),  Gus,  and gnn(2)(r).  These are
defined for present purposes by the requirement that

,oc@gup)  (r) dsdv2 (a,P=QW (4.3)

equal the fraction of time that differential volume
elements tivl and dvz (separated by distance r) simul-
taneously and respectively contain nuclei of species

LY and p from distinct molecules. Here pa and pa stand
for the number densities of the nuclei. In the large
system limit, these radial pair correlation functions
for a fluid phase all approach unity as r-+m.

Figure 3 exhibits t$e computed gooc2)(r),  out to
distance 3.25u (9.165 A), along with the “running co-
ordination number”:

J

r
1200  (r) =4xpo ?goo(“’  (s) ns. (4.4)

0

The important features of the goo@)(r)  curve to note
are the following:

(a) The relatively narrow first peak, with maximum
at r/a=0.975, comprises an average of 5.5 neighbors
out to the following minimum at r/u=1.22.

(b) The second peak is low and broad, with a masi-
mum at about r/u= 1.65. The ratio of second-peak to
first-peak distances (1.69) is close to that observed for
the ideal ice structure (2\‘2/ds=  1.633))  where succes-
sive neighbor hydrogen bonds occur at the tetrahedral
angle 109”28’.

(c) There is substantial filling between the first and
second peaks.

3.0 15
34.3"C

F I G. 3. Oxygen  nucleus pair correlation function goo@).  The
monotonically rising curve noo shows the average number of
neighbor orygens within any radial distance r. The liquid has
temperature 34.3”C  and density 1 g/cm3.

3I3o
;5 -20

m n

- IO

I O
1.0 1.5 2.0 2.5 3.0

r/u
F I G. 4. Pair correlation function for liquid Ar. The reduced

state parameters arc p*=p2=0.81  and T*=knT/e=0.74.  n(r)
gives the running neighbor count (right-hand scale).

(d) Although a weak third peak appears at r/uG
2.45, the go<,@) curve has begun to damp rapidly tooits
asymptotic value unity. Beyond r/a=3.00  (8.46 A),
deviations from unity are apparently insignificant.

This liquid water pair correlation function stands
in distinct contrast to its analog in liquid Ar, for
which it is traditional to assume that the pair po-
tential involves only a central Lennard-Jones inter-
action, and no directional forces. Figure 4 presents
a liquid Ar gc2) (r),  specially computed by the mo-
lecular dynamics procedure of Ref. 22, for comparison.
Not only does the first peak encompass more neighbors
than water (12.2 with a cutoff at the first minimum),
but the distance ratio of second and first peaks (1.90)
is considerably larger.

Evidently there is a substantial difference in the
type of disordering attendant upon melting ice to
liquid water on the one hand, and melting a face-
centered cubic crystal of Ar to the corresponding
liquid Ar on the other hand. The ice lattice second-
neighbor peak, although broadened considerably,
clearly remains after melting. The same is not the
case for Ar, however, since Fig. 4 shows no persistence
of the fee lattice second-neighbor distance at 21/2 times
the first neighbor distance. Obviously the directionality
of interactions in liquid water exerts a profound in-
fluence, not present in other liquids, on local order.

Figures 5 and 6, respectively, show goHc2)  and gEn(‘)
for water (these of course have no analogs in liquid
Ar). The former of these functions plays a role in
the theory of solute structural shifts in aqueous solu-
tions.% The prominent first two peaks displayed by
gOH@' evidently arise from neighboring molecules that
are hydrogen bonded; the peak at smaller separation
involves the proton along the bond and the acceptor
oxygen toward which it points, while the larger dis-
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1

I.0 1.5 2 .0 2 .5

r/c

0 . 5

FIG. 5. Cross correlation function go#)(r) for water; 34.3”C
and 1 g/cm?.  The vertical line indicates the intramolecular O-H
covalent bond length.

tance second peak comprises all remaining oxygen-
proton distances across the bonded pair of molecules.
The interpretation of grin@)  is less direct, owing to
the multiplicity of possible proton pairs in hydrogen-
bond networks, but it seems safe to assign the first
peak to a proton along a hydrogen bond and a proton in
the acceptor molecule. The very distinct shoulder in
gnn(2) in the region r/u=O.S  is especially interesting,
since these very close proton pairs may in part arise
from the situation in which three proton donors
crowd together at the negative rear of an acceptor
molecule.

Even in the absence of further information, the
three water correlation functions lead to a picture of
liquid water as a random, defective, and highly

*‘O/i
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FIG. 6. Proton pair correlation function g&s)(r)  for water;
34.3”C  and 1 g/cm3.  The vertical line indicates the intramolecular
H-H pair distance.

strained network of hydrogen bonds that fills space
rather uniformly. The fact that each of the three
correlation functions approaches its asymptotic value
unity rather quickly as r increases indicates that large,
low density clusters or “icebergs” are not present to
a significant degree, though they have occasionally
been advocated to explain the properties of waterF6tn
Recent small angle x-ray scattering measurements on
liquid water appear to be consistent with this ob-
servation.28

Unfortunately, experiments have not been carried
out to provide measurements of the separate func-

-1.0 I I I
0 5 IO I5

S (A-II

FIG. ‘I. Theoretical (solid line), and experimental (dotted
line), x-ray scattering intensities for liquid water. The latter are
taken from Narten, Ref. 29, and refer to 25°C.

tions gooo), gonc2), and gnn(2)  for direct comparison
with the molecular dynamics results. In principle this
could be done by combining x-ray scattering results
with neutron scattering intensities for isotopically sub-
stituted waters. At present, though, only x-ray scat-
tering has been carried out, which provides a weighted
average of the three pair correlation functions.2g  We
have therefore utilized our separate correlation func-
tions, along with tabulated atomic scattering factors,2g
to synthesize the x-ray scattering intensity I(S)
[s= (47r/i)  sin&  the magnitude of the scattering
vector].

Figure 7 presents computed values of sl(s),  along
with Narten, Danford,  and Levy’s measurements of
the same quantity at their nearest temperature, 2S°CB
Agreement obtains only in modest degree, with the
principal discrepancy occurring at the first peak
(~~1.7 to 3.0 i-l). At present it is not clear that
the disagreement arises entirely from shortcomings in



M O L E C U L A R  D Y N A M I C S  S T U D Y  O F  L I Q U I D  W A T E R 3343

our basic water model. It may be, for example, that
covalent intramolecular chemical bonds, and inter-
molecular hydrogen bonds, distort electron distribu-
tions sufficiently to invalidate the conventional as-
sumption of independent spherically symmetric atomic
scattering factors. In addition, we have treated the
intramolecular geometry of nuclear positions as rigid,
whereas the substantial zero-point motions should
actually be taken into account to predict I(s). More
work is clearly required in this area, beyond the
scope of the present paper.

B. Icosahedral goo@)  Resolution

The radial pair correlation function goo@)(r)  gives
the mean density of oxygen nuclei over concentric
spherical shells about a fixed oxygen nucleus. It thus

-_

?

\
\

(a) (b)
FIG. 8. Geometric basis of the icosahedral goo@) resolution.

In (a), a tetrahedrally directed quartet of directions passes
simultaneously through the centroids (open circles) of four faces
of a regular  icosahedron. The correspondingly oriented water
molecule  is shown in (b). The four pierced faces in (a) form
class I, the 12 faces sharing an edge with these four form class
II, and the remaining four faces form class III.

provides little information about the angular distribu-
tion of oxygens on those shells if the molecule to
which the central one belongs is held fixed in orienta-
tion. This angular information is important, however,
if one is to understand the detailed architecture of
hydrogen bond networks in liquid water.

The basic tetrahedral symmetry of our model water
molecules suggests a convenient way to resolve some
of the angular detail. Figure 8(a) shows that the four
tetrahedral directions emanating from a point can be
made to pass simultaneously through the centroids
of four noncontiguous triangular faces of a regular
icosahedron centered at that point, The four tetra-
hedral vectors in fact are perpendicular to the faces
that they pierce. In Fig. 8(b), accordingly, a water
molecule has been placed with its o.sygen nucleus at
the icosahedron center, and has been oriented so that
the directions of the four undistorted hydrogen bonds
in which it can engage pass through face centroids.

Let us denote the pierced triangular faces by I.
Then first neighbors of a given water molecule which
interact via undistorted hydrogen bonds with that

0 1.0 I.5 2.0 2.5 3.0

r/u

F I G. 9. gr(r) and 121(r)  for water at 34.3”C and 1 g/en+.

molecule (as in ice) will invariably have their oxygen
nuclei within those solid angles about the icosahedron
center which are generated by class I faces.

Twelve more icosahedron faces share edges with
the four of class I. This new class of faces will be
called class II. It is clear from Fig. 8(b) that second
neighbor oxygens, located along a sequence of two
undistorted hydrogen bonds, will occur within solid
angles generated only by class II faces. Rotation
around linear hydrogen bonds can cause the second-
neighbor oxygen-oxygen direction to move across
class II faces in an arc, but this arc will pass from
one II face to another II face through a shared vertex.

The four I faces and twelve II faces leave four
other faces to be accounted for. These are the “anti-
tetrahedral faces,” which lie directly opposite those of
class I, across the icosahedron. We shall denote them
by III. In a network of undistorted hydrogen bonds,
oxygen nuclei from third- or higher-order neighbors
only can occur in solid angles generated by class
III faces.

The fact that the full solid angle 4n about the
,central oxygen in Figs. 8 has been split into three
parts, I, II, and III, means that a corresponding
resolution of goo@)  can be effected:

gooC2’(r)  =gI(~)+gII(~)+gIII(~), (4.5)

where the three functions with Roman numeral sub-

2.0 - - IO

L3
c

- 5

1.0 1.5 2.0 2.5 3.0

r/u

F I G. 10. Gus  and srr(r) for water at 34.3”C  and 1 6/cm3.
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FIG. 11. grrr(r)  and PZIII(~)  for water at 34.3”C and 1 g/cm3.

scripts represent the relative occurrence probabilities,
at radial distance r, of oxygen nuclei in the respective
solid angle classes. We will have

limgl (r) = 1imgIII (r) = 3,
r-m r-m

limgrr (r>  = Q, (4.6)

reflecting merely the fraction of all 20 icosahedral
faces in the respective classes.

Figures 9-l 1, respectively, present our computed
functions gr, grI,  and grI1  for 34.3”C. Shown as well
in each of these Figures are the corresponding run-
ning coordination numbers, defined in analogy to
Eq. (4.4),  e.g.,

These results very clearly demonstrate that substan-
tial deviations from ideal hydrogen-bonding directions
are present. Although gr (r) exhibits a large peak at
the position of the first goo”)  (7) maximum (r/&l),
gIl(r)  also has substantial weight there as well. Evi-

1.0, I

P

FIG. 12. Distribution function N(p) for p=cosO~,  defined by
Eq. (4.13). The decline with increasing p indicates a tendency
for ~1(1)  and NI to be antiparallel.

dently some of the hydrogen bonds to neighbors have
been bent out of class I solid angles into those con-
tiguous solid angles of class II. On the basis of the
curves  rzoo(r)  and nor, evaluated at the first
goo(2)(r)  minimum, 2.25/5.50,  or 415?$,  of the bonds
suffer this fate. In addition, neither gr nor gIrr vanish
at r/g = 1.633, where ideally bonded second neighbors
should appear only in gn.

The function grrr(r) shown in Fig. 11 is nearly flat
from r/a=O.75  onward. For r/u2 2 this is easy to
understand merely in terms of the large number of
ways that successive hydrogen bonds can link neigh-
boring molecules so as to place ultimately an oxygen
nucleus in a class III solid angle region. But when
r/c is near unity, the pairs which contribute to g111

1.2-

1.0 -
r/r =.775

.8 -

';I

dr .6-
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0
-I
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FIG. 13. Distribution function N(r, r) for the angle cosine
(p) between a given molecule’s dipole direction and the dircc-
tion of the total moment of neighbors at distance r. Distances
are reckoned in terms of oxygen atom positions. For this graph,
r=0.775ls.

are necessarily so seriously misaligned that no hope
for a hydrogen bond between them exists. One pos-
sible explanation would be that an “interstitial” mole-
cule were involved in such a pair, surrounded by, but
only weakly interacting with, an enclosing network
of hydrogen bonds. Alternatively, two molecules each
incompletely hydrogen bonded to their surroundings,
could by chance simply back into one another.

C. Dipole Direction Correlation

The dipole moment of an undisturbed water mole-
cule bisects its HOH bond angle. As another aspect
of static orientational order in liquid water, it is
interesting to see how these dipole directions are dis-
tributed for neighboring molecules.
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Let lJ$l) represent a unit vector along the dipole
direction of molecule i, and set M equal to their
vector sum for all AT=216  molecules:

M = 5 F”‘_ (4.8)
i=l

If the dipole directions were entirely uncorrelated,

(W)/h~=  1 (uncorrelated) . (4.9)

Instead, the average computed for the molecular dy-
namics run turns out to be

@P)/N=0.171 (molecular dynamics), (4.10)

so evidently the molecular interactions act in a way
to quench the system’s net moment.

6 -

-1 -3 .3

FIG. 14. Orientational distribution function N(p, r) for r= 0.97%.

This quenching effect may be examined in a variety
of alternative ways. One can, for instance, isolate one
of the molecules (which for convenience we take to
be the one numbered l), and ask how its own dipole
direction correlates with

N1=M-Q’, (4.1 .)

the total moment of all the other molecules. Of course
the magnitude of N1 fluctuates, as revealed by the
difference in computed averages:

(I N1 I)=569

(hr~2)“2=6.13, (4.12)

as well as its direction relative to pro).  The relevant

r/U = 1.225

.4

.2

1
01 I I I

-I -.5 0 .5

P

FIG. 15. Orientational distribution function N(p,  r) for r= 1.22%.

angle 01 is defined by

cose1=fi~‘l@, $=I%/1 N1 I.

For our molecular dynamics run:

(4.13)

(co&)  = - 0.129, (4.14)

showing that on the average, N1 and p,,,(r)  point in
opposite directions.

Figure 12 shows the full distribution function N(p)
for p= co&, for which the average value shown in
(4.14) applies. Although this distribution is nearly
linear, a slight positive curvature beyond statistical
uncertainty seems to be present.
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IilG.  16. Orientational distribution functionN(p,r)  forr=  1.675~.
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FIG. 17. Orientational distribution function N(p, r) for r=3.02%.

It is also instructive to analyze the separate con-
tributions to N1 from distinct spherical shells centered
about the oxygen nucleus of molecule 1. Figures 13-17
exhibit partial distribution functions _V(p,  r) for 12,
the cosine of the angle between pl(l) and the moment
of a molecule contained within a shell of mean ra-
dius r, and width 0.0%. The first two of the figures
(r/a=0.755 and 0.975, respectively) show that pairs
of molecules close enough to hydrogen bond have a
strong tendency toward dipole parallelism (p = + 1) ,
in spite of the over-all opposite tendency which is
manifest in Fig. 12. At the somewhat larger distance
r/a=1.225  (Fig. l.S), the alignment effect is less dis-
tinct, and it has reversed at r/a= 1.675 (Fig. 16).
Figure 17 indicates a relatively flat distribution for
r/6=3.025.

The static dielectric constant co for polar fluids is
intimately connected to the orientational correlations
between neighboring molecules. The Kirkwood theory
of polar dielectrics30  expresses e. in terms of the mean
molecular polarizability (Y, the liquid phase dipole mo-
ment pl, and an orientational correlation function gK:

(co- 1) (2Eo+1)/3Eo=4WJ[~+  (1112gR/3kBT)l. (4.15)

The Rirkwood orientations1 correlation factor gK may
be expressed in terms of the full orientation and position
dependent pair correlation function g@)  (XI, ~2) 17s31:

gK=l+(dW  Id~z(pl(“-~~~‘))g(~)(x1,  a ) ;  ( 4 . 1 6 )

in this expression one must be careful to use only
the infinite system limit function gf2)  (x1, x2).

Our molecular dynamics calculation has not been
set up in such a way that direct evaluation of Q is
possible. No external electric field is involved, of

course. Furthermore, PI is unknown except to the
extent that it should exceed the free molecule mo-
ment; even in ice, where the local structure is com-
pletely known, estimates of the mean molecular dipole
moment vary considerably.32*33

Nevertheless, enough information is supplied by our
calculation to evaluate gK. The evaluation is not
direct, however, since the infinite system limit re-
quired of gc2) in Eq. (4.16) is not available. Instead,
only a finite system gc2) is at hand, and its finite limit
integral analog of (4.16) gives an apparent Rirkwood
orientational correlation factor GK. The fundamental
difference between gK and GK stems from inclusion
only in the latter of a weak macroscopic polarization
contribution associated with electrostatic boundary
conditions at finite distance; in the present circum-
stance the “boundary” is generated by the interaction
cutoff. One may show (Appendix B) that

GK=[9th/(~O+2)  (2EO+i)]gK.

For the present calculations,

(4.17)

GK = (M2 j/N, (4.18)

whose value has already been presented in Eq. (4.10).
If we employ the measured dielectric constant for
water at 34.3”C (75.25) to compute the conversion
factor shown in Eq. (4.17), the implied result is

gK=2.96. (4.19)

This agrees roughly with values that have previously
been proposed; Harris, Haycock,  and AlderY4 work,
for instance, implies that gxZ2.6  at 34.3”C. It should
be pointed out however that the energy resealing  of
our molecular dynamics results, which is discussed in
Sec. VII, improves the agreement.

D. Bond Energy Distribution

Up to this point we have frequently invoked the
concept of “hydrogen bonding” to interpret those
aspects of water molecule correlation which stem from
the characteristic tetrahedral directionality of the ef-
fective pair potential. We now require a precise def-
inition of “hydrogen bond,” so that precise statements
may be formulated about the geometrical and topo-
logical character of the random networks that exist
in liquid water.

The most obvious way to define hydrogen bonds
in the present circumstance uses the effective pair
interaction itself. Whenever the interaction energy
for a given pair of molecules lies below a negative
cutoff value Ir,,, we shall say that the pair is hydrogen
bonded; if their interaction equals or exceeds Van,
they are by definition not hydrogen bonded:

(i, j hydrogen bonded),

(i, j not hydrogen bonded).

(4.20)
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The cutoff parameter V~U  is arbitrary, at least within
certain limits; the fullest understanding of the nature
of hydrogen-bond networks in water would result by
varying this parameter and observing the conse-
quences.

In order t.o identify the range of values for Vnn
of greatest chemical relevance and interest, it is
valuable to examine the entire distribution of effective
pair interactions in the liquid. This interaction den-
sity, p, may be expressed in terms of the following
integral:

p(V) = (p/87?)  JliXj6[P-  Vcffc2’(Xi, Xj)]g(‘)(X;,  Xj).

With this normalization,
(4.21)

??.( V, V’)  =
I

“’ p( Y”)W” (4.22)
V

will be the mean number of neighbors of any molecule
whose instantaneous interaction with that molecule
lies between V and V’. Naturally p(V) will vanish
if V declines below the absolute minimum of V,J2)
noted in Eq. (2.11). One easily establishes further-
more that p(V)  will diverge as V+-  near V=O, owing
to the preponderance of weak dipolar pair interactions
at large distances.

The distribution p(V) has been calculated for the
molecular dynamics run and the result is displayed
in Fig. 18. The espected  divergence at the origin is
obvious in the Figure, but it is uninteresting since it
conveys no specific structural information. The pri-
mary point of interest in the curve is the large, essen-
tially flat region in the range of V from -4.5 kcal/mole
to -2.0 kcal/mole.  Evidently, this reveals a wide
class of moderately strong “bonds,” which often suffer
considerable strain. The apparent relative maximum
in p(V) at about +2.5 kcal/mole  we believe is a real
effect, not a misleading statistical fluctuation. Prob-

5t
34.3-c
Igm/em3
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V  (kcal  / m o l e  )

F I G. 18. Distribution function for effective pair interaction
strength in water. The curves show relative numbers of molecules
in successive energy intervals of width Av=4e=0.288  kcal/mole.

FIG. 10. Distribution of molecules according to the number
of hydrogen bonds in which they engage. The set of cutoff ener:;ics
J’Hn  used as alternative hydrogen-bond definitions is ?)l,:,;n  in
Eq. (4.24).

ably it arises from pairs of molecules which are simul-
taneously bound to a third, but in such a relative
configuration that they repel one another.35

On account of the negative-V plateau in p(V), i t
seems plausible to select Vnn near the middle or
upper limit of this range, for example,

VI,,, = - 2.9 kcal/mole. (4.23)

This choice would certainly be consistent with the
chemical suggestion that a large number of hydrogen
bonds are still present in the liquid after ice is melted,
without at the same time being so permissive as to
include pairs of molecules much more widely separated
than nearest neighbors in the ice lattice.

Using several alternative choices for VHB, including
the range indicated by (4.23), the concentrations of
molecules engaging in different numbers of hydrogen
bonds simultaneously has been calculated. This set of
coordination number distributions is displayed in Fig.
19. The alternative values selected for Vnn are equally
spaced, and have the values

Vj=-S(j-l)C

= -O..577(j-  1) kcal/mole,

j=l, 2, -.*, 10. (4.24)

It is clear from Fig. 19 that these choices span a wide
range of hydrogen bond definitions, from an extremely
permissive limit which assigns many more than four
bonded neighbors to all molecules, to a very strigent
limit which makes hydrogen bonding between neigh-
bors a rare event.

The most significant conclusion to be drawn from
Fig. 19 is that as VEIN  is varied, the coordination
number distribution shifts, but it always maintains
a single-maximum character. This fact alone seems
to rule out the class of two-state liquid water models26~27
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which post’ulate  large side-by-side regions of bonded
and of unbonded molecules. For such models, one
would expect to observe for some VHB choice a bi-
modal distribution with simultaneous maxima at zero
and at four bonds.

It is clear from Fig. 19 that choice (4.23) for VHU
(essentially the value V,)  makes the most probable
number of hydrogen bonds equal to three. At the
same time a not insignificant number of molecules
have fivefold coordination. From a detailed knowledge
of V&2)  potential curves” it is possible to assert that
essentially all molecules in ordinary ice will have
precisely four bonded neighbors with choice (4.23),
so the corresponding liquid phase distribution leads
to a vivid picture of the nature of network disruption
that accompanies melting.

It is instructive to place these bond distribution
considerations for liquid water in the wider context
of general liquid behavior. Thus, the anomalous char-
acter of water again stands out in comparison with
the simple liquified noble gases. For liquid argon, the
pair interaction distribution p(V) may readily be ex-
pressed as an explicit, closed-form functional of the
pair correlation function, provided Y for that sub-
stance has the traditional Lennard- Jones (12-6) form.
Using this hypothesis, and the argon correlation func-
tion of Fig. 4, the corresponding p(V) was calculated.
The result is presented in Fig. 20. Some of the ob-
vious differences between this p(V) and the one
shown in Fig. 18 for water reflect the lack of rota-
tional degrees of freedom for argon that can cause V
to vary; the sharp peak at the minimum attainable V
is one example. The most significant structural dif-
ference, though, is that no particularly suggestive
features arise for negative V (such as a plateau region
for water) that would imply a useful energy definition
of “bond” between two argon atoms.

E. Stereoscopic Pictures

Intermediate configurations of the 216 water mole-
cules, occurring every SOOAt = 2.177.5  X lo-l3 set, were
placed on punched cards and then processed at Mur-
ray Hill to produce stereo slides. The computer pro-
gram used for this purpose produces left and right
eye views separately on a cathode-ray tube, whose
display is then photographed with 3.5 mm film. The
subsequently mounted slides can then be examined
with a commercially available viewer,36  to give a strik-
ing impression of the three-dimensional order.

The individual molecules in these pictures are ren-
dered into stick figure form. The oxygen nucleus and
the distinguishable hydrogen nucleus positions are in-
dicated by small 0, G, and H, respectively, with the
covalent bonds between them (at the tetrahedral
angle) drawn as straight lines. The time interval be-
tween successive pictures is sufficiently small that the
same molecule can easily be identified and followed

through the entire sequence, and the motion of its
individual nuclei perceived.

The inevitabIe  immediate impression conveyed by
these pictures upon first viewing is that a high degree
of disorder is present. Anything else of course would
make one properly suspicious that a liquid was ac-
tually being simulated. Beyond this general feature,
several more detailed observations can be listed:

(1) There is a very clear tendency for neighboring
molecules to be oriented into rough approximations
to tetrahedral hydrogen bonds, but the average degree
of bending away from bond linearity and ideal ap-
proach directions is considerable.

(2) Except on the smallest scale, the random mo-
lecular configurations are rather homogeneous in den-
sity. No large “clusters” of anomalous density seem
to occur.

(3) No recognizable patterns characteristic of the
known ices or clathrates appear, beyond occasional
polygons of hydrogen bonds. Such polygons occur
with 4, 5, 6, 7 (and perhaps more) sides, but they
tend to be distorted out of their most natural con-
formations.

(4) Dangling OH bonds exist, which are not in-
cluded in hydrogen bonds. These entities persist far
longer than water molecule vibrational periods, and
hence may hold the key to the structurally sensitive
band shapes that arise in infrared3? and Raman38v39
spectroscopy of water and its solutions.

(5) No obvious separation of molecules into “net-
work” vs “interstitial” types suggests itself. This fact
is consistent with the single-peak character of the
hydrogen-bond coordination number distributions ex-
hibited in Fig. 19. It also seems to diminish the
validity of the interstitial models that have been
proposed to explain liquid water.4O-&

(6) In the case of moderately well-formed (i.e.,
undistorted) hydrogen bonds, all angles of rotation
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FI G. 20. Bond energy distribution for liquid Ar. The state
parameters, and the correlation function employed, are those
of Fig. 4.
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of the molecules about the bond axis seem to be
frequently represented. This behavior may have direct
relevance in study of nonelectrolyte solvation, where
the geometric requirements attendant upon formation
of a hydrogen-bonded solvation cage forces the rota-
tion angles into “eclipsed” configurations only,43 thus
lowering configurational entropy.

(7) No significant examples of network interpene-
tration were found, analogous to the interpenetration
known to obtain in ice VII and ice VIILM

V. KINETIC PROPERTJES

The internal structure of t.he water molecule requires
that the static structure of the liquid be examined
from many more independent points of view, for a
given level of comprehension, than is required for
liquid argon. This increased elaborateness persists into
the regime of kinetic properties too. We now shall
successively examine several aspects of the temporal
development  of our model  water system. As in the
static case, these aspects are not certainly the only
informative ones that might have been chosen for
study. Nevertheless, we believe that this selection
serves to illuminate the dominant characteristics of
water molecule motions in the liquid phase.

A. Self-Diffusion

The most obvious fa.cet of the water molecule mo-
tions is their long time diffusion rate, which is mea-
sured by the self-diffusion coefficient D. This param-
eter may be related, in the long time limit, to the
mean-square displacement of any fixed point in a
given molecule. In the case of the molecular center
of mass, at position Rj(t) at time t,

D=lim(6t)-1(@j(L)  -Rj(O)]‘); (5.1)
L-cc

implicit in this limit expression is a previous infinite
system size limit operation.

In the molecular dynamics calculations, one natu-
rally is limit.ed both in time interval, and by finite
system size. However, as in the case of such studies
for liquid Ar,22 the computed mean-square center-of-
mass displacement appears to approach a limiting
slope sufficiently rapidly that D may conveniently be
extracted from the calculations. But at the same
time, the molecules do not diffuse far enough to span
a periodicity cell edge length, which would invalidate
use of (5.1) in the present context.

Figure 21 shows the computed curve for the water
molecule center-of-mass mean-square displacement.
Included as well is the mean-square displacement for
a proton in the liquid. At sufficiently long times,
these curves would become parallel straight lines, with
the proton curve displaced upward from the center
of mass curve by

2(0.3419~)~=0.2338$, (5.2)

I I I I I I I I I
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FIG. 21. Mean-square displacement of center-of-mass motion
(CUIW  A), and of proton motion (Curve I3).  The apparent
limiting slope of Curve A gives D=4.2X  lo-& cm*/sec.

i.e., twice the OH bond length squared. In Fig. 21
though it is clear that the proton curve is still rising
away from the essentially linear center-of-mass curve,
due to the incompleteness of molecular rotation during
the time allowed for computation. The motion of the
center of mass therefore constitutes by far the more
convenient means of estimating D .

The apparent limiting slope of the center-of-mass
mean-square displacement curve in Fig. 21 implies

D = 4.2X 1O-5 cmz/sec (5.3)

for water at 34.3”C,  and 1 g/cm3. This value is sig-
nificantly larger than the value that may be inferred
from recent spin-echo experiments4”f46:

D=2.85&0.15X10-5  cm2/sec. (5.4)

But in view of the rapid variation of the experimental
D with temperature, the comparison should not be
viewed as unfavorable. Evidently, a small change in
the  ener,y scale of v,#) could el iminate the dis-
crepancy (see Sec. VII below).

In principle, the self-diffusion constant D could also
be obtained from the velocity autocorrelation function
for the molecular center-of-mass motion:

D=$ Vj(t) =dRj(l)/dt.  ( 5 . 5 )

This velocity autocorrelation function has been com-
puted from the molecular dynamics run, and it is
shown in normalized form in Fig. 22. Since only a
limited average can be performed with the run of
total length 2.1775X 1O-‘2 set, this autocorrelation
function necessarily represents an incomplete phase
space average. The resulting statistical error is espe-
cially noticeable for “large” times (6-7X 10-13  set)
where the exact autocorrelation  function is apparentl;
quite small. The “cutoff” indicated in Fig. 22 at
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F I G. 22. Center-of-mass velocity autocorrelation function
(normalized at t=O) for water and its Fourier cosine transform.
The “cutoff” locates approximately the point beyond which
statistical noise dominates the autocorrelation function.
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6

as much as lOTo, compared to the model’s precise
self-diffusion constant at 34.3”C and 1 g/cm3.

Even accounting for the statistical uncertainty
present in the center-of-mass velocity autocorrelation
in Fig. 22, it is obvious that the average molecular
motion is relatively oscillatory. Once again our water
model stands in distinct contrast to liquid Ar, for
which Fig. 23 presents the velocity autocorrelation
function. For this comparatively simple liquid, the
autocorrelation has only a single well-defined negative
minimum, followed by a slow rise to zero. The hy-
drogen bonding in liquid water, however, produces
a more persistently oscillatory motion, as a result of
greater structural rigidity.

4.78X1O-13  set represents our estimate of the point
beyond which the curve is primarily statistical noise.
At shorter times, though, the autocorrelation curve
shown is probably a reasonably accurate approxima-
tion to the exact function.

Figure 22 also presents the Fourier transform4’

F(w) = /d (v(0) -v(O))
- (v(O) -v(t) > cos(ot)dt

. (5.6)

In principle, one should have

F(0) =mD/kBT; (5.7)

however, this identity is not quite obeyed using the
D value in Eq. (5.3), as the arrow on the F(w) scale
shows. The discrepancy reflects the magnitude of er-
rors in the incomplete phase averages involved in
both methods of evaluating D. This suggests that
the D value shown in Eq. (5.3) may be in error by

1.5
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F I G. 23. Normalized velocity autocorrelation function for
liquid argon; p*=O.Sl,  T*=O.74.  The reduced time t* is measured
in units ~~(vt/e)“~.
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F I G. 24. Dipole direction relaxation function T,(l).  The
related $1(t) is defined in Eq. (5.9).

The stereo pictures of intermediate configurations
are too widely separated in time (2.177.5)<10-13  set)
to resolve proton oscillations with great detail. How-
ever, they do suffice to give an idea of why and how
translational diffusion proceeds. The hydrogen bonds
between neighboring molecules are continually sub-
ject to varying degrees of strain. Accordingly, each
molecule is tugged around in a random fashion by its
imperfectly aligned neighbors, while at the same time
those neighbors are also being forced to rearrange by
fhei~ neighbors. In this circumstance, it is frequently
the case that hydrogen bonds become strained to the
breaking point; i.e., it is favorable for a molecule to
reorient to form new hydrogen bonds to other nearby
molecules. The amplitude of these very anharmonic
motions is sufficiently high at the ambient tempera-
ture that settling down into a regular and relatively
unstrained arrangement is overwhelmingly unlikely.

There are effectively so many available highly
strained configurations near to one another, that their
interconversion is a continual, rather than a discrete,
process. There is no evidence in the stereo pictures
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for a hopping process between alternative positions
of mechanical stability. Instead, translational diffu-
sion proceeds via individual molecule participation in
the continual restructuring of the labile random hy-
drogen-bond network.

B. Dipole Direction Relaxation

The forces of hydrogen bonding between molecules
prevent rapid turning over of those molecules. The
autocorrelation function for the dipole direction of a
given molecule

rl(l)  = (l@)(O)  ‘p+(r)(t)  >= (P1[cosej(l)]) (5.8)

clearly shows this rotational retardation. It is plotted
in Fig. 24 both in direct form, as well as logarith-
mically in terms of the quantity

$1(t) = - (103At/lt)  ln(Pr[cosej(t)]). (5.9)

After a brief period of initial libration lasting roughly
lo-r3 set, a long monotonic decay ensues which ap-
parently persists well beyond the time limit imposed
by the computation. By fitting a simple exponential
function to I’1 in the monotonic range, one infers a
longest relaxation time 71 equal to about 5.6X lo-r2  sec.

It has been claimed48~4g  that the macroscopic dielec-
tric relasation time (for polar liquids with large co)
should be $ or 2 times as large as rl. Our calculations
would then imply for water at 34.3”C:

8.4X10-r2  set _<7d<11.2X10-12  sec. (5.10)

The measured dielectric relaxation time at this tem-
perature is50

ra=6.7X  1O-*2  set, (5.11)

so taking the various imprecisions into account, our
water model seems not to be too far out of line.

0 .436 ,871 1.306 1.7,

t ( lO-'2  SEC  )

FIG. 25. Relaxation function I’*(t)  for the dipole direction
second harmonic. The related function &(t) is defined in Eq.
(5.14).

The autocorrelation function I’r(t)  may be regarded
as the leading member of an infinite sequence of
autocorrelation functions for spherical harmonics of
ascending order:

rZ(t)  = (PL[Pj”‘(O)  ‘Q)(t)]), (5.12)

where PE is the Zth Legendre polynomial. If the unit
dipole direction vector pi(l)  moved in time by a true
rotational Brownian motion, the rr would decay ex-
ponentially with relaxation times rr all simply related
to 71:

r2=271/1(lfl). (5.13)

In order partially to test this possibility, r2(t)  was
evaluated for the present water model, along with
the Z=2 analog of $.J,:

&(t)=-(103At/t)  lnrz(l). (5.14)

These two functions are plotted in Fig. 25. Again an
initial rapid libration shows up, followed by a longer
monotonic decay. This monotonic portion is certainly
not precisely characteristic of a single exponential
decay, but indicates that the most persistent com-
ponent exhibits a relaxation time

r2S2.1X 10-r*  sec.

The ratio of I= 1 to I= 2 relaxation
water model computation is therefore
than the ideal Brownian  motion ratio

(5.15)

times for the
somewhat less
3:

(5.16)

This diminution should be espected  however, since
the water molecule rotational motion corresponds more
closely to a sequence of finite stochastic jumps, rather
than to the infinitely rapid infinitesimal jumps im-
plied by classical Brownian  motion (Wiener processsr)  .

The nuclear magnetic resonance spin-lattice relaxa-
tion time T1 contains a contribution, due to molecular
rotation, that in principle measures r2(t)  if the rota-
tion is isotropic.52  Krynicki53 has inferred from his T1
measurements how 72 should vary with temperature;
his results imply that

7221.9x  10-l*  sec. (5.17)

In view of the several uncertainties involved in inter-
pretation of the experiments, the r2 values (5.15)
and (5.17) are in satisfactory agreement.

C. Dielectric Relaxation

The autocorrelation lYl(l) is central to the fre-
quency dependence of the liquid’s dielectric constant.
We have already noted (Sec. IV. C) that ignorance
of the correct liquid-phase molecular dipole moment
limits one’s ability to predict the static dielectric con-
stant co. This ignorance naturally hinders full under-
standing of (F(W)  as well, as does the present lack

-
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F I G. 26. Cole-Cole plots for the frequency-dependent di-
electric constant e(w). The curves are based upon the Nee-
Zwanzig theory, Ref. 49. The reduced coordinates are defined
by Eq. (5.19), and c depned by Eq. (5.20). Marks on the curves
indicate frequency in units 1W2  set-I.

of a fully general theory of time-dependent dielectric
response in polar fluids.

Nevertheless, the recent approximate analysis of
dielectric relaxation by Nee and Zwanzig4g  provides
a convenient tentative basis on which to convert our
molecular dynamics results into traditional Cole-Cole
plots. 54 They derive the following relation:

EOCE(W)  -4 P(W) +4
=-

E(W) (eo-6.Y)  (2eof%o) /

- & exp(iwt)  drl(o .

0 dt ’

(5.18)

for present purposes the high-frequency dielectric con-
stant E, corresponds to about the lo-cm+  wavelength
region, which has been reportes5  to yield an E, of
4.5 for water.

By using the previously evaluated I’l(t) and a
simple exponential extrapolation beyond the range
shown in Fig. 24, it is possible to evaluate t(w) and
v(w), the real and imaginary parts of ~(w)/Q:

E(W)/EO=S(W)+G(W), (5.19)

from expression (5.18). The precise value of

c = &/EO (5.20)

for our specific model is unknown, but if real water
at 34.3”C gives a reliable indication, it should be
roughly 0.06.

Figure 26 shows the Cole-Cole plots obtained for
the G values 0.05 and 0.15. The curves are rather
close to the classic semicircular shape for w< 2X 1O-12
set-I. However for high frequencies, “curlicues” ap-
pear which may be attributed to the rapid initial
librational motion in ITI(

D. Proton Motion and Neutron Scattering

Owing to the fact that protons are strong incoherent
scatterers, cold neutron scattering provides a conven-
ient experimental tool for the study of single proton
motions in water. It is therefore important to extract
information from the molecular dynamics computa-

tion that bears specifically on these motions. There
are in fact several independent dynamical quantities
that deserve attention, beyond the mean-square dis-
placement that has already been considered.

The angular velocity autocorrelations about the
three principle axes of the molecule:

&z(O)%(t)  >/&X2), (Y=l, 2, 3, (5.21)

illustrate one aspect of proton motion. Figure 27
presents these three rapidly decaying functions. All
three indicate a substantial librational, or oscillatory,
character. The rates of libration are in the same order
as the reciprocals of the respective moments of inertia:

12-l> 13-l> 11-l; (5.22)

as the insert in Fig. 27 indicates, axis 1 is perpen-
dicular to the molecular plane, axis 2 is in the mo-
lecular plane, and axis 3 is the twofold molecular
symmetry axis.

A magnified view of the initial portion of I’l(t)
(shown previously in Fig. 24) is also included in
Fig. 27. Only rotations about axes 1 and 2 affect
the dipole direction pj”’ for molecule j, so it is a com-
bination of these two motions which affects I’l. Since
the librational rates are distinctly different about
these two “dipole active” axes, we-see why the com-

FIG. 27. Angular velocity autocorrelation functions. Included
for comparison (bottom) is the initial behavior of I’t(l),  shown
earlier in Fig. 24. The principal axis numbering is shown in the
insert.
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bination in I’1 exhibits the oscillatory character less
vividly than the w, autocorrelations themselves.

The spectral resolutions, or Fourier transforms, of
the W, autocorrelations are defined thus:

MW =l (!&)

Co h&h&) > cos(nt)dt

. (5.23)
They are shown in Fig. 28. The positions of their
respective maxima and centroids again reflect the
ordering of librational rates according to the inertial
moments.

The autocorrelation of the total angular velocity
for a given molecule,

MO) *o(l) >/(I Q.J  1% (5.24)

may be obtained from a linear combination of the
separate normalized autocorrelations (5.21))  using
weights that follow from the thermal equilibrium
conditions,

(w,~)  = kBT/I,. (5.25)

The resulting spectrum, jt0t(!2),  that follows from
(5.24) is presented in Fig. 29.

If the vector @ denotes the position of a given
proton relative to the center of mass of the molecule
containing it, then the velocity of that proton mea-
sured relative to the center of mass will be

0 x e, (5.26)

where o is that molecule’s angular velocity. Since
our water model molecules are completely rigid, the

I
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FIG. 28. Frequency spectra of the angular velocity autocorrela-
tion functions.
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FIG. 29. Frequency spectrum of the total angular momentum
autocorrelation function.

length 1 e ( remains fixed so that the proton seems
to be moving on a spherical surface when viewed
from the center of mass. The appropriate normalized
velocity autocorrelation function for description of
proton diffusion on the sphere is the following:

4(t)  = K@(O)  xQ(0)l*re(o  X~(~)lV~l @X@ 1%
(5.27)

and we shall represent its spectral resolution in the
usual way:

cp(O) = r+(t)  cos(Ot)dt. (5.28)
0

The Fourier transform % may be related to the
time dependence of the mean square of u, the proton
displacement relative to the center of mass. Specifi-
cally, it is easy to establish that

(I u(t) p>= (;) (I @XW lz)/.(l-c~(at))~(Q)~.
0

.

(5.29) +

Since the spherical surface upon which the proton
must move is bounded, this last quantity must ap-
proach a finite limit as t-+m.  Hence a(O) must
vanish, and the integral

J
-W%(n)dn (5.30)

0

is constrained to a value set by simple geometrical
considerations.

The functions 4(t)  and a(Q) obtained from the
molecular dynamics are shown in Fig. 30. The former
demonstrates once again the substantial oscillatory
component of proton motion. To evaluate @(Q) nu-
merically from 4(t),  an integration cutoff time had
to be imposed, which is indicated in Fig. 30 by an
arrow. The resulting numerical %(Q)  fails to vanish
at the origin, due to absence of a long time negative
tail in 4(t)  that is associated with the eventual (=:5X
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FIG. 30. Normalized velocity autocorrelation function (and
its frequency spectrum) for proton motion relative to the center
of mass.

10-12 set) turning over of molecules, The dashed curve
shown for 9 near the origin represents our estimate
of how the accurate @ (incorporating the effect of
the negative $J tail) would have to behave, including
the fact that integral (5.30) is fixed.

The central quantity probed by neutron inelastic
scattering from water is the Van Hove5’j  self-correla-
tion function Ga(r,  t) for protons. This function gives
the spatial distribution at time t (in an ensemble of
identically prepared systems) for a proton initially at
the measurement origin when t=O. Its spatial Fourier
transform in the classical limit is given by

17s(k, t) = (exp{zk.[r(t)-r(O)])  >. (5.31)

A substantial body of theoretical effort has been
devoted to understanding these self-correlation func-
tions in general liquids. A particularly popular ap-
proach, the “Gaussian approximation,“57  has been
motivated by the nature of the macroscopic diffusion
process. This approximation requires Gs(r, t) to be a
Gaussian function in r at all times, with a width
chosen to reproduce the correct microscopic mean-
square displacement (I r(t) 1”). The equivalent requir-
ement is that F,(K, t) have the form

F,(K, t) =exp[-QK2(r2(t))]. (5.32)

Our molecular dynamics calculation enables us to
test the validity of Eq. (5.32) directly, since inde-
pendent calculations of (r”(t) ) and of expression (5.31)
are possible. Figure 31 graphically shows the test of
Eq. (5.32) for three wave vector choices that are
consistent with the periodicity cube employed in the
dynamics

Ka=9.517,  14.276, 19.034. (5.33)

Although the specific Gaussian approximation (5.32)
accounts qualitatively for the behavior of F,(k, t), it

is obvious that substantial quantitative errors arise.
For each wave vector, the Gaussian F,(k,  t) decays
too rapidly to zero with increasing t in Fig. 31. If one
were to force neutron scattering measurements to fit
expression (5.32) in this k range, the apparent (r”(t)  )
would increase too slowly with t; i.e., the apparent
self-diffusion constant would be anomalously small.

The failure of approximation (5.32) for intermediate
K values is connected to the fact that the Van Hove
function Gs(r, t) is not itself Gaussian in r for inter-
mediate times.58  It is worth recalling that a distinctly
non-Gaussian Gs(r, t) has also been found in molecular
dynamics calculations on liquid argon.n

The fact that the actual F,(k, t) curves in Fig. 31
decay in time more slowly than their Gaussian analogs
is related to the narrowing that has been observed
in water for neutron quasielastic scattering peaks.5g*60
One conceivable way in which this narrowing could
be explained would be a jump diffusion mechanism,
whereby molecules would execute occasional hops of
considerable length between quasicrystalline sites of
oscillation in the liquid. Indeed theories of precisely
this character have been advanced to explain the
neutron e.xperiments  by Singwi and Sj61ander,61  and
Chudley and Elliot.62 The former authors conclude
for example that at 20°C each water molecule oscil-
lates in place for about 4X 10-12  set before experiencing
rapid diffusion (a “jump”) to a new position of
oscillation.

In confronting a phenomenon as complicated as
proton motion in liquid water must surely be, one
runs the risk that experimental data such as neutron
scattering can be ercplained  in a variety of ways.
Thus, it may be that a jump diffusion mechanism is

FIG. 31. Spatial Fourier transform F$(k, t) of the Van Hove
self-correlation function for protons. Curves for the three values
ku=9.517,  14.276, 19.034 are shown. In the lower graph, the
Gaussian approximation (5.32) gives the lower curve for each
pair. In the upper logarithmic plot, the Gaussian approximatron
curves are coincident ( (+)/6u).



M O L E C U L A R  D Y N A M I C S  S T U D Y  O F  L I Q U I D  W A T E R 3355

suficie~lt to esplain that data, but not logically neces-
sary. In fact, the jump diffusion mechanism definitely
conflicts with our molecular dynamics results. Both
the temporal correlations, and the sequence of stereo
pictures, show that well-defined quasicrystalline sites
of residence do not exist in liquid water. The diffusive
molecular motions are much more continuous and
cooperative and apparently depend strongly upon the
distinctive liquid-phase random hydrogen-bond net-
work that is present and forever transforming its
topological character.

Sakamoto et ~1.~~  have computed proton mean-
square displacements vs time by Fourier-transforming
neutron scattering data. Although their results have
been interpreted as further support for the jump dif-
fusion mechanismG4  such an interpretation is subject
to esnctly the same uniqueness criticism. For the
diffusion times probed by the analysis of Sakamoto
et al. (2 X lo-l3 to lo-r1  set) , the mean-square proton
displacements are similar to those shown in Fig. 21
for the molecular dynamics. In this time range, the
only clear distinctive feature exhibited by both ap-
proaches is that the proton displacement curve lies
above the straight line passing through the origin with
slope corresponding to the correct D. In order to
effect a discriminating experimental test of diffusion
mechanisms in liquid water, sufficient improvement
in experimental technique is required to examine times
of the order of lo-l4 set accurately.

As a final aspect of water molecule kinetics, we
mention that the velocity autocorrelation for protons
(within present accuracy) is found to be the sum of
the molecular center-of-mass autocorrelation (Fig. 22))
and the “motion on the sphere” autocorrelation (Fig.
30). Thus the translational and rotational motions of
the molecules seem to proceed independently of one
another, on the average. Figure 32 therefore exhibits
the total proton motion spectrum that was obtained

4 12 16 20 24

F I G. 32. Frequency spectrum for proton total velocity auto-
correlation function. As the legend indicates, this was obtained
as a linear combination of the spectra in Figs. 22 and 30.

by linear combination of the spectra reported in Figs.
22 and 30.

VI. TEMPERATURE VARIATIONS

In addition to the one temperature studied at
length in this paper, 34.3”C, our water model needs
and deserves to be examined at several other tem-
peratures to allow instructive comparisons to be car-
ried out. These extensions are, in fact, underway and
will be reported in due course. For the present, we
shall only briefly mention a low temperature run to
add perhaps some more credibility to our water model.

This new run involved the same condition as its
predecessor (#=216,  18.62 8 cubical box with peri-
odic boundary conditions), but the temperature was
only 26S’K  (--8.2”C).  The system therefore corre-
sponded to liquid water in a state of moderate super-
cooling, but under the circumstances that prevail,
essentially no chance existed for the liquid to nucleate
and freeze into ice. The run lasted 4000 A1.

The osygen-nucleus pair correlation function goo(*)  (Y)
computed for this lower temperature superficially re-
sembles the one shown in Fig. 3. It approaches unity
with increasing Y rapidly enough again to exclude
bulky “clusters” or “icebergs” from serious considera-
tion. Furthermore, the distance ratio for second and
first peaks is rather close to the ideal value for tetra-
hedral hydrogen bonding. However, the first maximum
of goo(*)(y)  is significantly larger (2.97, compared to
2.56 in Fig. 3) and the succeeding minimum deeper.
The second maximum appears to be better developed
and narrower. Evidently the random hydrogen-bond
network has tightened up considerably, by discrimi-
nating against severe distortions of the ideal tetra-
hedral coordination geometry.

The stereo pictures that have been produced from
this lower temperature run bear out that conclusion.
The hydrogen bonds that form between neighboring
molecules appear to be more nearly linear and to
observe the tetrahedral angles of approach more fre-
quently. Although the bonds in the random network
tend to strengthen at lower temperature, this does
not imply that it is easier then to identify a few
“interstitial” molecules; as before we see no clear
examples of any interstitials. Also, the liquid seems
to show no marked tendency anywhere to organize
the beginnings of ice nuclei.

To the extent that x-ray scattering experiments
predominately reflect gooo)  (r) , our structural shifts
with temperature variation agree qualitatively with
measurements reported by Narten, Danford, and
Levy.2g

Naturally the strengthening of the interactions
tends to slow down molecular diffusive motions mark-
edly. The self-diffusion constant D at 265°K is found
to be approximately 1.5X1O-5  cmz/sec for the mo-
lecular dynamics simulation. Once again this seems
to be rather larger than the experimental value 0.7.5f

i

c
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0.03 X 1w5 cm2/sec, 65 but comparison of the ratio of
values at -8.2 and 34.3’C  (0.36 theoretical, 0.26 ex-
perimental) indicates roughly the necessary rapid tem-
perature variation for D. Furthermore, the simple
energy resealing discussed in the following section
induces far better agreement with the measured D
values at both resealed molecular dynamics tem-
peratures.

In order to round out the study of temperature
variations, we intend to study our model up to the
neighborhood of the critical temperature (374OC).
This should provide a comprehensive account of the
thermal disruption .of the hydrogen-bond network,
and should permit a reasonably accurate evaluation
of the constant volume heat capacity.

VII. DISCUSSION

In order to continue systematically applying the
molecular dynamics method to water, two types of
extensions of the present work are necessary. The
first involves expanding the domain of application of
the model employed here to include a wide range of
densities and of temperatures (mentioned in the pre-
ceding section), as well as to include solvation and
interface studies. The second type of extension is the
analysis of ways in which the effective pair inter-
action V&2)  should be modified to yield a more ac-
curate description of real water. These two aspects
need to be carried forward in parallel, since accurate
determination of the properties implied by a given
Hamiltonian, in comparison with experimental results,
provides the basis for modification.

With respect to future study of aqueous solutions,
it should be mentioned that the model employed in
this paper can be immediately adapted to simulation
of a particularly simple solute. By retaining only VW
[see Eq. (2.5)]  in the effective pair interaction be-
tween a chosen molecule and all the others, that
molecule should reasonably well behave as a neon atom
if in addition the full mass were placed at its center.
This single solute particle of course could not hydro-
gen bond to its neighbors. One would then be par-
ticularly interested to see if the surrounding water
molecules organized themselves into a sort of “cage”
analogous to those present in clathrates. The results
would be especially interesting in view of the “hydro-
phobic bond” concept that has been proposed to ex-
plain the interaction of nonpolar solutes in water.@js’jr

In order to broaden the scope of solution studies
to include other solutes, information will be required
about the interaction of water molecules with a va-
riety of ions and molecules. Extensive quantum
mechanical calculations would have considerable value
in determining characteristic shapes of potential sur-
faces for water molecules in interaction with distinct
chemical groupings, e.g., methyl groups, carbonyl

groups, hydroxyls,  conjugated double bonds between
carbon atoms, amines, etc. With such information in
hand, it would become possible to design molecular
dynamics calculations to study the hydration of bio-
logical macromolecules and the interaction of water
with membranes.

The simplest of all possible modifications that might
be applied to the effective potential would be the
strength resealing mentioned briefly at the end of
Sec. III. If one were to choose the interaction energy
(VN)/~  and the self-diffusion constant D as having
central importance, then a resealing factor

l+p= 1.06 (7.1)

would have the effect of changing the temperature
to 52.8”C,  while inducing much better agreement than
previously between calculations and experiment both
for mean interaction energy:

( VN)/IV= - 9.735 kcal/mole (molecular dynamics
resealed)  ,

= -9.63 kcal/mole (exptl, 52.8”C), (7.2)

and for the self-diffusion constant:

D = 4.3X 1O-5  cm2/sec  (molecular dynamics resealed)  ,

=4.1X10-+  cm2/sec  (exptl, 52.8”C). (7.3)

At the same time, of c e the rotational relaxation
times rr and TZ would by (l+{)‘/‘,  making
them apparently agree with experiment. But
since the theoretical f s are weak in which
rl and r2 ar ated to dielectric and NMR experi-
ments, this greement should probably be given
relatively little weight at present.

Energy resealing also affects the value predicted by
molecular dynamics for the Kirkwood  orientational
correlation factor. When the measured EO for water
at 52.8’C  is inserted in Eq. (4.17) to convert GK
to gK, one obtains

gk = 2.72, (7.4)

somewhat smaller than the “unscaled” result 2.96 in
Eq. (4.19). The previously cited work of Harris,
Haycock, and Alder,34 which suggests gK should be
in the range 2.5-2.6 at this temperature, also sup-
ports the resealing.

The same energy resealing factor 1.06 seems tenta-
tively also to produce considerable improvement in
agreement with experiment for the low temperature
run mentioned in the preceding Section. Although the
nominal temperature 26YK (-8.2”C)  for that run
corresponded to supercooled water, the resealed tem-
perature 280.9”K  (7.7’C) lies above the melting point
of ice. Eventually, it would be very interesting to
carry out a molecular dynamics simulation on a
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strongly supercooled water sample (even on the re-
scaled basis), to see what type of local order arises.

Beside the strength resealing  for V,J2), a length
resealing  is also possible. This would produce a shift
in density (rather than temperature) and would re-
quire reinterpretation of all quantities dependent upon
the length unit. At present no compelling evidence
motivates such a distance resealing.

Probably the principal criticism which might be
directed toward our choice for VeJ2)  is that it is
somewhat too “tetrahedral.” However, it is significant
to have observed that even in the presence of this
tetrahedral bias, the local structure produced in our
model “water” still manifests very substantial ran-
domness, and fails to mimic known crystal structures.
It is therefore quite unlikely that a less tetrahedral
V,rr(*),  at a given temperature, would be more suc-
cessful in building liquid-phase networks akin to the
ice lattice or the clathrates at the local level.

Barker and Watts@’  have carried out a Monte Carlo
calculation for N=64 water molecules (at 25”C),
using the RowlinsonGs  pair potential. Like our own
effective pair potential, the Rowlinson interaction is
based on a four-point charge complex for each mole-
cule. However, the positions of these charges do not
lead to a natural tetrahedral arrangement of neigh-
bors. As a result, the computed oxygen-nucleus pair
correlation function tends to have a rather large
number of nearest neighbors (6.4 out to distance
3.5 ii), and the positions of first and second maxima
are far from the ideal tetrahedral ratio. Although the
Rowlinson potential may provide a reasonable account
of the interaction for isolated pairs of water molecules
in the vapor, it probably deviates too far from the
tetrahedral directionality required of a condensed
phase Fen c2) that must lead to essentially universal
fourfold coordination in aqueous crystals.

A possible modification of our own V&2), Eq. (2.5),
which does not seriously compromise its directionality,
would be to shorten the distance from the oxygen
nucleus to the negative point charges, without chang-
ing any angles or the distance to the positive charges.
At the same time it would be necessary to adjust
the parameters 7, RL, and Ru,  to maintain the strength
and length of undistorted hydrogen bonds. This change
would permit greater freedom in approach direction
for formation of linear hydrogen bonds. The mean
interaction energy in the liquid should thereupon in-
crease in magnitude. It must be left for future inves-
tigation, however, to determine what the concomitant
effects on static correlation functions and kinetic
properties would be.
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APPENDIX A

Given x; and xj [see Eq. (3.1)] and the positions
of the oxygen and four point charges in each mole-
cule, we can calculate the list of 17 distances: rij,
the oxygen-oxygen distance; and 16 point charge dis-
tances dtiimj. Then V,rr@)  gives rise to a force vector
of magnitude:

24(E/r,j)[2(U/rij)12- (U/Yij)6]

--6lI(rij--RL)  (RU-yij)l(Ru-R,)3J21c,(X;,  xj) (A l )

acting between the two oxygen nuclei. The term with
V,I [Eq. (2.8)] is present only for RLjr,j<Ru  [see
Eq. (2.9)].

Each pair of point charges in the respective mole-
cules gives a force vector of magnitude

S(rij) (0.19e)2(--l)Qi+a,/dpiuj (A2)

acting between that pair.
The Cartesian components of these forces are ob-

tained simply by multiplying the magnitudes by ratios
of the type (G;-Xoj)/rij  and (~~~-z~~)/d_~.

These 17 forces then give, by a summation of
respective components, the total body force acting
on a molecule. Using the transformation matrix which
rotates xyz into x’y’z  (Fig. 2), the components of the
torque Nj [Eq. (3.5)] can also be calculated from
the components of the force acting on each of the
five points of a molecule (the positions of the oxygen
nucleus and the four point charges). Adding the
inertial terms [Eq. (3.6)] gives the derivatives of
the angular velocities about the principal axes of
inertia.

.

To indicate the scheme’O  we have used for solving
the Newton-Euler equations of motion, we shall take
the following three differential equations as proto-
types for Eqs. (3.3), (3.6), and (3.7), respectively,

Wdt=dx, P, 91,
dpldt=Wp,  9). (A3)

Here x typifies center of mass Cartesian coordinates,
q is the angular velocities about the principal axes of
inertia, and p is the Euler angles.

The problem is to get 2, p, q at t+At knowing the
values at time t. Assume that the calculation has
already been initiated so that, apart from 2, p, q at t,
we also know the first five derivatives of x and the
first four of p and 4. Let x,,,  e.g., denote

[(At) “n !]d’%/dtn.
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We predict the values of all these quantities at
I+At by using the Pascal triangle:

%‘=%+%+x2+%+s+x5,

x1’=~~+2~2+3~,+4~4+5~5,

x~‘=x2+3~3+6~4+10~5,

x3’= x3+4x4+ 10x5,

x4’= x4+5x5, L44)

and similarly for ~0’. - -p3’ and 40”  -43’.
Using the predicted values XQ’, pi, qo’  we calculate

f(ro’, PO’>,  dxo’, PO’, 40’1, and h(po’, PO’). Denote these
values by f, g’, h’.

The differences,

A=[(~)2/2!]f)-zz’,

B= (At)g’-q<,

C= (At) h’-p<, (As)

are then used to correct
following way:

x,(t+ At) =~n’+fnzA

pm(t+At)  =pm’+fd

qm (l+  At) = qm’+f& t
where

the predicted values in the

(?z=O,  1, **-, S),

(m=O, 1, * * *, 4), (A6)

fm=W, fa=251/360,  fz= 1 ,

f==ll/lS,  fa=1/6,  f52=1/60, ( A 7 )
and

f01=251/720,  fll=l,  f21=11/12,

f31= l/3, fa = l/24. (A@

It will be seen from Ref. 70 that these coefficients
depend on the “order” of the procedure used. In our
molecular dynamics runs on water we have used a
fifth-order procedure for the center-of-mass motion
and a fourth-order one for angular motion.

At the start of the calculation the most convenient
procedure is to take all the derivatives equal to zero.
In the case of interest here (Newton-Euler equa-
tions) , the angular velocities (typified by q in t h e
schematic presentation) can also be equated to zero
at the start of the calculation. The “aging” of the
run then necessarily leads to a solution effectively
unrelated to the specific starting procedure.

APPENDIX B

In the convention utilized for the molecular dy-
namics calculations, each molecule experiences forces
and torques due only to those other molecules within
a cutoff radius R. In the presence of a uniform, weak,
external electric field Eext,  the system will develop
a uniform polarization P. Classical electrostatics re-

quires
4xP= (e-l)E, (Bf)

where the electric field E is composed both of the
imposed field Emt, and the internal field Eint due to
the nonvanishing polarization

E=Em+,+Ei,t. (B2)

The contribution of polarization in a small volume
element 6v at position r’, to the internal field at posi-
tion r, is the following:

-V,[GvP(r’)].V+(I  r -r ’  1-l). (B3)

In writing an expression for the polarization P(r) for
molecules at r, that is consistent with the molecular
dynamics, we clearly must integrate quantity (B3)
only over the sphere of radius R surrounding posi-
tion r:

47rP(r)  = (co-l)[Eert

-
/ _

,Fr,,<R dr’V,P(r’) . V,J (1 r-r’ I-9 I- W

The integral may easily be evaluated to yield:

4xP= (e,- 1) [Eext-  (47d3P1, WI
or

P=[3(~-1)/4?r(~a+2)]E,,t. (B6)

Not surprisingly, relation (B6) is exactly the same
one that applies to the polarization of a spherical
dielectric sample with a real boundary surface, placed
in ‘a vacuum region initially containing E,t only. We
may therefore call upon the Kirkwood theory of polar
dielectrics,3o  which applies to those spherical specimen
conditions.

Irrespective of boundary conditions, the polariza-
tion consists of a part P, due to induced molecular
moments, plus a part due to reorientations that is
proportional to (M2), the mean-square system moment
in the absence of external fields’r:

P = P,+ (P/3 V) (M?E,t, (B7)
where V stands for the system volume. The import
of expressions (B6) and (B7) taken together is that
for a given co, the quantity (M2)/V should be the
same for the molecular dynamics situation as it is
for a spherical dielectric sample in a vacuum.

Kirkwood  has shown that the local moment m of
a fixed molecule and its immediate surroundings, in a
dielectric sphere, is related to the average moment M
of that sphere by

M=[%/(Q+~)  (2~0fl)bn. (B8)

It is precisely the distinction between these two
moments which & and gx for the dielectric sphere
reflects, so we must have

GK=[%/(m+2)  &0+1)1g~. (B9)

In view of the equivalence of the dielectric sphere to




