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We have examined the influence of rigid boundaries on tlie free energy and distribution functions for 
classical single-component molecular assemblies. By means of boundary position variation, new formulas 
are derived for the flat boundary tension in both two and three dimensions. In the case of circular 
or spherical internal boundaries that are relevant to "scaled particle" theory, we prove that the associated 
cavity work is free of contributions varying logarithmically with the radius, in the large size 
limit. A similar result has been obtained for a "droplet" constrained to circular or spherical shape by an 
impenetrable boundary. The scaling theory of critical correlations has been used to analyze the behavior of 
the boundary tension in the critical region. 

I. INTRODUCTION 

For the most part, equilibrium statistical mechanics 
has been directed to the study of homogeneous matter 
in bulk. The perturbing influence of container walls 
has thus been relegated to a minor role, with associated 
effects that have normally been neglected. Similarly, 
interfaces between coexisting phases have usually 
been disregarded in study of the bulk statistical 
thermodynamics of phase change. 

There are notable exceptions to this convention, 
though. The theories of interface structurel - 3 and of 
capillarity4 have produced important insights into 
the phenomena of surface chemistry and physics. 
In addition, there has been substantial recent emphasis 
on the inhomogeneous distribution of matter among 
"clusters" or "droplets" in fluids to aid in under­
standing nucleation5-7 and critical phenomena.8- 10 

The present paper also provides an exception. It 
is directed exclusively to the effects of "hard" walls 

(i.e., those for which the potential is either zero or 
infinite) upon matter distribution and free energy, 
within the domain of classical statistical mechanics. 
For reasons that will be stressed at the appropriate 
points below, we believe our results to be relevant 
both to nucleation theory and to the analysis of 
critical phenomena. 

The most direct application of the present work, 
however, lies in the so-called "scaled particle theory, "11,12 

which since its original development for rigid spheres 
and disks has been applied to a wide variety of isotropic 
liquids/3 and to nematic liquid crystals.14 A central 
quantity in the scaled-particle theory is the work 
W (A) required reversibly and isothermally to create 
an empty cavity in the system with linear dimension 
proportional to A. Since the formation of such a cavity 
is equivalent to interposition of a suitable constraint 
surface in the system, our results can be utilized 
directly in scaled-particle theory. In particular, it 
follows that an asymptotic development of W(A) in 
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FIG. 1. Inward boundary displacement, confined to an interior 
surface. The original region available to the particles, R is the 
space between shaded (impenetrable) regions. ' 

descending orders of A can have no contribution 
proportional to InA. 

Section II considers the effect of a small variation 
in constraint surface shape upon the distribution of 
molecular density. The resulting formalism is applied 
in Sec. III to the special cases of circular and spherical 
constraint surfaces, for two- and three-dimensional 
systems, respectively. As a consequence, one finds a 
new type of surface or boundarv tension formula which 
is not obtainable from the - standard stress-tensor 
expressionl • specialized to the present circumstances. 

A useful identity for r, the excess amount of matter 
located near an impenetrable body, is derived in 
Sec. IV. This identity is then used in Sec. V, for circular 
and spherical bodies, to establish the above-cited 
vanishing of logarithmic terms in the associated TV's. 
Section VI subsequently provides the conjugate results 
for matter contained within a large circular or spherical 
boundary. 

Section VII contains discussion of several topics 
arising from our main theme. 

II. DENSITY CHANGES DUE TO 
BOUNDARY VARIATION 

Our first requirement is introduction of the molecular 
distribution functions p(n) (for n= 1,2,3, '00) to 
describe the density of n-tuples in the system of 

interest.l6 For present purposes the grand ensemble 
provides the greatest convenience. If we assume for 
simplicity that internal molecular degrees of freedom 
(if any) are separable, then we have 

<Xl yN 
p(n)(rl o ° orn) =exp(ilQ) L -----'~­

N~n (l'{-n)! 

X! drn+l ooo !drNexpC-ilVN(rlooorN)], 

/3= (kJlT)-l. (2.1) 

The absolute activity has been denoted by y, and 
the grand partition function, which acts as a normalizing 
factor in expression (2.1), has the form 

<Xl N 
exp( -ilQ) = 1+ L ~ 

jV~llV! 

We shall place no restrictions on the set of potential 
functions V N beyond the requirement that they lead 
to thermodynamically stable systems, with extensive 
mean energies, in the conventional macroscopic limit. 
Hence the V N are not required to be pairwise additive. 

The integrals in Eqs. (2.1) and (2.2) are confined 
to a region R, which need not be singly connected. 
This particle confinement is equivalent to treating the 
boundary of R as a perfectly impenetrable barrier 
against which particles impulsively collide. 

We now examine the effect of a small inward dis­
placement of the boundary of R. Let RI denote the 
portion of R excised by this displacement, so that the 
new region of integration for Eqs. (2.1) and (2.2) 
becomes R - R 1• In anticipation of our later applica­
tions, Fig. 1 illustrates a specific boundary displace­
ment that is confined to a portion of an interior surface 
in a system with a multiply connected R. 

The characteristic function for RI will be denoted 
by E(r): 

E(r) = 1, (rinR1), 

=0, (r not in RI). (2.3) 

By using this characteristic function, we can formally 
write the grand partition function and the molecular 
distribution functions, after boundary displacement, 
still as multiple integrals over the original region R: 

(2.4) 

(2.5) 

The JY -fold product of factors 1- E obviously vanishes unless all N particles lie in R - R 1• 

If the displacement region RI is small, occurrence of particles within its interior before the boundary displace­
ment would have been a rare event. By developing the 1- E product in Eqs. (2.4) and (2.5) in ascending E 
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orders: 
N N N N 

II [1- E(ri) J= 1- L E(ri) + L E(ri) E(rj) - L E(ri) E(rJ E(rk) + ... , (2.6) 
i=1 i=1 i<i=1 i<i<k=1 

we therefore gather together contributions of ascending order in the displacement magnitude. 
Our primary interest lies in the effect of boundary variation on p(l) (rl), i.e., in the nature of 8p(l). To obtain 

op(l), expansion (2.6) must be inserted into Eqs. (2.4) and (2.5); then terms of comparable Rl order must be 
collected and simplified using definitions (2.1) and (2.2). When carried through third order, the tedious manip­
ulations show that for rl in R-Rl, 

op(I)(r1)=-1 dr 2[P(2)(12)-p(1)(1)p(1)(2)J+ ~ 1 dr21 dr3[p(3)(123)-p(2)(12)p(I)(3)-p(2)(13)p(1)(2) 
Rl 2 Rl Rl 

-p(2)(23)p(l)(1)+2p(I)(1)p(1)(2)p(1)(3)J- ~ 1 dr21 dr31 dr 4[p(4)(1234)-p(3)(123)p(1)(4) 
6 Rl Rl Rl 

- p(3) (124) p(l) (3) - p(3) (134) p(l) (2) - p(3) (234) p(1) (1) _p(2) (12) p(2) (34) - p(2) (13) p(2) (24) 

- p(2) (14) p(2) (23) + 2p(2) (12) p(l) (3) p(l) (4) + 2p(2) (13) p(l) (2) p(l) (4) + 2p(2) (14) p(l) (2) p(1) (3) 

+ 2p(2) (23) p(l) (1) p(1) (4) + 2p(2) (24) p(l) (1) p(l) (3) + 2p(2) (34) p(l) (1) p(l) (2) 

- 6p(l) (1) p(l) (2) p(l) (3) p(1) (4)]. (2.7) 

The distribution function combinations which occur as integrands here have the following cluster property: 
They vanish whenever the particles involved fall into widely separated subsets. General expressions for these 
special combinations of all orders have long been knownP 

III. BOUNDARY TENSION FORMULA 

The first application to which general expression 
(2.7) for 8p(1) will be put is the derivation of a new 
type of boundary tension formula. For simplicity, 
we shall initially confine attention to two dimensions, 
then briefly indicate the corresponding three-dimen­
sional argument. 

We employ a specific internal system boundary 
with circular shape, far removed from the external 
boundary. Let the radius of this exclusion circle be 
some arbitrary multiple >-. of a fundamental length 
a.1S The boundary displacement to be used will increase 
the radius of this region of exclusion to (>-.+8>-.) a, 

FIG. 2. Uniform dilation of a circular exclusion region. The 
circle center shifts during the dilation so as to keep boundary 
point P fixed. 

without destroying circularity. As Fig. 2 shows, this 
expansion will be carried out in such a way that one 
point P of the internal boundary remains fixed. 
Relative to the center of the original circle, the polar 
coordinate expression for the displaced boundary is 

reO) =a{ -0>-' cosO+ [>-.2+ 2M>-'+ (8)-.)2 cos20J1/21 

= a{>-.+0>-.(1-cosO) - [(0)-.)2/2>-.J sin20+ 0[(0)-.) 3Jl , 

(3.1) 

where 0= 0 corresponds to invariant point P. 
For sufficiently small 8>-', nonlinear terms in Eq. 

(3.1) in this dilation parameter can be dropped. 
Furthermore, only the leading-order integral in Op(l) 

expression (2.7) then needs to be considered. One 
therefore finds 

Here the position r2 of particle 2 has been expressed in 
the polar coordinates used in Fig. 2. 

It would entail no loss in generality to suppose 
that position rl is along the common circle normal 
emanating from point P. In fact for present purposes 
we set this normal distance Zl (see Fig. 2) equal to 
zero, and specifically consider the rate of change with 
0>-. of particle density at contact with the circular 
exclusion region. Since 8>-' is infinitesimal, it is proper 
to evaluate the integrand when particles 1 and 2 are 
both precisely in contact with the undisplaced circle. 
The r2 integral in Eq. (3.2) may then trivially be 
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carried out to yield 

op(I) (Aa) = -a2MA L:'" d02(1-cOS02) {p(2) (Aa, Aa, (2) 

-[p(I)(Aa)]2). (3.3) 

Far from any boundary surfaces of the system, 
internal or external, pill (r) will equal a constant 
particle density p.19 Therefore, setlS 

(3.4) 

for arbitrary A, thereby introducing a contact cor­
relation function G2(A) for two-dimensional systems. 
Subsequently set 

p(2) (Aa, Aa, 0) = p2G2(2) (A, A, 0), (3.5) 

where G2(2) is a double-contact pair correlation function 
which satisfies 

lim {G2(2) (A, A, 0) I[G2(A) ]2) = 1 (O~O). (3.6) 
A~oo 

Then Eq. (3.3) is equivalent to the following in­
tegrodifferential equation for G2 : 

aG2 (A) 1'" -- = -2pa2A dO(l-cosO) 
aA 0 

X{G2(2)(A,A,0)-[G2 (A)]2). (3.7) 

One of the key ingredients in the scaled particle 
theory is the relation between the contact correlation 
function G2 (A) , and the reversible work W2 (A) re­
quired to place the corresponding internal circular 
boundary in the systemll- 13 : 

.BW2(A) = 21Tpa2 t A'G2(A')dA'. (3.8) 
o 

When the impenetrable circle is very large (i.e., when 
A is very large), W2(A) will consist predominately of 
pressure-volume work, corrected by a boundary 
tension contribution. If we let p represent the isotropic 
pressure in the initially homogeneous bulk system, 
and let 'Y2 represent the appropriate linear boundary 
tension (whose associated Gibbs dividing surface20 

is coincident with the repelling boundary), then 

W2 (A) '"'-'1Tpa2A2+ 21TY2aA. 

Equation (3.8) thereupon requires that 

G2("A.)'"'-' (.Bpi p) + (.B'Y21 pa"A.) 

as A-'>C/J. In the same limit, therefore, 

aG2("A.) I a"A.'"'-'-.B'Yz/ paA2. 

(3.9) 

(3.10) 

(3.11) 

The boundary tension 'Y2 may be related to contact 
correlation functions in another way by requiring 
(3.7) and (3.11) to agree for large "A.. In the former of 
these equations, set 

s="A.a8, 

G2(2,w)(s)=limG2(2J["A.,"A., (slaA)J, 
x~oo 

(3.12) 

so that G2(2,w) stands for the fiat boundary double­
contact pair correlation function, whose variable s is 
the distance between centers of the two boundarv-
contacting particles. Since • 

(3.13) 

should vanish rapidly with increasing distance s, it 
is easy to see that Eq. (3.7) must lead to 

aG2 (A) p 100 
--,",-,- - dSS2 {G2(2,w)(S)-[G2(<Xl)J2) (3.14) 

aA aA2 0 • 

Therefore, we must have 

.B'Y2= p2100 dss2 { G2(2,w) (s) - [G2( <Xl ) J2). (3.15) 
o 

In order to derive the three-dimensional analog 
of result (3.15), it will be necessary to consider dilation 
of an impenetrable sphere with initial radius Aa. 
Figure 2 may be interpreted as a planar section for 
this process which again will involve an invariant 
point P. Polar representation (3.1) for the displaced 
surface is still valid for the sphere. The first-order 
expression for opel) (rl) is directly analogous to Eq. 
(3.2) : 

12" I" 1 [A+oX(I--c<Js02)Ja 
opel) (rl) = - d<P2 d02 dr2 

o 0 Xu 

Xr22 sinOz[p(2) (r[, rz) _p(l) (rt}p(l) (r2) ]. (3.16) 

After introducing surface correlation functions G3 
and G3 (2) for this three-dimensional case: 

p(I)(Aa) =pG3 (A), 

p(2) ("A.a, Aa, 0) = p2G3 (2) (A, A, 0), (3.17) 

one can deduce as before an integrodifferential equation 
for G3 : 

aG3(A) 1"" --- = -21Tpa3A2 d02 sm02(1-COS02) 
aA 0 

X{G3(2)(A,A,0)-[G3(A)J2). (3.18) 

This may be compared to the previous Eq. (3.7). 
The reversible work W3 (A) required for insertion 

of a spherical exclusion region in three dimensions 
satisfies 

.BW3 ("A.) =41Tpa3 [' (>..')2G3(>..')d"A.' 
o 

Here 'Y3 is the fiat boundary tension, again referred 
to a Gibbs dividing surface that is coincident with a 
planar repelling boundary. Hence 

G3 (>..) '"'-' (.Bpi p) + (2.B'Y31 pa"A.) , 

iJG3("A.) I iJ>..'"'-'- 2.B"I31 pa"A.2. 

(3.20) 

(3.21) 

The requirement that expressions (3.18) and (3.21) 
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agree as A-too leads to the desired 'Ya formula: 

r3-ya=t7rp21~ dSSa/Ga<2,w)(s) -[Ga( 00) J21, (3.22) 
o 

in which we have introduced 

G/2,w)(S) =limGa(2)[A, A, (s/aA)]. (3.23) 
X~OO 

IV. IDENTITY FOR r 
The presence of a repelling circular or spherical 

boundary within the system of course creates a density 
distribution p(1) (r) which locally deviates from p. 
The total excess number of molecules adsorbed at 
the boundary will be given the symbol r: 

( 4.1) 

The notation used here comprises both two- and three­
dimensional results (upper and lower entries, re­
spectively). In this section we shall derive a formula 
for r in terms of the corresponding G2 or Ga function. 

The local density distribution surrounding the 
infinitely repulsive region would be unchanged if this 
region were free to move about. For present purposes 
it is convenient to treat this region as a large colloidal 
particle with radius Aa that does in fact move about 
under the action of Brownian motion. We have then 
the freedom to apply the results of general solution 
theory to the colloidal suspension. 

The Kirkwood-Buff21 version of general solution 
theory provides an expression for the partial molar 
volume iJ(A) of the colloidal solute (in the low con­
centration limit for this component) : 

V(A) =p-I+ Jdr[gl2)(r) -1J- Jdr[p-Ip(1l(r) -1]. (4.2) 

In this equation, g<2l(r) stands for the pair correlation 
function in the pure solvent. By using the well-known 
compressibility theorem for the pure bulk solvent: 

kBTp-l(ap/ap h= p-I+ J dr[g(2l (r) -1J, (4.3) 

as well as definition (4.1), the colloid partial molar 
volume may be put into the following form: 

V(A) = kBTp-l(ap/ap )T+T(A) -p-1r(A). (4.4) 

The area, or volume, of the interior of the colloidal 
particle has been denoted here by T(A) : 

T(A) = { dr= (7rA
2
a
2 
). 

J1rl5,X ~7rAaaa 
(4.5) 

The partial molar volume V(A) satisfies the general 
thermodynamic identity 

(4.6) 

where the subscript A indicates the colloidal solute. 
Scaled particle theory provides an expression for the 

colloid chemical potential fJ.x in terms of the contact 
correlation functionll ,12: 

fJ.A= fJ.X (0) (T) +kBT lnpx 

x ( 27ra2A'G2(A') ) 
+kBTp 1 dA', 

o 47raa (A') 2Ga (A') 
(4.7) 

which is valid as the colloid number density PX ap­
proaches zero. By placing (4.7) into identity (4.6), 
and carrying out the indicated derivative by the chain 
rule with solvent density as an intermediary, we find 

( 4.8) 

It is generally true that for pure "solvent" 

(4.9) 

so that 

(ap) (aJaP )pG2
( 00») 

(kBT)-1 - = . 
ap T (ajap)pGa( 00) 

(4.10) 

One may therefore add and subtract T(A) in Eq. 
(4.8) in such a way as to yield 

V(A) = kBTp-l(ap/ap )+T(A) +kBT(ap/ap h 

x( 27ra2A'(a/ap)p[G2(A')-G2(00)J ) Xf ~ 
o 47raa(A')2(a/ap)p[Ga(A')-Ga(00)J . 

( 4.11) 

When this form for V(A) is compared with the earlier 
form displayed in Eq, (4.4), we see that the following 
expression for r must hold in two dimensions: 

rCA) = 27ra2p (~) fX A' a/p[G2( 00) -G2(A') Jl dA', 
a~p T 0 ap 

(4.12) 

while in three dimensions the analogous result is 

r(A)=47raap(~) fX (A')2 a{p[Ga(00)-Ga(A')JI dA'. 
a~p T 0 ap 

( 4.13) 

With the normalization used, rCA) will be pro­
portional to the colloid particle boundary area (or 
length) in the large A limit. Equations (3.10) and 
(3.20) show that in this limit our general r expressions 
(4.12) and (4.13) reduce to statements of the Gibbs 
adsorption equation22 for flat boundaries. 

V. LOGARITHMIC FREE ENERGY TERMS 

The formalism presented in Sec. II will now be used 
to develop the density function p(l) (r) in an asymptotic 
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series in A, valid for large A. When this asymptotic 
series is inserted into the two distinct r expressions 
[(4.1), and (4.12) or (4.13)J, the results force one 
to conclude that the reversible works W2 (A) and 
Wa(A) must be devoid of contributions proportional 
to InA as A-+OO. 

The full integral series for op(J), the first three orders 
of which were exhibited in Eq. (2.7), has the form 

The function F<n) represents the characteristic cluster­
property combination of distribution functions for n 
molecules. We shall restrict attention for the moment 
to two dimensions, and the geometry shown in Fig. 2 
again becomes relevant. As before, we can restrict 
fl to the outward normal direction emanating from 
invariant point P. All of the integrals in (5.1) are 
confined to the space between the two circles shown 
in Fig. 2; thus 

Xr2" 'r"F(n)(fl" ·f,,). (5.2) 

The small variable 

x= l/A (5.3) 

is somewhat more natural than A itself for discussing 
the problem in hand. Therefore, since 

x+ox= (A+OA)-\ 

OA= (X+OX)-l_X-\ (5.4) 

when A is finite, the polar coordinate expression (3.1) 
for the displaced circle transforms to 

reO) = X-I ([1+(Ox/x)2(COS20-1)JI/2+(OX/X) COSO) 

a 1+ ox/x 

{
OX 1 

= X-I 1+(cosO-1) -+ - (cosO-1F 
X 2 

After setting 

reO) = (a/x) +/(0), 

the integral series (5.2) adopts the form 

(5.5) 

(5.6) 

On account of their cluster property, the functions 
F(n) will be negligible unless each of f2' •• f n is close to 
the invariant point P. But for small X (large A) this 
implies that these n-1 particle positions are never 
very far from the boundary of the smaller circle in 
Fig. 2. As a leading-order estimate (analogous to the 
one required in Sec. III) for each integral in Eq. 
(5.7) it would suffice to evaluate F(n) (fl' "fn ) with 
f2" 'fn precisely on this un displaced boundary. 
:\10re accurately, one would utilize a multiple Taylor 
series for F(n) in the radial displacements t2" ·In 

normal to that boundary: 

(5.8) 

With Eqs. (5.5), (5.7), and (5.8) as ingredients, we are now in a position to obtain Op(l)(Zl) as an expansion 
in OX. Since I(Oj) is O(ox), it is clear that the multiple integral with index 12 in Eq. (5.7) contributes in order 
(IlX)n-I, and in all higher orders of Ilx. Furthermore, each factor tj, whether arising from expansion of the integrand 
product 

[1+ (xMa)]-·· [1+ (xtn/a) J, (5.9) 

or from terms beyond the first in Taylor's series (5.8), increases the order of the resulting contribution by one 
power of OX. Thus we will have 

OJ 

IIp(l)(zd = L (ox)lllp(!,l)(Zl), (5.10) 
l~l 

where the first coefficient function Op(l,!) comes entirely from the 12=2 term in Eq. (5.7), the second coefficient 
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function Op(I,2) from the n=2 and n=3 terms, and so forth, Explicit calculation shows 

a21+" (a) Op(I,I)(Zl)=-~ d82(cos82-1)F<2) zl+-,O,82,O, 
X -.. X 

(5,11) 

The higher-order coefficient functions become increasingly complicated, but nothing as a matter of principle 
stands in the way of deducing explicit integral expressions for them of the type (5,11). 

Owing to the nature of our derivations, OA has been nonnegative, i.e., OX has been nonpositive. However, it 
is clear that op(i) (Zl) in Eq. (5.10) must be a smooth function of OX defined for both signs of this variable. Hence 
Eq. (5.10) provides the correct continuation of Op(l)(ZI) from negative to positive OX. One can in fact devise a 
more cumbersome derivation which accommodates both signs of OA and ox from the outset to verify the universality 
of Eq. (5.10), but at unwarranted cost in clarity, 

In the limit x----?O, and with OX> 0, the series (5.10) shows how p(1) varies upon changing from a straight boundary 
to a circular boundary (with a radius which we shall henceforth call a/oX=aA), in terms of distribution functions 
for the straight boundary case alone. In this limit, we have precisely 

ox= l/A, 

'" op(1) (ZI, A) = L: \-'Op\I,I) (Zl, \= (0), (5.12) 
1=1 

The coefficient functions shown in Eq. (5.11) simplify somewhat when x=O; as will be the case for all coefficient 
functions when x= 0, they will involve distribution functions for sets of particles all at the straight boundary, as 
well as normal derivatives (direction z) of these distribution functions, In particular one finds 

op(i ,I) (Zl, }.. = 00 ) = 1'" SI22[p(2) (12) - p(i) (1) pel) (2) JdSI2, 

o 

- p(2) (12) pel) (3) - p(2) (13) pel) (2) - p(2) (23) pel) (1) + 2p(l) (1) p(i) (2) pel) (3)]. (5,13) 

The variables S12 and S13 employed here measure 
distance along the fiat boundary from the point P 
(directl y under particle 1). 

Now that we have shown p(l)(r) in the vicinity of 
a large circular boundary to have an expansion (5,12) 
in powers of 1/}.., we can obtain a corresponding 
development of rCA) in descending orders of}.., Starting 
with the basic definition (4.1), one obtains, in two 
dimensions, 

'" rCA) = L: r(l-i)}..(l-i), 
i=O 

r(1) = 27ra f'" [p(l) (z, }..= 00 ) - p Jdz, 
o 

( 5.14) 

(5.15) 

reO) = 27r f'" {aop(I,I) (z,}..= 00 ) +z[p(l) (z,}..= 00 ) - pJ} dz, 
o 

(5.16) 

and for l'::;j< 00 one has 

r(-i) = 27r 1'" [aiJp(i,i+1) (z,}..= 00 ) +zop(l,]) (z, \= 00 ) Jdz, 
o 

( 5.17) 

The alternative two-dimensional expression for 
I'(\)[Eq, (4.12)J yields somewhat different results, 
:\T ow that }..' is the integration variable, a contribution 
proportional to In}.. seems to arise: 

(5.18) 

In order that this be consistent with Eq, (5,14), we 
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must first require equality of the coefficients of A: 

f'" [p(l) (z, A= 00) -pJdz 
o 

=-ap(~) (aop(l,l)(Z=O,A=oo)). (5.19) 
a{3p T ap T 

In addition it is necessary that the coefficient of 
InA in Eq. (5.18) vanish, since no corresponding 
logarithmic term appears in Eq. (5.14). Since (ap/ a{3p)r 
never vanishes, we can infer that 

[aop(l,2)(Z=0, A= 00 )/apJT=O. 

This may immediately be integrated to give 

op(1,2)(Z=0, A= 00) =0 

for all p, because it is obviously true when p= 0. 

( 5.20) 

(5.21) 

The identical vanishing of Op(1,2) (z= 0) in two 
dimensions is hardly a transparent property of the 
complicated Op(1,2) (z) expression (5.13). But once this 
property has been established, the clear implication 
is that the reversible work W2(A) [like rCA) J must 
be free of contributions proportional to InA as A->oo, 
Such contributions can only arise from integrand 
terms in Eq, (3,8) varying as l/A' in the large-A' 
limit, but Eq, (5,21) ensures the absence of these 
terms, The asymptotic series for W2(A), the first two 
orders of which were displayed in Eq. (3,9), will 
therefore contain only integral powers of A. 

The format of a corresponding analysis for three­
dimensional systems is almost obvious from the 
two-dimensional argument. An expansion for Op(l) (Zl) 
in powers of OX follows the earlier pattern, and Eq, 
(5,10) will apply to the three-dimensional case as 
well. Of course the explicit integral forms for Op(l,l), 
Op(1,2), etc" will differ somewhat from those shown 
in (5.11), mainly by inclusion of the modified polar 
coordinates for each particle. But, as before, the 
flat-wall limits for each op(l,i) [see Eq, (5.13)J will 
involve distribution functions for simultaneous particle 
contact, and normal derivatives of those distribution 
functions. 

The r definition (4,1) for three dimensions will 
lead to an expansion in descending integral powers 
of A, starting now with A2: 

'" rCA) = 2: r(2-i)A(2-i), ( 5,22) 
i=O 

The alternative r expression (5.13), however, formally 
generates a InA term, associated with Op(1,3)(Z=0, 
A= 00), Consequently, we must have 

op(1,3)(z=O, A= 00) =0 (5,23) 

as the three-dimensional analog of Eq, (5.21). In 
view of Eq. (3.19) for W3, we can finally conclude 
once again that InA contributions are absent from the 
reversible work as A->oo . 

It should be stressed that although op(l,d)(Z=O, 

A= 00) vanishes in d dimensions, we have no evidence 
that the same is true when Z>O, . 

VI. CONSTRAINED DROPLET 

To complement the results obtained thus far, we 
shall now consider the free energy associated with a 
circular or spherical boundary which encloses the 
molecular system as a container. The geometry specified 
in Fig, 2 is still applicable, except for the fact that 
negative values of the normal distance Zl in that 
figure are now those which are available to the molecular 
centers. If p corresponds to a liquid phase at the given 
temperature, the enclosed system amounts to a con­
strained droplet. 

Once again we shall require an expansion for op(l) 
in powers of reduced boundary curvature x, in terms 
of the fiat boundary distribution functions, Previously 
X was reckoned to be positive when the boundary 
curved away from the molecular point of observation, 
and OX> 0 would decrease the radius of curvature, It 
is natural to regard the droplet case now under con­
sideration as the negative X extension of the preceding 
case, for which ox<O decreases the radius of curvature, 
and for which the boundary bends toward the molecular 
point of observation, Since it is conventional always 
to regard the geometric radius of curvature (Aa) as a 
positive number, we are obliged for the droplet case 
to replace Eqs, (5,3) and (5.4) by 

x= -1/A, 

x+ox= -1/ (A+OA), 

OA=X-1- (X+OX)-l, (6.1) 

when the boundary before variation has a finite 
radius of curvature, 

Our earlier result (5.10) for the dependence of 
op(l) upon OX is valid for negative curvatures as it 
stands, and in particular may now be used as a general 
expansion about zero curvature, However, if we 
subsequently express op(l) for the droplet in terms of 
A, the result is an alternating sign analog of the earlier 
key result (5.12) : 

'" Op(l) (Zl, A) = 2: (-A)-IOp(l,l) (Zl, A= 00) (6.2) 
l~l 

for both two- and three-dimensional cases, while the 
explici t coefficient function integrals shown in (5.13) 
for two dimensions still apply. 

For the enclosed "droplet", the excess number of 
molecules adsorbed at the boundary must be defined by 

fAa (2'1rr) 
r(A)= Jo [p(l)(r)-pJdr, 

o 4'1rr2 
(6.3) 

The curvature expansion (6.2) when inserted here 
will yield 

'" r(A)=- 2: r(l-i)(-A) (I-i) (6.4) 
i=O 
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in two dimensions, with the same coefficients (5.15)­
(5.17) as before, while in three dimensions it will 
yield 

00 

rCA) = I: r(H) (-A) (H). (6.5) 

The alternative rCA) expressions (4.12) and (4.13) 
played a key role in the preceding elimination of 
logarithmic contributions, and we require their analogs 
for enclosure. These analogs may easily be established 
through the artifice of "hollow colloids", i.e., large 
circular or spherical bodies containing, respectively, 
single circular or spherical holes (see Fig. 3). The 
partial molar volume at infinite dilution, V, and the 
chemical potential expression generalizing (4.7) will 
contain new terms referring only to the inner region. 
Then by applying the "hollow colloid" version of 
thermodynamic identity (4.6), one can proceed 
ultimately to show that 

r(A)=211"a2p(~) jAA,(iJOP(!)(Z=O,A'») dA', (6.6) 
iJ{3P T 0 iJp T 

rCA) = 41!"a3p (~) jA (A')2 (iJOp(1) (z=O, A'») dA', 
iJ{3p T 0 iJp T 

(6.7) 
in two and three dimensions, respectively. 

Following the earlier theme, we must reconcile 
Eqs. (6.4) and (6.6), as well as Eqs. (6.5) and (6.7). 
Since the curvature expansion (6.2) will tend to produce 
InA terms in the latter equation in each of these pairs, 
the reconciliation is possible only if 

Op(l·d) (z=O, A= (0) =0 (6.8) 

in d dimensions, thereby totally annihilating the 
InA terms. But the requirement (6.8) has already been 
established in Sec. V [Eqs. (5.21) and (5.23)]. 

The Gibbs free _energy for the enclosed and con­
strained droplet is N J.L, where J.L is the chemical potential 
and N is the average number of molecules in the open 

FIG. 3. "Hollow colloid" body. :Molecules of "solvent" sur­
round the body, and are permitted to fill the interior cavity of 
radius )la. 

d,"PktSyste:(A)~ (1I"A
2
a

2
)p+r(A). (6.9) 

pA3a3 

For fixed J.L, the Gibbs free energy will have a large-A 
asymptotic expansion in descending integral orders of 
A. The same property also obtains for the open droplet 
Helmholtz free energy F(A): 

F(A) =N(A)J.L-j dA', 
_ A( 211"A'a2op(1)(z=0, A') ) 

o 411" (A')2a30p(l) (z= 0, A') 
(6.10) 

since result (6.8) eliminates the possibility that 
logarithmic terms in A can arise from the A' integral. 

VII. DISCUSSION 

Some of the elements of scaled particle theory have 
been useful ingredients to borrow for our preceding 
analysis. It is therefore appropriate that we repay 
the debt by stressing the implication of our results for 
the further development of scaled particle theory. 
For application of that theory to spherically symmetric 
molecules, it has been traditionaIU - 13 ,23 to represent 
the contact correlation functions C2 (A) and C3(A), 
for large A, solely in terms of integral powers of A. 
We can now unambiguously assert that Cd(A) will 
have no term in A-d. Although the physical desirability 
of this result had previously been suggested,23 a strict 
proof was apparently not available. 

There seems to be nothing standing in the way of 
an extension to solvent particles and exclusion regions 
with nonspherical (or noncircular) shapes. The com­
plications posed by these generalizations for the results 
obtained in this paper are largely notational, rather 
than conceptual. For an exclusion cavity or enclosing 
boundary with constant shape, but with size scaled by 
A, one surely can show that the associated free energy 
must be devoid of InA contributions. This observation 
should be useful in extending the recent applications 
of scaled-particle theory to liquid crystals composed 
of rigid spherocylinders. 14 ,24 

In considering the homogeneous nucleation of liquid 
droplets from supersaturated vapor, it is necessary 
to know the concentration of droplets, or nuclei, of 
various sizes. This requires the partition function for 
the droplet to be computed. In the course of calculating 
droplet partition functions, it has been suggested7 

that knowledge of the partition function for a droplet 
constrained by an impenetrable spherical boundary 
would be an important ingredient in the theory. In 
this respect the results of Sec. VI become relevant. 

The droplets considered in Sec. VI were open systems, 
with only the average number of molecules .\' fixed 
by the chemical potential. Nucleation theory, however, 
requires the free energy for fixed number of molecules 
,Yo The conversion of open droplet free energies (6.8) 
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and (6.9) to those for fixed lY though is a relatively 
straightforward matter using fluctuation theory. The 
resul t for open (F) and closed (F N) droplet Helmholtz 
free energies is the following: 

{3F N={3F(N = N) +~ In[(21l"N /{3) (8p/8ph]' (7.1) 

For large droplets with fixed interior density equal to 
that of bulk liquid, ill will vary as Ad in leading order. 
Equation (7.1) shows therefore that the closed droplet 
does give rise to logarithmic free energy terms: {3F N 
contains (d/2) InA as A-'>OO . In view of the protracted 
discussion in nucleation theory over the "translation­
rotation paradox,"6,7 it seems significant that this 
exact result in logarithmic order has been obtained 
without explicit consideration of droplet translational 
and rotational degrees of freedom. 

The validity of the curvature expansions derived 
in earlier sections, both for distribution functions and 
for free energies, rests upon the smallness of the ratio 
of molecular correlation length to Aa. At the liquid­
vapor critical point, the correlation length diverges, 
so our expansions without question become inapplicable 
there. It is possible, for example, that precisely at the 
critical point quantities like r(A), Wd(A), and F(A) 
do indeed exhibit terms in InA in the relevant critical 
asymptotic A expansions.25 The coefficient of InA in 
{3F N would thereupon change discontinuously at the 
critical point. 

The boundan~ tension formulas derived above for 
1'2 and 1'3 will c~rtainly reflect the increasing range of 
molecular correlation as the critical point is approached. 
One would expect on intuitive grounds that a depletion 
region with width equal to the bulk fluid correlation 
length 1/ K would exist next to the nonwettable re­
pelling boundary. Along the critical isotherm, the 
Gibbs adsorption equation22 then requires that 

(7.2) 

The scaling laws for critical-region molecular cor­
relation functions specify that K(p, Te) shall vanish 
at the critical point (T= Te, p= Pc) in the following 

K(p, Tc)"'-'Ko I Pc-P I(HJ)/d, (7.3) 

where 8 is the degree of the critical isotherm. Sub­
sequently, differential relation (7.2) may be integrated 
to show 

S=Il-(1l+1)/d. (7.4) 

The boundary tension exponent should be 7 in two 
dimensions, and about 3 in three dimensions. The 
scaling arguments finally may be extended to our 
aeneral boundan·-tension formulas (3.15) and (3.22) b _ 

to show that at the critical point, and for large lateral 
distance s, 

q=d(21l+1)/(8+1). (7.5 ) 

The droplet conditions that must ultimately be 
considered both for nucleation theory, and for the 
droplet model of critical phenomena, involve free 
surfaces rather than constraining boundaries. Effort 
should therefore be directed in the future to calculating 
the additional liquid droplet free energy attendant 
upon reversible removal of a constraint boundary. 
It would be particularly valuable to establish without 
ambiguity whether logarithmic contributions arising 
from this removal can be entirely attributed to the 
freeing of capillary wave motions of the droplet 
surface. 1O ,27 
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