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Abstract 

The prospects are examined for construction of a fundamental and systematic 
theory of liquid water, utilizing the techniques of classical statistical mechanics for 
rigid asymmetric rotors. For that purpose, a tentative molecular pair potential is 
proposed which exhibits the known tendency toward tetrahedral coordination 
and which fits the measured water-vapor second virial coefficient reasonably well. 
Several potential curves are displayed for the more important classes of pair 
configurations. By means of indirect calculations, we have established a local 
cooperative tendency for orientational correlation of neighboring water molecules 
in arrangements suitable for hydrogen bonding. Finally, we stress the relevance 
and importance of Monte Carlo calculations (with electronic computers) designed 
literally to provide submicroscopic pictures of the random hydrogen-bond net-
works in liquid water and aqueous solutions. 

1 Introduction 

The study of liquid water could superficially be considered as ,a single 
branch of the entire field of liquid-state research. However, it is obvious that 
this one substance occupies a place of special prominence, not only because 
of its unique physical characteristics but also because it seems to be the only 
fluid medium capable of supporting biochemical processes. No doubt these 
peculiar properties arise from the same molecular feature that has thus far 
prevented development of a serious first-principles theory of liquid water, 
namely, the noncentral forces operative between the molecules. 

The earliest attempts to understand the behavior of water apparently 
stemmed from Röntgen's' suggestion that the liquid contained " .ice mole-
cules." Chadwell 2  has reviewed a number of these phenomenological treat-
ments of water in terms of association complexes. Since little was known 
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about molecular structure and intermolecular forces during the early period, 
however, these treatments were necessarily very limited in scope. 

In 1933, Bernal and Fowler 3  provided a major conceptual advance by 
pointing out the propensity for water molecules to bond to one another with 
locally tetrahedral geometry. In varying degrees, this structural feature has 
seemed to affect, if not to dominate, all subsequent attempts to explain the 
properties of liquid water (and aqueous solutions) in a statistical-mechanical 
context. 4  Even so, mere emphasis on tetrahedral coordination amounts to far 
less than complete mechanical description of the nature of water-molecule 
interactions. 

The modern trend in formal liquid-state theory seeks to establish a clear 
quantitative connection between carefully specified intermolecular potentials 
(as the starting point) and various molecular distribution functions and 
thermodynamic properties implied by those potentials.' Satisfying success 
has been achieved in this approach for simple substances such as argon, not 
only because the relevant central pair potentials are rather well established 
but also because reliable integral equation methods are available for com-
putation of the requisite radial distribution functions. 

In this chapter we attempt to lay the groundwork for a corresponding 
formal statistical-mechanical theory of liquid water. For that purpose we 
presume (at least initially) that the total potential energy is composed of a 
pairwise-additive sum of pair potentials. Even in the case of argon this is not 
rigorously true, but it is reasonable to regard three-body forces, and so on, as 
mild perturbations on the pairwise-additivity model that may be accounted 
for at the end of the primary calculation. The next section is devoted to 
certain immediate implications of the pair-potential assumption, and we 
record there the corresponding exact formal expressions for the mean energy, 
the pressure, the compressibility, and some further quantities requiring at most 
knowledge of the water pair-distribution function. 

Section 3 exhibits what we consider to be analytically one of the simplest 
water-molecule pair potentials that still retains certain essential features of the 
actual situation. It represents a modification and extension of Bjerrum's 
four-point-charge electrostatic model of the water molecule, 6  and inherently 
favors tetrahedral coordination. 

The second and third virial coefficients for water vapor are examined in 
Section 4. By demanding that the theoretical expression for the first of these 
( with our suggested potential function) agree with experiment, certain free 
parameters in the potential are determined. 

Section 5 is devoted to preliminary theoretical investigation of the pair-
correlation function for liquid water. Whereas for substances such as argon 
with central molecular forces, this quantity (at fixed temperature and pres-
sure) depends only on scalar distance, the full pair-correlation function for 
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water is vastly more complicated. In order to fix the relative configuration 
and orientation of two water molecules, a minimum of six variables must be 
specified. With this formidable feature in mind, we assess the practical utility 
of the Percus—Yevick integral equation for the water pair-correlation function. 
In addition, we examine in Section 5 a semiempirically determined pair-
correlation function in order to estimate the cooperative character of orienta-
tional ordering in liquid water. 

The final discussion, Section 6, attempts to predict the most useful course 
of future research directed to the construction of a full fundamental statistical 
mechanical theory of liquid water. 

2 Pair-Potential Assumption 

The free water molecule is a nonlinear triatomic species exhibiting C2,, 
symmetry. The average bond angle is about 105°, only slightly less than the 
geometrically ideal angle 

(1) UT = 109°28' 

between lines connecting the center of a regular tetrahedron to its vertices. 
The oxygen—hydrogen bond lengths in the isolated molecule are 0.96 A, but 
in condensed phases such as ice and liquid water these lengthen perhaps to 
1.00 A on the average. 7  

In order to describe the position and orientation of a water molecule in 
space, six variables are required. We shall take these to be, first, the vector 
position r = (x, y, z) of the oxygen nucleus, and second, the set of Euler 
angles 0. 0, /' required to fix the orientation of the molecule, regarded as a 
rigid body. Figure 1 and Figures 2a to c establish the particular Euler angle 
convention that we have employed. 

Our primary intention is to describe liquid water by the techniques of 
classical statistical mechanics. The central quantity in that discipline is the 
canonical partition function, QN.  Since we regard the individual water 
molecules as acting toward one another as rigid asymmetric rotors, the 
partition function has the following form: 

- 1 [(2irkT)3m'/2 (I1I2I3) QVIb1N 
QN-- 	 h6 	I 

(2) 

X 
fdx l  . . .fdXNexp [— VN(xl . . . XN)1, 	P= (kT)' 

In this expression, m is the molecular mass, the I's are the three moments of 
inertia, Qvib  5 the partition function for the vibrational degrees of freedom 
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x 

Figure 1. Coordinate axes for the rigid nonlinear water molecule. Cartesian axes x, Y. z 
are fixed; orthogonal unit vectors b, m, n rotate with the molecule. b is the molecule's 
symmetry axis, m is in the molecular plane, and n = b x m. 

of an isolated water molecule, and VN  is the total potential of interaction 
between the N molecules in the system. 

Vector x, in (2) stands for the six coordinates specifying position and 
orientation of molecule j, and the x integrations in more detail must be 
carried out as follows: 

(3) 	 fdx 5  m f dr5 
f2ji 

dçh5 f 	°i dO5 
f25 

d0j  

where V is the vessel volume containing the N water molecules. 
Molecular distribution functions p(x 1  . . . x) give the probabilities that a 

set of differential volume-and- orientation elements dr, dçh5  dO5  d05  (j = 1 . . . n) 
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Figure 2. Euler angle convention for the water molecule. All three angles are 0 in the 
configuration shown in Figure 1 . (a) 'p increases from 0 by rotation about the initial n axis. 
(b) Rotation about the new b axis defines 0. (c) The last Euler angle, cli, describes rotation 
about the new n direction. To generate all orientations uniquely, the limits 0 :!! ~; p, çb < 27r, 
and 0 ~ 0 ~ ir must be imposed. 

are simultaneously occupied by any of the water molecules. The precise 
definitions of the P(n)  involve multiple integrals of the full configuration space 
canonical density 

(4) p( )(x 1 . . .x) 

	

	
N ! dx + . . . f dxN  exp [— 9 VN(xl  . . . xN)] 

= 
(N — n)! f dX1- . .JdxN  exp [ — PVN(xl . . . xN)1 

Although this set of functions specifies the full orientation dependence for 
sets of n molecules, it suffices for some purposes merely to know the orienta-
tionally averaged densities; for that reason we also define the "contracted" 
molecular distribution functions 

(5) (r1  . . . r) = f sin 01  d 1  dO1  d 1  . . . fsin o 	AdO n 
P(n)(X1 

. . . x) 
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Finally, correlation functions g and 	are introduced thus 

I  N 

	

I 	' a (Xi-  . . x ) p(x 1  • x) = ;-v) 
(6) 

	

p(n) (r, • . . r) = 
() 	

(r 1  • • • r) 

with the properties (in the infinitely large system limit) of approaching unity 
for wide separation of all positions r 1  • • r. 

The potential energy, VN , viewed from the most fundamental standpoint, 
is an enormously complicated function. Of course it comprises permanent 
dipole-dipole and dispersion interactions between molecules at moderate 
range, as well as hydrogen bonding at close range. But also it contains subtle 
many-body potentials, one aspect of which is the dielectric modification of 
dipole-dipole forces. In view of the separation of Qb  (defined for isolated 
molecules) in (2) we must furthermore be prepared to admit that VN  will 
contain contributions from coupling of vibrations between neighboring 
molecules in the liquid phase. 

In spite of these complications, there ought still to be a "best" choice of 
pair potential v(x, x,) such that the assumption 

(7) VN(x l  . . . XN) 	 v(x, x 5) 
i(j=1 

retains most essential features of the liquid-water problem. A reasonable sort 
of criterion for choice of v would be minimization of the squared deviation 
between Boltzmann factors for VN  and its pairwise-additive approximation 
by (7) 

I dx 1  . . .fdxN{exP [- V N (1 . . .N)] 

(8) N 	 2 

	

- exp 
[- 	: v(i, J)]} = minimum 

By setting the first variation with respect to v of this last expression equal 
to 0, we obtain the condition 

	

fdx 3  . . . fdx N  exp {_4vN(1 . . .N) + • 	v(if)]} 

9 	
i<1 1 

= 

	

f dX3 . . . f dXN exp 
[ -

fi 	: v(i, J)] 
j<j=1 

which must be obeyed for all x1  and x2 . If we first take r 1  and r2  to be far 
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apart in (9), we see that the canonical partition functions (and hence the 
Helmholtz free energies) for the two potential functions 

(10) VN  + j : vu, j) 
j(j=1 

and 

(11) v(i,j) 
i<j=1 

must be identical. Furthermore, by taking r 1  and r2  close to one another in 
(9), we also conclude that interactions (10) and (1 1) will produce identically 
the same pair distribution function p 2 (x 1 , x 2). 

Although we cannot conclude that the optimal pairwise-additivity approxi-
mation (7) causes no change in free energy or in the various p  for water, the 
invariances just mentioned in passing from (1 1) to (10), or "halfway" from 
pairwise additivity to the true VN,  indicate that (7) is generally an excellent 
approximation. 

Variational principle (8) is unfortunately not suited for direct construction 
of a liquid-phase v. Furthermore, the pair potentials it requires might exhibit 
small temperature and density dependence. We take the point of view in the 
following paragraphs that a fixed v(x 1 , x.) can be determined for liquid water 
by alternative means and that residual temperature and density dependence is 
negligible if we restrict attention to the behavior of liquid water at (or near) 
room temperature and 1 atm pressure. 

The primary practical advantage of pairwise-additive potentials is that 
most of the usual thermodynamic properties can be expressed in terms of just 
V and (2)  The most straightforward of these is the mean energy per molecule 

	

E E° 	1 
N = -p-- + -j fdx i  fdx 2v(x i , x2)p 2 (x 1 , x2) 

(12) 

	

E° 	N1' 

	

= 
-w- 	16r2 V J dx 2v(x 1 , x2)g 2 (x1 , x2) 

where E(0 )IN is the mean molecular energy at the ambient temperature for 
the infinitely dilute vapor. The integral term in (12) merely counts molecular 
pairs in all possible pair configurations and accumulates the corresponding 
potential energy contributions. 

The expression for the pressure, p, in virial form may be derived by a 
trivial generalization of Green's volume-scaling procedure for spherically 
symmetric molecules. 8  One obtains 

	

PV 
	 1 	1' 
	fdX2[r12'V-11,,.V(X1, 	

2(13) 	
= - 6NkT J A,   	x 2)]p (x1 , x 2) 

r12  = r2  - r1 
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The isothermal compressibility 
1  

(14) KT 	
('a'PV) 

 

has the unique advantage of being exactly expressible in terms of the pair- 
distribution function, quite irrespective of the pairwise-additivity assumption 
(7). Furthermore, only the angle-integrated quantity p(2)  is required. Provided 
that we first understand the infinite-system-size limit to have been taken for 
p(2), the general compressibility relation is 

(15) kTKT   
V + f dri2[2)(ri2) - 11 

The chemical potential, j, may in principle be obtained via the Gibbs-
Duhem relation 

dp = p dp 

at constant temperature, by integrating the pressure with respect to density 
P - N/V from the ideal gas limit. Alternatively, the potential decoupling 
procedure ' for a single molecule, 1, say, may be employed. In this latter 
approach, the partially coupled molecule 1 is presumed to interact with its 
neighbors with potential v(x 1 , x ; ), where 

(16) v(x 1 , x,; e = 0) 	0 

represents full decoupling of 1, and 

v(x 1 , x2 ; 6 = 1) = v(x 1 , x,) 

is the actual "physical" pair potential, fully coupled. By computing the 
reversible work required to " switch switch on ' ' v(l , j; ), that is, to increase 6 from 
0 to 1, one finds 

(17) /h 	+ kTln () + fo 	f dx i  f dx2 
av(x,x 2 ; ) p

2 (x 1 , x2 ; ) 

The first two terms in the right member of (17) are the ideal gas contribu-
tions, and the integral term accounts for interactions. Note that P (2) must be 
suitably defined for a pair of particles, one of which displays the partial 
coupling feature. 

The dielectric properties of polar fluids such as liquid water are intimately 
related to the orientational correlations between neighboring molecules. 
Kirkwood's theory of polar dielectrics '° leads to the following expression 
for the static dielectric constant, e: 

(60 _1)(2e + 1) 47rN 
(18)

I 

= —y- 
\cz + 

RT) 

where a is the molecular polarizability (assumed to be isotropic), and j is 
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the permanent dipole moment. The specific form for orientational correlation, 
gK, for water is again a pair-correlation function integral 

(19) 9K = 1 + 5dx2 b1  .b2)g 2 (x19  x2) 8w 2V

and gives the average cosine of the angle between permanent dipole moment 
directions, b 1  and b2 , for neighboring molecules. 

The definition of the hydrogen bond is somewhat arbitrary. Surely the 
various experimental techniques that are employed in its study are not 
precisely equivalent and need not quite agree on the concentration of 
hydrogen bonds in a given material sample. From our present point of view, 
we shall suppose that the existence of a "hydrogen bond " between two 
molecules of water means simply that their coordinates x, and x j  lie between 
certain specified limits. This is equivalent to defining a characteristic bond 
function, B(x, x,), such that 

(20) B(x 1 , x 2) = 1 

if I and] are so placed in space to form a hydrogen bond, and 

(21) B(x, x3) = 0 

if not. Clearly B should be invariant to all but the relative positions and 
orientations of I and ]. The average number, nHB,  of hydrogen bonds per 
molecule in water then is yet another example of a pair-distribution function 
quadrature 

(22) nHB - 
	
f dx i  f dx 2B(x i , x 2)p 2 (x i , x 2) 

Section 5 utilizes this general hydrogen-bond density expression with a 
specific set of B functions. 

Finally, we note that the leading quantum-mechanical corrections to 
classical partition function (2), of order h2 , can also be reduced to pair-
distribution function integrals. For the " asymmetric top "  water molecule, 
the requisite expressions are quite complicated, and we refer the reader to a 
paper by Friedmann," rather than reproducing the result here. Nevertheless 
it is worth pointing out that these quantum corrections are the key to under-
standing the small differences in equilibrium behavior of H 20, D 20, and T20. 

3 Approximate Pair Potential 

Our aim in this section is to exhibit a relatively compact analytical expres-
sion as an approximation to the "best" liquid-water pair potential. In doing 
so we are fully aware that our proposed form will eventually be supplanted 
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by more accurate approximations. Nevertheless it seems to us important to 
develop, even on the present rather crude basis, an intuitive grasp for the way 
water molecules in various orientations exert forces on one another. Since 
our proposed potential is forced to fit certain key experimental data, we feel 
that its predictions will ultimately prove not to be in serious quantitative 
error. 

To the best of our knowledge, the only other type of pair potential that 
has seriously been considered in description of the fluid states of water is the 
Stockmayer potential.' 2  This potential consists of a sum of a Lennard-Jones 
potential and the potential of interaction between permanent point dipoles. 
Doubtless this potential accurately portrays the interaction between pairs of 
water molecules at large distance in the dilutevapor. Indeed 
has used the Stockmayer potential to calculate the second and third virial 
coefficients for water vapor. 

Still, there is good reason to question the aptness of the Stockmayer 
potential for understanding condensed phases. It has, for example, been 
proven by Onsager 15  that the minimum energy for a set of point dipoles is 
attained in the hexagonal close-packed crystal, not the tetrahedrally coordi-
nated ice lattice. (The Lennard-Jones potentials would merely add extra 
relative stability to the former.) Also, in the wide variety of hydrate crystals 
loosely termed " clathrates," the water molecules stoutly maintain the local 
tetrahedral coordination observed in ordinary ice, even though the larger 
geometric aspects of the water networks change considerably.' 6  

We believe (consistent with Bernal and Fowler 3)  that the marked propen-
sity for water molecules to hydrogen bond into networks with local tetra -
hedral coordination is the single most important observation bearing on 
selection of a suitable approximate pair potential. Therefore we have chosen 
for detailed consideration a model potential that manifestly favors tetrahedral 
coordination. Like the Stockmayer potential, it combines a spherically 
symmetric Lennard-Jones interaction with a noncentral electrostatic con-
tribution. Instead of relying on point dipoles, though, our angle-dependent 
part is based on Bjerrum's four-point-charge model of the water molecule. 6  

As Figure 3 shows, these four charges are placed at the vertices of a regular 
tetrahedron whose center is presumed coincident with the oxygen nucleus. 
The distance from this center to each of the four charges has been chosen to 
be 1.00 A. Two of the charges, with magnitude + e, may be identified as the 
water-molecule protons partly shielded by the electron cloud. The remaining 
two charges, -'re, represent crudely the unshared pairs of valence-shell 
electrons in the molecule. Bjerrum has pointed out that the choice 0. 17 for 
will reproduce the dipole moment known for the free-water molecule, but 
owing to polarization effects in the liquid, we have elected to regard ij as an 
adjustable parameter. 
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D)US (1.4I) 

Figure 3. Tetrahedral charge distribution for the water molecule. The oxygen nucleus, 
0, is at the center of the regular tetrahedron with circumradius 1.00 A. The positive charge 
+ e, are shielded protons, and the negative charges simulate unshared electron pairs. 

In order to avoid having simultaneously to determine a large number of 
adjustable parameters such as , we have presumed that the Lennard-Jones 
12,6 part is the same as for neon, which is isoelectronic with water 

(23) vLJ(r12) = 48 [ (--
12 	 61; 

r12, 	\r12/ j 
for neon 17 

(24) e = 5.01 x 10-15 erg = 7.21 x 10 2  kcal/mole, 	a - 2.82 A 

Specifically, VLJ  will refer to oxygen nuclei as the force centers. We see that 
the four Bjerrum charges ± 'qe are well buried inside the van der Waals 
radius (1.41 A) of the molecule. 

The electrostatic interaction between two tetrahedral charge distributions 
like the one shown in Figure 3 will consist of 16 separate charge-pair terms. 
It may be written thus 

1)i 
(25) Vei(Xi, X2) =  (e)2 	

2 

12 ' 	2 

where a1  and a2 , respectively, run over the four charges of molecules 1 and 2 
such that even and odd values correspond to positive and negative charges. 
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The quantity d 12(x1 , x2) is the scalar distance between the charges a and a2 , 

and it obviously depends on the full set of molecular variables x1  and x2 . 
Except for one modification, the combination of (23) and (25) constitutes 

our water pair potential. The modification is required by the unphysical 
divergences that occur when two molecules move together in such a way that 

(26) 	 d 12(x1 , x2) = 0 

Although this is not a serious matter when a1  and a2  have the same parity, 
it is catastrophic when they do not. For this reason, we multiply Vel by a 
" switching function," S, that is unity at large r 12 , but vanishes when r 12  is 
small enough that condition (26) might occur. Our complete water pair 
potential therefore has the form 

( 27) 	 v(x 1 , x2) = vLJ(r12) + S(r12)vei(x1 , x2) 

The specific form utilized for the switching function consists of three 
separate parts 

S(r12) = 0 	 for 0 :!~ r12 ~ R 1  

- (r - R 1)2(3R 2  - R 1  - 2r) 
(28) 	- 	 I D 	73 \3 	

or R 1 	r ~ '2 
12 	1 ) 	

. 	
~ 	

73 

 

=1 	 for R2 :!!~ r12 :!!~ oo 

The cubic polynomial in interval [R 1 , R2] renders S(r 12) a nondecreasing, 
continuous function with continuous first derivative. We must have R 1  > 
2.00 A to avoid the charge overlap catastrophe. 

± 

4.' 	- 

—b 

Figure 4. The symmetrical eclipsed (SE) approach of two water molecules. Looking down 
the "bond" axis, the two triads of charges not along this axis would seem to fall upon 
(or eclipse) one another. 
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Pair potential v(x 1 , x2) contains three adjustable parameters, , R 1 , and R2 . 

These quantities were determined by requiring first, for fixed q, that the 
potential have a minimum in one of the nearest-neighbor pair configurations 
occurring in the ice lattice. The specific ice lattice configuration used is the 
" symmetrical eclipsed "  configuration illustrated in Figure 4. We required 
that the minimum occur at r12  = 2.76 A, the observed neighbor distance in 
ice. The value of v(x 1 , x2) at that minimum was also fixed at several different 
trial values Vmjn SO that the conditions 

v(x 19  X2)12.76A 	Vmin 

(29) bv(x 1 , 

x2) 12-76 	
0 

ar12  	A 

uniquely determined R 1  and R 2 . The strategy was to choose Vmjn  to provide a 
good fit to the water-vapor second virial coefficient, B(T), computed by the 
method of Section 4. 

It was not possible to reproduce the experimental B(T) when i was preset 
at the Bjerrum value 0.17. Instead, it proved necessary to increase rj to 0.19 
to permit adequate fit. (This increase inq beyond the value of 0.17 may be 
ascribed to a polarization effect operative at small distances.) One then 
obtains 

?7 = 0.19 

(30) R 1  = 2.0379 A 
R 2  3.1877A 

to complete the specification of v(x 1 , x2). With this set of parameters, Vmjn 

for the symmetrical eclipsed, (SE), configuration is - 6.50 kcal/mole, which 
is within the range of values quoted for hydrogen-bond energies.' 8  Figure 5 
presents the full r12  dependence of v in the SE configuration, along with the 
separate components VU, S, and Vei. 

Besides the SE configuration, there are three other nearest-neighbor con-
figurations that occur in the ice lattice. They are illustrated in Figure 6. The 
nonsymmetrical eclipsed, NSE, configuration is obtained from SE by a 120° 
rotation about the oxygen—oxygen axis, and like SE its charges are in line 
with (i.e., eclipse) one another when viewed along this axis. The symmetrical 
staggered, 55, and nonsymmetrical staggered, NSS, cases have charges mid-
way between one another when viewed along the oxygen—oxygen axis; SS is 
obtained from SE by a 180° rotation, and NSS from SE by a 60° rotation. 

Figure 7 displays together the four potential curves, for varying r12 , for 
each of the ice configurations SE, NSE, 55, and NSS. The minima for the 
latter three numerically turn out to occur at the same distance, 2.76 A, that 
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Figure 5. Potential curve for hydrogen bonding in the SE configuration; note three separate 
component functions VU, S, and Vej related to v(x 1 , x2) by (26). 
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(a) 

(b) 

+- 
Figure 6. Ice-lattice neighbor configurations in 
addition to SE: (a) NSE; (b) 55; (c) NSS. 

was forced upon the first one. However, the corresponding energies at those 
minima differ somewhat 

	

SE 	- 6.50 kcal/mole 

(3 1 	
NSS 	- 6.13 kcal/mole 

" ) 	 NSE 	- 5.58 kcal/mole 

	

SS 	- 5.34 kcal/mole 

The numerical values of the curvatures e2v/0r12 2  for each of the four 
potential curves, evaluated at the minima, are 

v"(SE) = 22.53 kcal/(mole)(A2) 

v"(NSS) = 28.55 kcal/(mole)(A2) 
(32 ) 	 v"(NSE) = 26.58 kcal/(mole)(A2) 

v"(SS) = 25.78 kcal/(mole)(A2) 

In the ice lattice, the staggered arrangements for nearest-neighbor pairs 
occur exactly three times as often as the eclipsed arrangements. Subject to 
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Figure 7. Potential curves for hydrogen bonding in the four ice lattice configurations. 

this a priori restriction, Pauling's view of the residual entropy of ice 19 

implies equal weights to the arrangements. We therefore calculate the 
"average curvature" to be 

(V")av  *[v"(SE) + v"(NSE)] + [v"(SS) + v"(NSS)] 
(33 ) 	= 26.51 kcal/(mole)(A2) 

This average curvature may also be estimated from the measured iso-
thermal compressibility of ice, found by Jona and Scherer 20  to be 

(34) K T 	
1.11  x  10-11  cm2/dyne 

at - 16°C. Assuming all nearest-neighbor distances to contract equally 
under compression, this KT is equivalent to 

(35) (V")av  = 25.25 kcal/(mole)(A2) 
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Actually, the neighbors with less potential curvature should move together 
more rapidly than the " stiffer "   neighbors, hence tending to weight the 
former more. This might explain part of the discrepancy between (33) and 
(35). 

On the basis of this rough comparison, we conclude that our water poten-
tial is not grossly in error for description of the condensed phases. 

Several other potential curves have been computed for different classes of 
water molecule pair configurations. Figure 8 displays the results for a pair of 
"two-bonded" configurations, TB, and TB 2 ; for both of these, two pairs 
of opposite charges simultaneously approach one another. Nevertheless, the 
distances involved are such that the repulsive part of VL1  comes into play 
before the charge attractions get very large, so the net potential at the two-
bonded minima is considerably higher than the single-bond results in (31). 
It therefore seems quite unlikely that two-bonded configurations play any 
significant role in liquid water. 

Several structural models for liquid water, such as those proposed by 
Pauling, 2 ' Frank and Quist, 22  and Samoilov, 23  postulate the existence of 
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00 	 600 	 120 	 80 	 240 	 300 0 	 360 
a 

Figure 10. Rotational potential for two water molecules, with r12 =  2.76 A. As angle 
increases from 0, the SE configuration deforms first to NSS (8 = 600), then to NSE (120 0), 
and then 55 (8 = 180 0). The curve is symmetric at about 8 = 180°. 

"monomeric interstitial" water molecules, trapped in cavities formed by 
hydrogen-bonded lattices. It is therefore pertinent to calculate potential 
curves for one molecule (the monomer) approaching another (a member of 
the lattice) along directions expected from the interstitial picture. Figure 9 
presents two such curves. Again we see that the energy is substantially higher 
at the minima than for the four ice-lattice configurations, SE. NSE, 55, NSS. 
Nevertheless, such interstitial molecules can be somewhat stabilized by 
relatively free rotation. 

Figure 10 exhibits a rotational potential energy curve. The two molecules 
start in the SE configuration, with r12 =  2.76 A, and are rotated about the 
oxygen—oxygen axis. This process produces in turn the following sequence of 
configurations during a full 360° rotation: SE, NSS, NSE, 55, NSE, 
NSS, SE. 

Finally, Figure 11 provides the predicted potential energy curve for a 
particular hydrogen-bond bending mode. This bend (also performed at fixed 
r12 -  2.76 A) carries SE continuously to 55 through a substantial potential 
barrier. From Figure 9, we see that the top of the barrier corresponds to 
interstitial configuration, I. 
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-72 	-54 	-36 	-180 	00 	 18 0 	36 0 	54 	72 

Figure 11. Potential curve for hydrogen-bond "bending," with r12  fixed at 2.76 A. Con-
figurations SS and SE occur at one-half the ideal tetrahedral angle, or 54.7°. 

A survey of the various potential curves indicates that the absolute mini-
mum potential energy for two water molecules is predicted by approximation 
(27) to occur at very nearly the geometrically ideal SE configuration, with 
r12  2.76 A. 

4 Virial Coefficients 

In the low-density vapor phase, the pressure equation of state (13) may be 
expanded into a density series 

(36) 	
NkT = 	

B(T)() + C(T)() + D(T)() + . . . 

The second, third, fourth,. . . , virial coefficients (B, C, D, . . . , respectively) 
convey the extent of imperfection of the gas, and they are intimately related 
to the interactions among clusters of ascending numbers of molecules. 

The specific statistical-mechanical expressions for the virial coefficients in 
(36) may be obtained from (13) by insertion of an appropriate density series 
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for p 2 (x 1 , x 2), followed by partial integrations. However, a more direct 
route to the same results is provided by the standard Mayer cluster theory. 24  
The second virial coefficient has the form 

(37) B(T) = 	2  f dX2 {exp [—v(x 1 , x 2)] - l} 

Knowledge of the total temperature dependence of B(T) obviously does not 
in itself permit complete determination of v(x 1 , x 2). However, this knowledge 
can be useful in fixing free parameters in an assumed analytical approxima-
tion. On account of the exponential character of the integrand in (37), the 
value of B(T) measured at low temperature is especially helpful in fitting 
v(x 1 , x 2) near its absolute minimum. 

Reference to (3) shows that B(T) for water is a sixfold integral. It is there-
fore much more difficult to evaluate with comparable accuracy than the 
single integration required for argon, the archetypal structureless spherical 
molecule. Still, methods have been developed for numerical integration of 
expressions such as (37) ; examples are the Haselgrove 25  and Conroy 26  
techniques. 

The few configurations for which the water pair potential was evaluated in 
the previous section were sufficiently special that convenient expressions 
could be written out, for computational purposes, for the charge-charge 
distance d 1a2  in Vei. But regardless of the specific integration scheme to be 
used for B(T), it is necessary to evaluate v(x 1 , x 2) for very many configura-
tions, the majority of which are irregular. For that reason we were compelled 
to develop a computer-coded system for finding v, given an arbitrary x 1  and 
x 2 . This procedure utilizes trans -formation matrices E(çh 1 , O, depending 
on Euler angles for molecule i, which convert any vector t in the laboratory 
coordinate system, to the same vector (t) resolved into components parallel 
to the right-handed coordinate system (b, m, n in Figure 1) attached to mole-
cule I 

(38) (t)° = E(ç6, O, /c).t 

Since we have 
,12 	_1 	+ 	+ 12 
Ua i a2 	1r12  -i- 	

2 	c 1 J 

= r12 2  + ta22  + to:1 2  + 2r12 .ta2 	2r12 •ta1  - 

where t 1  and t 2  are the displacements of charges a and a2  relative to their 
respective oxygen nuclei, it follows that 

d2 	= r12 2  + ta2 2  + tal 2  + 2ri2.[E1(2)(ta2)2 -- '( I) - (ta  
(40) 

- 2{E'(l) . ( ta1 ) 1 ] . [E 1(2). (t2)2J 
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The charge-position vectors, (ta)°,  can all easily be expressed in terms of the 
unit vectors b, m, and n, so that the matrices E ' in (40) account for arbitrary 
molecular rotations. 

The Haselgrove method was actually the one used in our B(T) calculations 
because it permits use of varying numbers of points, thus allowing estimation 
of integration error. For 0 :5 r12  -!!~ 2.00 A, the integrand shown in (37) is 
essentially constant at - 1, so the contribution from this range to B(T) is 
trivial to take into account. The actual numerical integration therefore was 
restricted to the range 

(41) 	 2.00A < r12  :!~ 15.00 A 

since for larger separations the contributions are negligible. Typical com- 
putations at a given temperature involve 12,000 distinct pair configurations. 

Table 1 shows the values computed for B(T). We estimate the error to be 
about 5%. For comparison the table also includes Rowlinson's results for 
the Stockmayer potential,  13  as well as Kell, McLaurin, and Whalley's recent 
measurements. 27  As explained in Section 3, it was necessary to try different 
values of the charge magnitudes ± e. The numbers quoted in the table refer 
to '9 = 0.19. 

Table 1 Second Virial Coefficient for Water (cm 3/mole) 

. 

Stockmayer 
Temperature Potential Experiment 

(°C) B(T) a (Ref. 13) (Ref. 27) 

100 —466 —450 _450b 

200 —190 —205 —197 

300 —107 —122 —112 

400 —65 —80 —72 

a Computed from (37), using pair potential (27). 
b Extrapolated from 150°C. 

When i was preset as low as 0.17 (the Bjerrum value), and Vmj n  varied, it 
was not possible to fit the experimental B(T). The error was most significant 
at low T, and reflected too weak an attraction. On the other hand, when i 

was increased substantially beyond 0.19, it became impossible to find R 1  and 
R 2  to satisfy (29). The value chosen for i therefore seemed to represent a 
satisfactory intermediate value. 

It would be unwarranted at this stage to spend a considerable effort to 
improve agreement between the theoretical and experimental B(T)'s. Surely 
this eventually could be done by a combination of the following: (a) shifts in 
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positions of the charges from the regular tetrahedron vertices, (b) change in 
shape of the switching function, and (c) variation of e and a in VLJ  from the 
neon values. 

But even if numerical error in integration of B(T) were to be made 
negligibly small, one would still be confronted by quantum corrections and 
by the fact that the best pair potential for the liquid state, our primary object 
of interest here, very likely deviates somewhat from the true pair potential 
for isolated molecules. We believe, however, that our approximate fit to the 
experimental B(T) serves to force upon v(x 1 , x 2) in (27) nearly the correct 
energy for hydrogen-bond formation. Since the fits to the measured B(T) 
obtained with both our potential and the Stockmayer potential are about 
equally good, we see how insensitive B(T) is to angular variations, and this 
serves to stress the importance of seeking other information to determine 
those angular variations. 

The analog of B(T) expression (37) for the third virial coefficient is a 
twelvefold integral 

C(T) = - 3(82)2 

x f A., f A. {exp [- / V3(x 1 , x 2 , (3)] 

(42) —exp [—/3(v(x 1 , x2) ± v(x 2 , x3))] 

- exp [-9(v(x 1 , x 2) + v(x1 , x 3))] 

- exp {—f3(v(x 1 , x 3) + v(x 2 , x3))] 

+ exp [—/3v(x 1 , x2)] + exp [—f3v(x 1 , x 3)I 
+ exp [—f3v(x 2 , x3)] - 11 

In the event that the three-molecule potential energy, V3 , is composed just 
of pair potential contributions, the C(T) expression simplifies considerably 

(43) C(T) = - 3(8r2)2 f dx 2  f dx 3  f(x 1 , x2)f(x1 , x3)f(x2 , x3) 

where 

(44) f(x, x,) = exp [ - f3v(x 1 , x)] - 1 

The third virial coefficient is very sensitive to intermolecular potentials 
because it involves cancellation between large positive and large negative 
contributions coming from different regions of triplet configuration space. 

It is much more difficult to carry out the integrations demanded for C(T), 
even numerically, than for B(T). Even so, we thought it worthwhile to seek a 
rough evaluation of C(T) for comparison with experiment. Conroy's 
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numerical integration procedure 26  was employed using potential (27) in (43). 
This procedure involved consideration of 9644 separate triplet configurations. 
The results (probably only accurate within a factor of 2) are presented in 
Figure 12, along with Rowlinson's Stockmayer potential C(T), 14  as well as 
Kell, McLaurin, and Whalley's experimental values. 27  

It is clear that neither the Stockmayer potential nor our present form in 
(27) comes anywhere near to predicting an experimentally acceptable C(T). 
The chief source of error is probably the fact that V3  in general C(T) expres-
sion (42) is not precisely a sum of v's for the separate pairs, but contains as 
well a true three-body potential. This inherent three-body part should consist 
mainly of a polarization effect; that is, one molecule interacts with the dipole 
moment induced in a second one by the third. Even though the extra three-
body energy may be small, its effect can be very large, for it acts as a multiplier 
for 

(45) exp {—f3{v(x 1 , x 2) + v(x 1 , x3) ± v(x 2 , x3)11 

to form the first integrand term in (42). If the three molecules are arranged to 
form two SE hydrogen bonds, with energy - 13 kcal/mole, (45) at room 
temperature is about 2 x 10, and one of the succeeding integrand terms in 
(42) will have comparable magnitude but opposite sign. With such huge 
numbers, C(T) ends up being exceedingly sensitive to inclusion of very small 
three-body potentials. 

Although a refinement of our water pair potential might improve agree-
ment in Figure 12 somewhat, it should be stressed that prediction of a C(T) 
in close agreement with experiment is not a prerequisite to formulation of an 
adequate liquid-state theory. 

5 Pair-Correlation Function 

We turn now to survey some theoretical aspects of the water pair-correla-
tion function. This quantity may be expressed as 

(46) 9 2 (x1 , x2) = exp { —/3{v(x 1 , x 2) + w(x 1 , x2)11 

The function w is both temperature and density dependent, and it comprises 
the average influence of the water medium surrounding fixed molecules 
1 and 2. 

In the large-r 12  limit, of course, both the direct interaction, v, as well as 
the indirect correlation quantity, w, will vanish, to give unity for g(2).  How-
ever, we can also specify the precise way in which v + w goes to 0, because 
at large distances only the molecular dipole moments interact. Neglecting 
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molecular polarizability, we see that molecule 1 will be surrounded by a 
polarization field at large distance equal to 

(47) 	 P1  = 
604-; E1 

where E 1  is the electric field due to molecule 1 and its orientationally cor -
related near neighbors. Classical electrostatics subsequently gives the follow-
ing expression for E 1 10  

IAQ\ 	 1' I \ _ 	3pdgK V7 b 1 ' r12  
O) 	 L 1 r12)  - 	 1 2 80  r 	r12  

If this is substituted into (47) and the result identified as a deviation from 
isotropy of the distribution of directions for vector b 2  in molecule 2, we must 
have 

(49) 9[v(x 1 , x 2) + w(x 1 , x2)] 	
99A-00 - 1)  b1  .T12 .b2  4p(2s°  + 1) 

where T12  is the dipole-dipole tensor 

i 	3  (50) T12  = ;:1;-; ( _ 	: 12) 

In the low-density limit applicable to water vapor, w vanishes, so that the 
pair-correlation function, g(2),  reduces to the Boltzmann factor for direct 
interaction, v 

(51) Jim g 2 (x19  x2) = exp [-9v(x 1 , x2)] 
p-+O 

The simpler correlation function k(2) (r12), also in the zero-density limit, is 
equal to an angular average of (51) 

Jim 2 (r12) = 	12 2 fsin Ui dç6 1  dO1  dçb 1  fsin 02  dçb2  dO2  dçb2  
(52) P-° 	 (IT) 

x exp [-9v(x 1 , x 2)J 

This quantity gives the relative density of oxygen nuclei (regardless of 
molecular orientations) at distance r12  from the oxygen nucleus of a fixed 
molecule in the dilute vapor. 

With the specific interaction (27), the integral in (52) has been evaluated at 
4°C, and the result is plotted in Figure 13. The very high peak at about the 
ice-lattice spacing (2.76 A) reflects the very strong attraction due to hydrogen 
bonding when the molecules are suitably oriented. Although the function has 
the same qualitative features as the pair Boltzmann factor for, say, a pair of 
argon atoms, the peak height is very much larger than for argon at the 
corresponding temperature. (The maximum of exp [/3vLJ(r)] for argon at 
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? 	Figure 13. Low-density limit for 2 (r12) at 4°C. 

83.8°K, its triple-point temperature, is only about 4.2.) Even in this orienta-
tionally averaged sense, we see that liquid water must be regarded as an 
extremely strongly interacting many-body system. 

One of the more important trends in liquid-state theory in recent years 
has been the development of integral equation techniques for prediction of 
pair-correlation functions. 5  So far, this approach has been applied numerically 
only to fluids composed of spherical structureless particles, but it is important 
to establish the extent of its possible utility for water. By most measures, the 



322 	Aspects of the Statistical-Mechanical Theory of Water 

Percus-Yevick integral equation 28  is the most reliable of those available; for 
water it is 

fdXJ g ( 2 )(X1'  exp [f3v(x 1 , x2)]g 2 (x1 , x2) = 1 + 
N 

	x 3) - 11 
(53) 	 87r 2V 

x {1 - exp [9v(x 3 , x2)]}g 2 (x3 , x2) 

The speed and memory capacity of modern computers has reached a point 
where iterative solution of the Percus-Yevick equation for simple fluids such 
as argon is a relatively simple task . 29  However, it has already been pointed 
out that the water g(2)  is a function of no less than six variables, rather than 
just radial distance as for simple fluids. It should be mentioned parentheti-
cally, that one of the two molecules may be regarded as fixed in position 
and orientation. The six variables may then be taken to be the three polar 
coordinates of oxygen nucleus 2 relative to 1, and the three Euler angles for 
molecule 2. The corresponding numerical task for water, therefore, is orders 
of magnitude more difficult. To convey the structural information implicit 
in g 2 (x1 , x2), a minimum of about 10 discrete values for each of the six 
variables should be considered, thus requiring a table of one million entries! 

Also, our experience with trial integrals has shown that about four minutes 
is required to carry out the integral in (53), for each pair-configuration x 1 , x2 , 

with even modest numerical accuracy. Therefore each iteration of (53) in 
seeking a numerical g(2)  for water would require more than one thousand 
hours of computing time! Similar estimates apply to the other integral 
equations currently in vogue, so the difficulty is not to be regarded as a 
special intractability of the Percus-Yevick equation. 

In spite of the present virtual impossibility of solving the Percus-Yevick 
integral equation (or any of the others) for liquid water, this general approach 
can still provide some indirect insight. For example, we can observe the effect 
on local structure of the hydrogen-bonding part of v(x 1 , x 2) by first integra-
ting the Percus-Yevick equation with just the first term in the potential 
expression (27), and then comparing the result with the experimental 2 (r12). 
Figure 14 shows the two curves together, and both refer to 4°C, and the 
1-atm molecular density for real water. The theoretical curve represents 
highly compressed, supercritical neon gas (the pressure would be about 5000 
atm), since with only central interactions operative the molecular rotations 
are free and irrelevant. The experimental curve was determined by Narten, 
Danford, and Levy ;30  it probably contains slight artifacts (from Fourier 
inversion of the scattering data) such as the bump at 3.7 A. 

Not only does the hydrogen-bond part (SVe1) of the water pair potential 
cause an enormous pressure reduction from 5000 to 1 atm, but we also see that 
the first peak of the pair-correlation function undergoes very marked narrow-
ing. As a result, the number of nearest neighbors, defined by the area under 
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Figure 14. Comparison of the experimental g(2)  for water at 4°C, with the radial distri-
bution function calculated from the Percus—Yevick equation (same temperature and density) 
using only the Lennard-Jones part of water potential (27). 

the first peak out to the subsequent minimum, reduces from around eight for 
neon to roughly four for water. 

Figure 14 also shows that the first-peak narrowing is accompanied by 
inward movement of the subsequent 2 (r12) peaks, so that the oscillations 
about the first peak for neon and for water are " out of phase." In the neon 
case, the second and third peaks are very nearly at two and three times the 
first-peak distance, respectively. Although the second peak for water is quite 
broad, its maximum lies very close to the position expected for perfect tetra-
hedral coordination, namely, 2 sin (54°44') 1.633 times the first-peak 
distance. The third water peak is too diffuse to identify uniquely and likely 
represents contributions from a wide variety of local structures that are 
possible with predominantly tetrahedral linkage. 

The function w(x 1 , x 2) in (46), the general expression for the water pair-
correlation function, may in principle be expanded in some complete ortho 
normal set of functions, Fa, of just the Euler angle variables 

(54) 	w(x 19  x 2) = w 0(r12) + 	w(r12)F 1  . . . 2) 

where the coefficient functions, wa, depend only on r12 . Equation 49 indicates 
the behavior of this expansion at large r12 , but greater structural significance 
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attaches to the case of small r 12 , when the molecules are first, second, or third 
neighbors, roughly. For such close pairs, the direct pair potential v(x 1 , x2) 
exerts very strong forces and torques, and it is unclear what relative im-
portance the angle-dependent (a ~!: 1) parts of w(x 1 , x2) would have. In order 
to get some information on this point, we shall tentatively disregard the a sum 
in (54), and observe the consequences. We therefore assume for the moment 
that 

(55) 9 2 (x1)  x2) 	y(r12) exp [—/3v(x 1 , x2)} 

where 

(56) y(r12) = exp [—/3w 0(r12)] 

If (55) is averaged over Euler angles ç6 • • 02  at fixed r 12 , the result is 

(57) 2 (r 12) = y(r12) Jim  2(r12) 
p-O 

The left-hand member is the measured radial correlation function (shown in 
Figure 14), and the zero-density limit appearing in the right-hand member has 
already been computed and displayed in Figure 13. We can therefore com-
bine these two pieces of information to produce a semiempirically determined 
y(r12), which is shown in Figure 15. The most important feature of y(r12) is 
its small value ( 0.0 1 5) at the nearest-neighbor distance; this value prevents 
more than about four neighbors from fitting around any one molecule. 
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Figure 15. Semiempirically determined y(r12) for water at 4°C and 1 atm. For r12  less 
than 2.5 A. relation (57) for computing y(r12) becomes effectively indeterminate. 
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Now that y(r12) has been determined, it may be used in (55) along with our 
pair potential, (27), to yield an approximate pair-correlation function. The 
latter then may be utilized in (19) to calculate an approximate dielectric g. 
The result for water at 4°C is 

(58) gK = 1.94 

On the other hand, Harris, Haycock, and 	have shown that 9K  must 
be about 2.6 to be consistent with the measured dielectric constant. We are 
therefore forced to conclude that approximation (55) fails to give a proper 
account of orientational correlation between neighboring water molecules; 
in other words, it produces too little angular correlation. 

This conclusion may be confirmed by calculating the number of hydrogen 
bonds per molecule n.B,  from (22), again employing the approximate water 
g(2) in (55). By "hydrogen bond" between two molecules, we shall mean that 

,* 

	

	the pair potential for them shall be less than some preassigned upper limit, u. 
In other words, the characteristic bond function B(x 1 , x 2) may be written 

(59) B(x 1 , x 2) = U[u - v(x 1 , x2)] 

where 

(60)
U(s)=O 	5<0 

=1 	s>0 

is the unit step function. Table 2 presents the values calculated in this way 
for nHBin  4°C water at 1-atm pressure. 

Table 2 Number of Hydrogen 
Bonds per Water Molecule, n.B, 
as the Cutoff Energy, u, is varieda 

U (kcal/mole) 	nHB 

—4.75 7.0 x 10' 
—5.00 5.0 x 10 - ' 
—5.25 3.4 x 10' 
—5.50 2.1 x 10 - ' 
—5.75 1.0 x 10 - ' 
—6.00 1.8 x 10_ 2  
—6.25 3.0 x 10-3 
—6.45 4.1 x iO 

a Pair-correlation function provided 
by (55); 4°C and 1 atm. 
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As u moves downward toward - 6.50 kcal/mole, the number of hydrogen 
bonds per molecule declines rapidly to 0, because so little configuration space 
corresponds to formation of a bond. By referring to (31), we see that for low-
temperature ice, nHB  should equal 2 when u exceeds - 5.3 kcal/mole. 

Since the energy of sublimation of ice at its melting point is 11.65 kcal/mole, 
and the heat of melting is 1.44 kcal/mole, 32  the molar energy of 4°C water 
compared to separated molecules will be close to 10.2 kcal/mole. Since, 
furthermore, the coordination number upon melting remains about 4, there 
is no way of accounting for this energy unless more than three neighbors of 
any molecule, on the average, participate in hydrogen bonds of no less than 
4-kcal/mole energy each. However, the u = - 5 kcal/mole entry in Table 2 
is only 0.5, instead of roughly 1.5, as it should be. Once again we see that 
approximation (55) produces too little angular correlation between neighbors. 

Evidently the local networks of hydrogen bonds that form in liquid water 
provide extra orientational correlation between nearest neighbors. It is easy 
to imagine that two such neighbors are embedded in a framework of other 
water molecules and that this framework acts like a machinist's jig to align 
the molecules in the correct orientation for hydrogen-bond formation. The 
implication is that a proper pair-correlation-function theory, would specify 
the w(r12) in (54) to encompass this "jig effect," and the resultant g(2) (X1, x2 ) 

would yield more realistic g and n.Bpredictions. 
Finally we mention that if (53), the Percus-Yevick equation, is integrated 

over Euler angles for molecules 1 and 2 (while r12  is held fixed), and then trial 
form (55) inserted for g(2),  the result constitutes an integral equation for 
y(r12). We have spent considerable effort (though with some simplication of 
the angular integrations) attempting to solve that integral equation, to com-
pare the result with the "experimental" y in Figure 15. That effort was 
entirely unsuccessful; no stable solution was found. In retrospect, it seems 
likely that this failure is symptomatic of the inability of the trial g(2)  form in 
(55) to represent the cooperative aspects of hydrogen-bond network formation 
in liquid water. 

6 Conclusions 

Having thus surveyed the applicability of modern techniques in statistical 
mechanics to liquid water, we now attempt to identify the most likely course of 
significant progress in the near future. 

The specific potential function, v(x 1 , x 2) in (27), was introduced largely for 
illustrative purposes. Although we believe it exhibits the major features of the 
correct water potential, some quantitative revisions will surely be warranted 
as further information comes to light. Direct quantum-mechanical calcula- 
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tions of the water pair potential could be of especial value in this regard; but 
because even a full hydrogen bond represents but a small fraction of the total 
energy involved in such calculations, this type of investigation must be 
implemented with great care and precision. 

Morokuma and Pedersen 33  have recently carried out a quantum-mechanical 
computation of the interaction energy of two water molecules in a few selected 
configurations. They employed molecular orbital theory with a Gaussian 
basis set of modest proportions. Since their results predict a minimum value 
of v(x 1 , x 2) below - 12.6 kcal/mole (roughly twice the accepted energy of the 
hydrogen bond, and certainly much larger than allowed by the measured 
second virial coefficient), it is certain that more extensive calculations are 
required. Still, the Morokuma—Pedersen work sets a valuable precedent that 

	

' 	
should be followed up in the near future. 

One aspect of the quantum-mechanical calculations of particular interest 
: would be the tracing out of the angular variation of v(x 1 , x 2) that is shown in 

Figure 1 1 for our own approximate potential. The potential barrier shown in 
Figure 1 1 between the SE and 55 configurations is clearly a result of idealizing 
the lone pairs of unshared electrons by point charges, whereas in reality they 
are rather smeared out spatially. Morokuma and Pedersen 13  calculate that, 
rather than a barrier, a very shallow minimum should lie between SE and SS; 
so in fact the most stable configuration for two water molecules would not lie 
near SE, but near the "interstitial" configuration, I, instead. At present it is 
impossible to tell if this particular aspect of the Morokuma—Pedersen work is 
an artifact. More accurate molecular orbital calculations could help resolve 
the issue, although additionally it should be asked if electron correlation 
might tend to localize the unshared pairs along the characteristic tetrahedral 
directions. Future quantum-mechanical investigations should not overlook 
the nuclear distortion of the water molecules as they move relative to one 
another. This effect conceivably could vary with angle in a way that produces 
significant effects on the shape of potential curves such as the one in Figure 11. 
If it should turn out ultimately that the barrier shown in Figure 1 1 is either 
too high or altogether absent, the potential (27) could accordingly be modified 
by use of three negative charges, two in the same position as indicated in 
Figure 3 and one along their bisector (direction - b). Of course the molecule 
must remain electrically neutral, so with two shielded protons having charges 
+ ie, the total charge of the three negatives would be - 2e, as before. 

Under the plausible assumption that our quantitative knowledge of 
v(x 15  x 2) will continue to improve, it is important to prognosticate the 
significant uses of this function. In view of the pessimistic estimates for the 
direct solution of g(2)  integral equations in the near future, an attractive 
alternative is the Monte Carlo simulation of the thermal behavior of a sample 
of the molecular fluid. 34 ' 35  In this procedure, an electronic computer moves 
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a set of several hundred molecules about inside a "vessel," according to 
Markov chain transition probabilities that are selected to realize a canonical 
distribution for the temperature of interest (these transition probabilities 
perforce depend on potential, v). With the presumption of ergodicity, the 
random motion of these molecules eventually allows any thermodynamic or 
structural feature of interest to be calculated as an average over the Markovian 
sequence of system states. 
. In principle, the full water pair-correlation function g 2 (x1 , x2) could be 
evaluated by the Monte Carlo technique; but as mentioned earlier, the large 
number of configurational variables involved makes this impractical. Instead, 
(g 2 (r12) could be obtained for comparison with experiment, plus a more 
detailed analysis of the angular correlation of just nearest neighbors to 
establish the extent of hydrogen-bond bending in the liquid. The importance 
of hydrogen-bond bending in liquid water has been stressed by Pople. 36  

Since the Monte Carlo method actually produces "typical" liquid-water 
molecular arrangements, the strongest benefit to be derived from this method 
would be the pictures that could be made of a small portion of the liquid. 
Output from an electronic computer can nowadays routinely be used to 
produce stereoscopic images, and the student interested in water would have 
the opportunity literally to see how water molecules arrange themselves. The 
computer could be programmed not only to make the molecules clearly 
visible but also to indicate where the hydrogen bonds have formed (with 
suitable choice for B). A result of this submicroscopic view would be a deeper 
appreciation of the statistics of random hydrogen-bond networks according 
to probability of formation of polygons of different sizes (squares, pentagons, 
hexagons, etc.), and according to concentration of various types of faults in 
the random network (interstitial molecules, free ends, Bjerrum faults, etc.). 

The Monte Carlo technique furthermore could be adapted to study of 
aqueous solutions. A fixed "impurity" can be placed inside the vessel which 
interacts suitably with the water molecules. For instance, if methane were the 
solute of interest, a central potential of the Lennard-Jones type would not be 
inappropriate. One could then study the change in extent and geometrical 
character of hydrogen bonding around this solute molecule and proceed to 
assess the current ideas about hydrophobic bonding. 37 ' 38  

Although the Monte Carlo simulation of real water will very likely play an 
important role in future developments, it certainly must not be considered as 
an utterly definitive and complete source of knowledge. It is, after all, only a 
refined (and highly magnified!) sort of experiment on water, and for the most 
part will only tell us "what," not "why." The Monte Carlo results will 
eventually require explanations based on analytical theory, in the same way 
that the integral equation formalism for g(2)  nowadays affords explanations 
for simple fluids (like argon). 
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There are two reasonable possibilities for " analytical "  advances. 
1. It is quite conceivable that trial g(2)  form (55) could be generalized to 

represent better the cooperative nature of hydrogen bonding. One possibility 
would be 

( 61) 	9 2 (x1 , x2) 	 y(r12) exp [—/3z(r 12)v(x 1 , x2)} 

involving now two dimensionless functions just of scalar distance r12 . The 
Percus—Yevick equation (or an alternative integral equation) could then be 
transformed into a pair of coupled integral equations for the functions y and 
Z, and, one hopes, solved numerically. It is worth noting that, unlike (55), 
more general expression (61) is consistent with the large-r 12  limiting pair-
correlation behavior determined by (49). In addition, the requirement 
inferred in the previous section that neighboring particles require more 
orientational correlation than (55) provides can be accommodated by z 
exceeding unity at those distances. 

2. B 39 ' 4° admirable intuitive ideas about the coordination geometry 
of simple liquids deserve an incisive adaptation and application to liquid 
water. Unlike the simple liquids of spherical molecules, water has the advan-
tage (at least at low temperature) of having definite coordination number 4. 
The object of a Bernal-type analysis therefore would primarily consist in 
description of the various types of polyhedra that occur surrounding voids 
and the statistics of fitting together these polyhedra to form a space-filling 
network. 

Of course it is always risky to predict the future. There is a large chance 
that our projection for theoretical liquid-water research will prove somewhat 
misdirected. Nevertheless, significant progress will not come easily in this 
complicated field, so there is wisdom in attempting to plan effort intelligently. 
We hope that the present survey will aid scholars of the subject in that 
important endeavor. 
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