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The leading density dependence for the variationally defined effective pair potential v is derived, using 
van Kampen's product technique to evaluate the multidimensional configuration integrals that 
arise. This function v is compared in that density order to two other effective pair potentials that have 
been proposed, and it is shown to be the only one that simultaneously reduces both free energy and pair 
correlation errors to quadratic order in the magnitude of triplet nonadditivity. The signs of density shifts 
in v at low temperature are analyzed for noble gases and for water in various configurations, 
and a reasonable arbitrary-density approximation to v is suggested that may have utility in simulation of 
liquids by rapid electronic computer. 

1. INTRODUCTION 

The interaction potential V N for a system of N 
molecules possesses an unique resolution into inherent 
pair (V(2», triplet (v(a», quadruplet (V(4», ••• con­
tributions, 

N N 

V N(XI·· • XN) = L V(2)(Xi, Xj)+ L V(3) (Xi, Xi, Xk) 
i<j~1 i<j<k~1 

N 

+ L 
i<j<k<l~1 

+ yeN) (Xl· • ·XN). (1.1) 

Here the vector Xi comprises components describing all 
relevant position and orientation coordinates for mole­
cule i. The separatefunctions yen), 2~ n, may be defined 
recursively in terms of the total N-molecule potentials 
VN , by requiring yen) to represent the portion of V" not 
attributable to proper subsets of the chosen n molecules. 
Specifically, one has 

V(2) (Xi, Xj) = V2 (Xi, Xj), 

yra) (Xi, Xi, Xk) = V3 (Xi, Xi. Xk) - V(2) (Xi, Xj) 

- V(2) (Xi, Xk)- V(2) (Xi, Xk), 

and in general (l~ia~n) 

n-l n 

-L L 

(1. 2) 

(1. 3) 

(1.4) 

A basic tenet in conventional statistical mechanics 
of the condensed states is that the series (Ll) is domi­
nated by its leading terms, the pair interactions, so that 
succeeding terms may be neglected. Of course this is 
never strictly valid, but stilI it seems plausible that for 
an important class of nonpolar substances the major 
qualitative aspects of molecular motions and arrange­
ments as well as thermodynamic properties can be 
accounted for with V(2) alone. By suppressing non­
additivity in V N for these simple materials, the formal 
statistical mechanical theory may be developed in 
relatively compact form. 1 .2 Furthermore the computer 
simulation of classical many-body systems by either 
the Monte Carl03 or the molecular dynamics4 method is 

substantially facilitated by assuming V N to be pairwise 
additive. 

In view of these facts it is hardly surprising to see the 
emergence of attempts to retain many-molecule inter­
actions for precision within the convenient format of 
pair additivity, using "effective pair potentials." The 
first direct approach along these lines seems to have 
been initiated by Sinanoglu and his collaborators.5-s 
Their basic requirement was that the correct mean 
energy be reproduced by using their effective pair 
potential Vs. In the event that nonadditivity arises 
solely from the triplet potential V(3), they propose for 
a pure substance to set 

VS(XI, X2) = V(2) (Xl, X2)+ (p(l)/-3)fV(3) (XI, X2, X3) 

X [g(3) (Xl, X2, Xa) I g(2) (XI, X2) ]dX3, 

where pel) is the singlet molecular density, 

pel) = lV Ill, ~l= Idx, 

(1.5) 

(1. 6) 

and the g(n) are the infinite-system-limit molecular 
correlation functions,9 which refer to the initial system 
with nonadditivity. Equation (1.5) illustrates the 
general density and (through g(2) and g(3) temperature 
dependence to be expected for effective pair potentials. 

It was pointed out in Ref. 8 that the formal partition 
function ZN 1 LVS I constructed from the effective pair 
potential leads to mean energy and entropy which 
differ from the system's exact quantities only in second 
and higher orders in the difference. 

VN- LVs(ij). (1. 7) 

Although this may bring assurance for most cases of 
interest that thermodynamic behavior is adequately 
handled, it still leaves open the question about how 
realistic the molecular correlation functions produced by 
LVS will be. This problem is particularly vexing in the 
face of realization that the specific form (1.5) is not 
unique in reproducing the thermodynamic energy. 

For purposes of later comparison, we note that Vs 
has the following density development (!3= IjkBT): 

x exp[-!3V(2)(XI, Xa)-!3V(2)(X2, Xa)-!3V(3)(Xl, X2, x3)]dxa 

+O[(p(I»2]. (1.8) 
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EFFECTIVE PAIR POTENTIALS 1781 

The opposite philosophy in definition of an effectiVe 
pair potential was advocated by Rushbrooke and Sil­
bert,lO and exploited by Rowlinson and his co-work­
ersY-la They required that the model system inter­
acting through the pairwise sum of effective pair 
potentials VR possess the same pair correlation function 
that obtains in the starting system with the full V N· 

The density development, corresponding to Eq. (1.8) 
for Vs, was found to be14 

VR(XI, X2) = V(2)(Xb X2) - (p(l)/(3) 

xI exp[-(3V(2) (Xl, Xa)-(3V(2)(X2, Xa)] 

X {exp[ _(3v(a) (Xl, X2, xa)]-lldxa+O[(p(l))2]. 

(1.9) 

Obviously Eqs. (1.8) and (1.9) do not agree, and in 
particular the formal partition function ZN{'2)RI will 
commit first-order errors in energy and entropy with 
respect to the difference, 

( 1.10) 

That different choices of basic properties for the starting 
system would lead to distinct definitions of effective 
pair potentials was discussed in detail in Ref. 12. 

A way out of this apparent nonuniqueness problem 
was recently proposed,15 which leads to yet another 
effective pair potential definition. This proposal is 
based upon a representation of the exact partition 
function ZN{ V N 1 in terms of an inner product, 

ZN{ VNI =zN{OI [Q-N I dXl'" I dXN exp( -(3VN)] 

=ZN{O} {exp( -(3V N/2), exp( -(3V N/2) }, 

(1.11) 

where ZN{ 01 is the partition function for noninteracting 
molecules, and the inner product is defined by16 

{hI, h21 =Q-N I dXj' ., I dxNhj (Xj' ., XN) h2(Xj' "XN). 

( 1.12) 

The importance of the inner product is that it implies a 
natural definition of the "distance" D between two 
functions,16 

D (hI, h2) ?:. 0, 

D2(hl, h2) = {hl-h2, hl-h21 

= Q-NIdxI , "IdxN[hl(Xj" 'XN) 

-h2(XI' "XN)]2. (1.13) 

In particular, then, we can assess the quality of an 
approximation to the function, 

hJ(xJ' . 'XN) = exp[ -(3VN(xJ'" XN) /2J, (1.14) 

in the form of the equivalent Boltzmann factor for an 
additive effective potential, 

N 

h2 (xJ'''XN)= exp[-(3LV(Xi,Xj)/2], (1.15) 
i<j=l 

by computing the distance D(hJ, h2). 

Through the expression (1.11) for the partition 
function, we can regard the Boltzmann function hI in 
Eq. (1.14) as the fundamental generating function for 
the classical many-body problem in hand. Subsequently 
it is obvious that the optimal choice for an effective 
pair potential v will be the one which minimizes 
D2(hJ, h2). Hence it was suggested in Ref. 15 that v 
should be determined by the explicit variational 
criterion, 

min=Q-N I dXj" ,I dXN(exp{ -!(3V N(XI' , 'XN) 1 
N 

- exp{ -!f3 L vex;, Xj) l)2. (1.16) 
i<j=l 

After carrying out the functional derivative with respect 
to v, one obtains the following Euler equation for deter­
mination of v: 

N 

X exp{ -!(3[VN(Xl" 'XN)+ L V(Xi, xj)]1 
i<j=l 

N 

=Q2-N I dX3' .. I dXN exp[ -{3 L V(Xi, Xj)]. (1.17) 
;<j=1 

The primary goal in this paper is to derive a density 
expansion for v to compare with those for Vs and VR. 

It is easy to show15 that the v defined by criterion 
(1.17) eliminates from thermodynamic functions first­
order errors in the difference 

(1.18) 

and to that extent v enjoys the same advantage that 
Vs does. But additionally the variational requirement 
(1.16) forces v to regenerate molecular correlations 
optimally over the full multidimensional configuration 
space for the system. No equivalent restraint operates 
on vs. 

Although VR formally reproduces the correct g(2), it 
is rather uncertain to what degree g(3), g(4),' " are dis­
torted by replacement of V N by LVR. By contrast v 
treats all gIn) without special bias, since it is the funda­
mental Boltzmann function hI from which all are ob­
tained by contraction that is being globally approxi­
mated. In view of application of the effective pair 
potential concept to highly structured materials such 
as water,17 it seems unwise to place full emphasis on g(2) 

to the exclusion of the more informative higher-order 
gIn). 

Section II provides the formal density expansion for 
the Helmholtz free energy in the presence of non­
additivity. Although this result is hardly new, its 
derivation here provides a didactically convenient 
entry point to our subject, and serves in the interest of 
expository unity. We follow this in Sec. III with the 
actual deduction of the v density series leading terms. 
Section IV judges the merit of each of Vs, VR, and v in 
terms of the corresponding Hilbert space distance D. 
The final section, V provides some further ideas on the 
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1782 FRANK H. STILLINGER 

general character of v and its application to specific 
materials. 

II. HELMHOLTZ FREE ENERGY EXPANSION 

The partition function (1.11) determines the Helm­
holtz free energy F, 

{3F( VNI ={3F(OI- In [g-N IdxI'" IdxN exp( -(3VN)] 

=(3F{OI- In(exp( -(3VN»; (2.1) 

(3F{OI = -lnZN(OI; (2.2) 

(I) =g--N I dXI' •• IdxNI(XI' .• XN). (2.3) 

In order to generate the density expansion for the 
excess (nonideal) part of F, we shall employ a product 
representation of the type originated by van Kampen18 

for the average value appearing in Eq. (2.1)19: 

N N 

(exp(-{3VN»= II (exp[ -(3V2(ij)]) II 
i<j~1 i<j<k~1 

(exp[ -(3V3(ijk)]) 

X (exp[- (3V2(ij)]) (exp[ -(3V2(ik)]) (exp[ - (3V2(jk) J) 

N (ijkl) (ij) (ik I (ill < jk) (jl) (kl) 
X i<j:£I~1 (ijk) (ijl) (ikl) (jkl) X···. (2.4) 

This identity at first estimates the full average by a 
product of independent pair averages, then sequentially 
provides triplet, quadruplet, quintuplet, .. " corrections. 
The correction factor for particles al' • ·an consists of 
an averaged Boltzmann factor for those particles, 
divided by lower-order correction factors for each proper 
subset of al' • 'an ; under that circumstance it is straight­
forward to show by induction that (2.4) is indeed an 
identity. 

That development (2.4) is appropriate in the low 
density regime is obvious, for isolated pair collisions 

are the predominant dynamical event. Three-body 
collisions will be correspondingly rarer, and so triplet 
corrections to an assumed independent pair set should 
indeed have modest magnitude (i.e., the triplet correc­
tion factors should all be close to unity). Four-particle 
encounters would be even rarer, etc. 

The Helmholtz free energy expression (2.1) requires 
the negative logarithm of product (2.4), and hence the 
factors corresponding to sets of particles of ascending 
size (pairs, triplets, quadruplets,···) contribute addi­
tively to F. On account of the identity of particles, all 
N!/n!(N -n)! n-tuple contributions will be identical, 
and may be lumped together. 

Consider first the independent pair contributions, 
N 

-In II (exp[ -,BV2(ij)]) 
i<j~1 

= -!N OV -1) In (exp[ -,BV2 ( 12)]1 

= -!N(N-1) In[1+ (/(12) )J, (2.5) 

where we have introduced the Mayer f function, 

f(ij) = exp[ -,BV2 (ij)J-1. (2.6) 
Since 

(/(12) )=g-2IdxIIdx2f(12) (2.7) 

will be inversely proportional to the system volume in 
the conventional large-volume limit, we can surely 
expand the logarithm in Eq. (2.5) to obtain 

-!N p(l)g-IIdxIIdxzf(12) +O(N°) (2.8) 

for the pair contributions to F. Following the usual 
convention, we have explicitly retained only the part 
proportional to N in the large-system limit, since that 
is the part which provides the limiting free energy per 
particle. 

The triplet contributions may be treated in a similar 
manner, 

-In { II
N (exp[-,BV3(ijk)J) } 

i<j<k~l (exp[ -,BV2(ij)])(exp[-,BV2(ik)J)(exp[ -,BV2(jk)J) 

1 T { (exp[ -,BV3(123) J) } 
= -liN(N -1) (N-2) In [1+ (/(12) )J[1+ (/(13) )J[1+ (/(23»J . (2.9) 

The averaged triplet Boltzmann factor remaining here can be manipulated into a more convenient form,20 

(exp[ -{3V3(123) J) = 1+ (/(12»+ (/(13»+ (/(23»+ <1(12) )(/(13»+ (/(12) )(/(23» 

+ (/(13) ) (j(23) )+ (j( 12)f( 13)f(23) )+ (exp[ -{3V3( 123) J- exp[ -{3V2( 12) -{3V2( 13) -,BVz(23) J). (2.10) 

Each of the averages in the right member is small (i.e., proportional to a-lor g-Z). Thus after inserting (2.10) into 
(2.9) the logarithm may be expanded to yield 

-iN (p(l)2g--1(J dXII dxzI dX3f( 12)f(13)f(23) + J dXIJdx2J dX3 

X {exp[ -,BV3(123) J- exp[ -IW2(12) -,BVz(13) -,BV2(23) Jl)+O(N°). (2.11) 

for the triplet contribution. 
From these considerations it becomes clear that the quadruplet factors in (2.4) would produce free energy terms 

of the type N(p(l)3, quintuplet factors would produce those of type N(p(I)\ etc. Through second order in p(l), 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to

IP:  128.112.66.66 On: Tue, 07 Jan 2014 05:29:49



EFFECTIVE PAIR POTENTIALS 1783 

therefore, the limiting free energy density must be 

N-l{3F( V NI = N-l{3F(OI-!p(l) f dX2f(12) _Hp(l)2f dX2f dxaf(12)f(13)f(23) 

_Hp(I)2f dX2f dXa( exp[ -(3Va( 123) J- exp[ -(3V2(12) -(3V2(13) -(3V2(23) JI +O[ (p(l) a]. (2.12) 

The free energy densities that are generated by partition functions ZN( LVs I and ZN( LVR I, using effective pair 
potential sums in place of the exact V N, may be evaluated easily from the general formula (2.12). Of course it is 
necessary to take the density variations of Vs [Eq. (1.8)J and VR [Eq. (1.9)J into account in collecting terms of 
equivalent order. One finds the following results: 

N-l{3F( Lvsl =N-1{3F( OI-!p(l) f dX2f(12) _Hp(I)2f dX2f dXaf(12)f(13)f(23) 

+if3(p(l)2f dX2f dXa v(a) (123) exp[ -(3Va(123) J+O[ (p(1)3J; (2.13) 

N-l{3FILvRl =N-1{3FI OI-!p(l) f dX2f(12) _Hp(1)2f dxd dxaf(12)f(13)f(23) 

- !(p(I)2f dX2f dXa exp[ -(3V2 ( 12) -(3V2( 13) -(3V2(23) JI exp[ _(3V(a) (123) J-1) +O[ (p(l)a]. (2.14) 

Although the first of these is correct for small (3v(a), the second overestimates the effect of triplet nonadditivity. 
On the other hand, the latter may have a more reasonable behavior than the former when large (3v(a) magnitudes 
are involved. 

III. EFFECTIVE PAIR POTENTIAL SERIES 

Let us define a partial configuration average, 

(1)12 =Q2-N f dXa' .. f dXN1(x1' •• XN). (3.1) 

The Euler equation (1.17) for determination of our variationally optimal v hence may be rewritten, 
N N 

(exp[ -(3 L v(ij) J)12= (exp[ -!(3V N(1 .. ·N) -!(3 L v(ij) J)12. (3.2) 

By means of an extension of van Kampen's product technique, both members in Eq. (3.2) can be evaluated as 
p(l) power series, with coefficients that are functions of Xl and X2. We must keep in mind that v itself ultimatelv will 
be a p(l) power series. . 

We shall first operate on the left side (L) of Eq. (3.2). It will suffice for present purposes merely to carry the 
product through triplet terms. Thus we write 

L nN < [R (")J) nN (exp[ -(3v(ij)-{3v(ik)-{3v(jk)J)12 
= exp-,..,vtJ 12 < [ (')J)( [ J)( [ . (3.3) 

i<H i<i<k=1 exp -{3v tJ' 12 exp -(3v(ik) 12 exp -{3v(jk)Jh2 

With regard to the pair factors, only the one with i, j = 1, 2 is distinct; all the others equal 

1 + (exp[ -(3v( ij) J-1). (3.4) 

Similarly, the triplet factors are of two types, depending on whether or not i, j, k includes both 1 and 2. After 
taking logarithms in (3.3), transforming integrals, and expanding through the requisite order, one obtains21 

InL= -(3v(12) +[!N(N -1) -1JQ-lf dXa( exp[ -(3v(13) J-11 + (N - 2)Q-1f dXal exp[ -(3v(13) J-1) 

XI exp[ -(3v(23) J-11+C!N(N-1) (N -2) - (N -2) JQ-2fdxafdx41 exp[ -(3v(13) J-11 

X (exp[ -(3v(14) J-1) r exp[ -(3v(34) J-1}. (3.S) 

Exactly the same types of considerations apply in reduction of the right member (R) of Eq. (3.2). One finally 
finds21 

InR= -!(3[V2(12)+v(12) J+[!N(N -1) -lJQ-lf dXa( exp[ -!(3V2(13) -!(3v(13) J-1}+ (N _2)Q-l 

xf dXa( exp[-!{3V2(13) -!f3v(13) J-1}1 exp[ -!(3V2(23) -!(3v(23) J-1} + (N -2)Q-l 

Xfdxa(exp[ -!{3v(a)(123)J-1} exp(-!{3[V2 (13)+ V2(23)+v(13)+v(23)J} 

+[tN(N -1) (N -2) - (N -2) JQ-2f dXaf dX41 exp[ -!(3V2(13) -!(3v(13) J-1} 

XI exp[ -!(3V2(14) -!(3v(14) J-1 II exp[ -!(3V2(34) -!(3v(34) J-1}+[tN(N -1) (N -2) - (N -2) JQ-2 

xf dxaf dX4( exp[ _!(3v(a) (134) J-1} exp(-!{3[V2(13)+ V2(14)+ V2(34)+v(13)+v(14)+v(34) Jl. (3.6) 
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1784 FRANK H. STiLLINGER 

The leading, density-independent, term in the p(!) series for v will naturalIy be V2• Our task is to find the con­
tribution linear in p(1), 

(3.7) 

In order to calculate cp, this expression must be inserted in each ofInL, Eq. (3.5), and InR, Eq( (3.6) and the result­
ing functions expanded through first order in p(1). 

The manipulations leading to deduction of the function cp are necessarily complex. It is therefore advis­
able first to examine the simplest possible case, namely that for which the true pair interaction V2 vanishes. The 
effective pair potential v=p(l)CP then arises solely from the triplet function V(3). By equating the corresponding 
simplified expressions for InL and InR, folIowed by expansion of integrands to linear order in p(l)cp, we obtain 

- !,Bp(l)cp(12) -!/1p(l) (!N p(l)_ !p(l)_Q-l)J dXacp(13) = [p(lL (2/Q) JJ dxa( exp[ - t/1V(3) (123) J-11 

+ [tN(p(1)2_t(p(1)2- (2p(l) /3Q) + (2/Q2) JJ dX3J dX4( exp[ -t/1V(3) (134) J-11. (3.8) 

It is important to notice that this equation contains 
some terms proportional to N (i.e., to the system size), 
as welI as others which remain bounded as the system 
size diverges. Clearly the former class of terms must 
independently cancel; as a result we have the condition 

/1J dXacp(13) = -if dX3J dX4( exp[ _!,BV(3) (134) J-11, 

(3.9) 

which must be obeyed by cpo 
One can also see from Eq. (3.8) that the relative 

changes in cp(12) as Xl and X2 vary arise entirely from 
the first integral in this equation's right member. In a 
macroscopicalIy large system therefore we must have 

/1cp(12) = - 2J dX3( exp[ -t/1V(3) (123) J-11 +C. 

(3.10) 

The additive constant C may easily be determined by 
applying condition (3.9); consequently 

/1CP(12) = -2JdXa(exp[ -t/1V(3)(123)J-11 

+ (4/3Q)J dXaJ dX4{ exp[ -t/1V(3) (134) J-1I. (3.11) 

The novel feature which arises here is the weak 
(proportional to Q-l) , long-ranged tail in cpo Although 
this tail vanishes pointwise in the Q-HIO limit, its free­
energy consequences do not. AlI molecular pairs in the 
system are subject to this tail, regardless of their 
distance; with tN(N -1) pairs the aggregate "tail" 
interaction wiII be proportional to N p(l), and wilI be a 
significant part of the total extensive free energy. 
Although result (3.11) refers specifically to the V2 =O 
special case, we must expect that the more general cp 
will also exhibit a weak, long-ranged tail. 

Returning now to the general case of nonvanishing V 2, 

we can first identify the generalization of condition 
(3.9) by equating terms proportional to N in the rela­
tion, 

InL= InR. (3.12) 

By referring to the earlier expressions (3.5) and (3.6), 
one deduces that 

/1J dXa exp[ -/1V2(13) JCP(13) = -if dXaJ dX4 

X exp[ -/1V2(13) -/1V2(14) -/1V2(34) J 

X {exp[ -t/1v(a) (134) J-11. (3.13) 

Furthermore it is possible as before to identify the 
source of relative variation of cp(12) with Xl, X2. Hence 
one concludes, analogous to Eq. (3.10), that 

/1CP(12) = -2Jdx3 exp[ -/1V2(13) -/1V2(23) J 

X (exp[ -t/1V(3) (123) J-1 }+C. (3.14) 

After using Eq. (3.13) to determine C, we have 

f1cp(12) = - 2J dXa exp[ -/1V2(13) -/1V2 (23) J 

X (exp[ - t/1V(3) (123) J-11 + (4/3Q) J dX3J dX4 

X exp[ -/1V2(13) -/1V2(14) -/1V2(34) J 

X (exp[ -t/1V<3) (134) J-11. (3.15) 

Through order p(l), therefore, the effective pair poten­
tial v has the following form: 

v(12) = V2 (12) - (2p(1) //1)J dX3 

X exp[ -/1V2(13)-/1V2(23)J(exp[ -!,BV(3)(123)J-11 

+ (4p(l) /3Q/1) J dX3Jdx4 

X exp[ -/1V2(13) -/1V2(14) -/1V2(34) J 

X (exp[ -t/1V(3) (134) J-11 +O[(p(l)2]. (3.16) 

This may be compared with the preceding expansions 
for Vs, Eq. (1.8), and for VR, Eq. (1.9). 

N ext we can insert the v resul t in to the generic 
Helmholtz free energy series (2.12). The result is the 
following: 

N-l/1F( LvI =N-l/1F{ Ol-tp(l) J dX2f(12) -i (p(1)2 

X J dxzf dxaf(12)f(13)f(23) - t(p(1) 2 

X J dX2J dX3 exp[ -/1V2 (12) -/1V2(13) -/1V2(23) J 

X (exp[ - t/1v(a) (123) J-1I +O[ (p(1) 3]' (3.17) 

In the event that /1V(3) is small enough that exponen­
tial function linearization is in order, both F {LVS I 
and F{LVI agree with the exact free energy F{VNI. 
More generalIy, we can establish that F{LVI bounds 
F ( V N I from above,15 

(3.18) 
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EFFECTIVE PAIR POTENTIALS 1785 

Notice that 

[exp(x) -lJ-2[exp(!x) -lJ= exp(x) -2 exp(!x)+ 1 

= [exp(!x) -1]2;2:0; 

(3.19) 
hence 

exp(x) -1;::: 2[exp(!x) -1]. (3.20) 

This clearly implies that 

-tJ dX2f dX3 exp[ -/1V2(12) -/1V2(13) -IJV2(23) J 

X {exp[ -!/1V(3)(123)J-1};:::-iJ dX2fdx3 

X exp[ -/1V2(12) -/1V2(13) -/1V2(23) J 
X {exp[ _/1V(3) (123) J-1}, (3.21) 

from which inequality (3.18) follows through O[(p(I»)2]. 
The alternative effective pair potentials Vs and VR have 
no corresponding free energy bound property. 

IV. STRUCTURAL FIDELITY 

Section I offered the comment that effective pair 
potentials could be judged by examining the magnitude 
of the function-space distance D. For effective potential 
v, we have 

N 

= ({exp[ -MVN]- exp[ -M L v(ij)J}2) 
i<;=1 

N 

= (exp[ -/1VNJ)-2(exp[ -!/1VN-!/1 L v(ij)J) 
i<;=1 

N 

+(exp[-/1 L v(ij)J). (4.1) 
,<;=1 

By integration over Xl and X2, the Euler equation (3.2) 
satisfied by v implies that 

N 

(exp[ -/1 L v(ij)]) 
;<;=1 

N 

= (exp[ -!/1VN-M L v(ij)J); (4.2) 
i<j=1 

therefore D2 may be put into the alternative forms 
N 

D2(hi,h2)=(exp[-/1VN])-(exp[-/1 L v(ij)]) 
i<;=1 

= (exp( -/1V N) )[1- exp( -/1~F)], (4.3) 
in which 

(4.4) 

is the nonnegative free energy increment resulting from 
replacement of the actual potential by its effective 
pairwise analog. Of course ~F will be an extensive 
quantity, that is, it will be proportional to N. In most 
cases of practical interest, in which N compares in 
magnitude with Avogadro's number, 

exp( -/1~F)«l, (4.5) 

so that D2 differs insignificantly from (exp( -/1V N). 
It must be kept in mind however that ~F is formally 
quadratic to lowest order in the magnitude of /1V(3). 
Thus for any finite N, we have for very small/1V(3) 

D2=O[(/1V(3»)2J, 

(4.6) 

In the case of other proposed effective pair potentials 
Va (a= 5, R, or other possibilities), a relationship of 
type (4.2) is not generally available, so 

N 

D2=(exp[ -/1VN])-2(exp[ -!/1VN-M L va(ij)J) 
i<i=1 

N 

+(exp[-/1 L va(ij)J). (4.7) 
i<j=1 

Since a free energy bounding property does not exist 
for arbitrary Va, two distinct cases arise depending on 
which of the two positive terms in Eq. (4.7) dominates 
the positive quantity Y. For both cases, the Schwartz 
inequality22 requires 

(exp( -/1V N) ) (exp ( -/1LVa) 

;::: (exp( -!/1VN-!/1LVa) )2. (4.8) 

If the last term on the right in Eq. (4.7) dominates, 
then 

Y= (exp( -/1LVa) 

X {1- 2(exp( -!/1VN-!I1LVa) + (exp( -/1VN)} 
(exp( -/1LVa) (exp( -I1LVa) . 

(4.9) 

The last term in the { ... } factor is negligible by 
assumption, and the Schwartz inequality (4.8) suffices 
to show that the negative term preceding it is also 
negligible. Thus for this case 

D2"-' exp[ -11(F{ LVaj- F{ V N}) J(exp( -I1V N). 

(4.10) 

In virtue of the extensive character and the positivity 
of the free energy exponent occurring here, this squared­
distance result will be incomparably greater (for large 
N) than the preceding result (4.3) for v. 

For the alternative possibility that the first term on 
the right side of Eq. (4.7) dominates, 

D2= (exp[ -/1VN]) 

X {1- 2(exp( -MVN-MLVa) + (exp( -I1LVa) )} 
(exp( -/1VN) (exp( -IJVN) 

(4.11) 

will be very close to (exp ( -/1 V N) itself, and hence 
close to Y for v shown in Eq. (4.3). However, we know 
that the variational definition of V has forced its D2 to 
be less than that for any other function Va, so we must 
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have 

exp[ - (3 (F I LV 1-F I V N I) ] 
~2 exp[ -(3(Flt VN+tLVa}-Fj VNj) ] 

- exp[ -(3(FILVal-FIVNI)]' (4.12) 

with equality obtaining only when Va = v. Inequality 
(4.12) is equivalent to the result, 

exp( -(3FltVN+tLval) st exp( -(3FILz1al) 

+t exp(-(3F1Lvl). (4.13) 

The van Kampen product technique can be applied 
directly to evaluation of the molecular pair correlation 
function, 

g(2) (X1' X2) = (exp( -(3VN) )12/(exp( -(3VN) (4.14) 

as a density series.18 The generic result through O(p{!)) 
has the following form23 : 

g(2)(12) = exp[ -(3V2(12)](1+p{I)Jdx3f(13)f(23) 

+ p{l) f dX3 exp[ -(3V2(13) -(3V2(23)] 

X I exp[ _(3V{3) (123) ]-11 +O[(p{I))Z]). (4.15) 

By construction, of course, the effective potential VR 

reproduces this expression. The alternative quantity 
Vs however generates an inexact form,23 

g{Z)(12, ILV.}) = exp[-(3Vz(12)] 

XiI + p{l) fdx3f(13)f(23) -t(3p{l) J dX3 V(3) (123) 

X exp[ -(3Vz( 13) -(3V2(23) _(3V{3) (123) ]+O[ (p{!)) 2Jl. 

(4.16) 

For small (3V{3l, this approximation underestimates the 
structural influence of triplet nonadditivity by a factor 
of 3. 

Finally, we display the pair correlation function 
produced by the variationally defined function V,23 

g(2)(12, ILV}) = exp[ -(3Vz(12)] 

XII +p{l) f dX3f(13)f(23) +2p{l) f dX3 

X exp[ --:-(3V2(13) -(3Vz(23)] 

X {exp[ -j(3V{3)(123)]-11+0[(p{l))2]1. (4.17) 

Inequality (3.20) above implies, through O(p{l)), that 

(4.18) 

The pair correlation error committed by the effective 
pair potential v in order p{!) is therefore quadratic in 
(3V{3). Although the pointwise inequality (4.17) may 
not persist to all p{l) orders, it has been establishedl5 

that the quadratic nature of the pair correlation error 
does so persist. Hence v, unlike Vs and VR, produces only 
quadratic errors in both F and g{Z). 

V. DISCUSSION 

Three-body nonadditivities V(3) that have been 
established for real substances tend to be nonuniform 
in sign. The Axilrod-Teller triple-dipole interaction24 

that is relevant to the noble gases provides a well­
known example, 

V(3) (123) 

=1'(1+3 cos(h COS02 Cos03)/r123r133r233, 1'>0, (5.1) 

where the O/s are the internal angles, and the ri/s the 
side lengths, for the triangle of centers. The most stable 
configuration for three noble-gas atoms surely will be 
an equilateral triangle, but the Axilrod-Teller inter­
action (5.1) will tend to reduce its binding energy 
somewhat, as well as to increase the triangle side 
slightly. On the other hand, this interaction tends to 
increase the magnitude of the binding energy (i.e., V3 
decreases) for linear configurations. 

At low temperature, the integral which determines 
the sign and magnitude of the long-ranged tail of v in 
order p{ll, 

(4p{l)/3(3)fdXafdx4 exp[ -(3Vz(13) -(3Vz(14) -(3V2(34)] 

X lexp[ -t(3V{3)(134)]-i}, (5.2) 

will obviously be dominated by the contribution of 
configurations near the one with absolute minimum 
energy. Since the last integrand factor is negative for 
those configurations, the long-ranged tail will likewise 
be negative. The order-p{!) part of the t'(12) which 
actually changes with configuration of 1 and 2, 

- (2p{!) /(3) f dX3 exp[ -(3V2 (13) -(3Vz(23)] 

X lexp[ -t(3V{3)(123)]-1}, (5.3) 

will be determined at low temperature by the minimum 
energy configuration for fixed r12. When r12 lies close to 
the V2(rI2) minimum, this constrained configuration 
will be substantially the same as the unconstrained one, 
so (5.3) will be positive. However when r12 is roughly 
twice as large so that the third particle neatly fits in the 
middle, (5.3) will be negative. The net low-temperature 
effect for noble gases then would be to make t'(r12) 
shallower and broader than V2 (r12)' 

In the case of water, the analog of triple-dipole 
interaction (5.1) should still be present, but other 
effects of greater chemical significance predominate, 
stemming from the tendency of neighbors to form linear 
hydrogen bonds. Considerable recent effort has been 
devoted to understanding hydrogen-bond nonadditivity 
in water, by means of all-electron Hartree-Fock cal­
culations.25- z8 As is the case with the Axilrod-Teller 
potential, V(3) for water varies in sign depending upon 
the configuration of the three molecules. The depend­
ence upon angles is unlike that displayed in Eq. (5.1); 
in particular it depends crucially upon the hydrogen­
bond pattern. 
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The available evidence indicates that the most stable 
configuration for three water molecules is unsym­
metrical, and involves three hydrogen bonds in ordered 
sequence around a triangle.27 Furthermore V(3) is 
definitely negative in this configuration. At low tem­
perature therefore the integral (5.2) will be positive,29 
so that the long-ranged tail of v will have positive sign, 
contrary to the noble-gas case. 

If the configurations Xl and X2 for two water mole­
cules correspond to the formation of an undistorted 
linear hydrogen bond, the relevant constrained triplet 
energy minimum should involve a sequential pair of 
hydrogen bonds. Again V(3) would be negative, as then 
would be the integral (5.3) at low temperature. The 
effect on v( 12) would therefore be to strengthen and 
compress the "effective hydrogen bond" by comparison 
with V2 • On the other hand if Xl and X2 corresponded to 
the configurations of second neighbors in an ice or 
clathrate lattice, the part of the shift v(12)-V2(12) 
determined by integral (5.3) at low temperature would 
be: (a) negative if a third molecule could be a proton 
donor to one of 1 and 2, and a proton acceptor to the 
other (to form a sequence of two equivalently ordered 
hydrogen bonds); (b) positive if a third molecule could 
act as a simultaneous double donor or acceptor of 
protons. 

The extent to which these sign assignments both for 
noble gases and water would persist to intermediate 
and high temperature could only be established by 
detailed numerical studies of expressions (5.2) and 
(5.3) . 

If the effective pair potential concept is to have sub­
stantial impact on electronic computer simulations of 
liquids, a practical method for estimating v at high 
density will be required. In principle, the Monte Carlo 
method could be used to evaluate D2 directly, and to 
identify that function v out of a test group for which D2 
is minimized. But the practical difficulty inherent in 
this direct assault was pointed out in Sec. IV: For a 
wide class of test functions Va the quantity D2 will be 
substantially invariant. 

A full analytical solution to the variational problem 
(1.16) will probably not become available in the near 
future. For the interim period, it may be worth pointing 
out that a plausible generalization of our low-density 
resul t (3.16) to arbitrary density would be the following: 

v (12) "-' V2 (12) - (2p(l) / (3)J dX3 

X[g(3)(123, {:Lv})/g(2)(12, {:Lvl)J 

X {exp[ - !(3V(3) (123) J-11 + (4p(l) /3Q(3) J dXaJ dX4 

Xg(3)(134, {:Lvi) {exp[ -!(3V(3)(134)J-ll, (5.4) 

assuming that the V(n), n>3, are negligible. The 

correlation functions occurring here have purposely 
been chosen as those generated by the effective pair 
interaction itself, for they are the ones which would 
arise in a typical computer simulation. As it stands, the 
relation (5.4) would constitute a condition of self­
consistency on t'. In practice however a more likely use 
would involve computer generation of the correlation 
functions and evaluation of the integrals in (5.4) with 
an initial estimate Vo to v, for which (5.4) would then 
suggest a correction. A recycling of this procedure might 
then be carried out to seek convergence to a self­
consistentv. 
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