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Geometric information about rigid disk arrangements in the plane, not previously used, is assembled 
and incorporated into scaled particle theory. In particular the close packed density limit for the contact 
correlation function G(>.) has been obtained exactly. The revised theory provides substantially better 
agreement than its predecessor with molecular dynamics results for rigid disks in the fluid phase. Although 
high density G(>.) curves develop nonmonotonic behavior as expected of crystalline packings, the cor­
responding pressure isotherms manifest no freezing transition in the present version. Suggestions for recti­
fying this shortcoming are included. 

I. INTRODUCTION 

Scaled particle theory provides a means of deter­
mining the equilibrium thermodynamic properties of 
a rigid particle system without first obtaining the 
complete pair correlation function. It was originally 
devised by Reiss, Frisch, and Lebowitzl to treat a 
three-dimensional fluid of rigid spheres, and has been 
extended to one- and two-dimensional rigid sphere 
fluids,2 to mixtures of rigid spheres,S to isotropic fluids 
of hard convex particles,4.5 and to rigid rods.6-8 It has 
also been applied-in a purely formal manner-to 
particles with more realistic interaction potentials.9 

A fundamental quantity in any scaled particle 
treatment is the reversible isothermal work W required 
to add a "scaled" particle with d-dimensional volume 
SdVp at an arbitrary fixed point in a system of particles 
with volumes Vp. Closely related to W [i.e., po= 
exp( - W /kT)] is the probability po that the scaled 
particle, added at random, will not overlap any other 
particle. From W or po evaluated at s= 1, an expression 
for any thermodynamic property as a function of 
density and temperature can readily be obtained. For 
rigid spheres or disks of diameter a, W is just the 
reversible work necessary to create a fixed cavity of 
radius Aa in the system, where A= (1+s)/2, and po is 
just the probability of spontaneously observing such a 
cavity. In both cases, however, it is more convenient 
to formulate the theory in terms of the function G(>-') , 
the value of the pair correlation (radial distribution) 
function g(2)(r) upon contact between the scaled 
particle and a "regular" particle. By definition, G(l) = 
g(2)(a). Moreover, G is related to W or po by the ex-
pressions 

G(>-', p) = (47rpa3>-,2kT)-,[aW(>-.)/a>-.] 

= - (47rpa3>-.2)-l[a Inpo(A) /a>-.] (spheres)' 

For both spheres and disks, the contact pair cor­
relation function is known exactly for A~! and several 
exact conditions on G(A~!, p) have been derived.1.2 
In order to utilize this information, however, an ap­
proximate functional form for G(>-.) when >-.~! must be 
adopted. For spheres, Reiss, Frisch, and Lebowitz! 
(RFL) used 

G(>-., p) =A(p)+B(p)/>-.+C(p)/,\2, (1.3) 

while Helfand, Frisch, and Lebowitz! (HFL) used 

G(>-', p) =A(p)+B(p)/,\ (1.4) 

for disks. (These forms can be shownlo to be correct in 
the limit A-HO.) The coefficients were then determined 
from the continuity properties of G at A=! and from 
the exact conditions relating G(1) and G( 00). In three 
dimensions, this approach yields an expression for the 
pressure identical to that obtained from the Percus­
Yevick integral equation via the Omstein-Zemike 
compressibility relation.ll In both two and three dimen­
sions, the equation of state is in excellent agreement 
with numerical resultsl2 throughout most of the fluid 
range of densities. In one dimension, G(A) can be 
determined exactly2 and leads to the known exact 
equation of state. 

Despite these impressive results, there is clearly 
room for improvement in the scaled particle theories of 
rigid disks and spheres. First of all, in neither case is a 
transition to an ordered phase predicted. Rather, the 
RFL and HFL equations of state and contact pair 
correlation functions are analytic, monotonically 
increasing functions of p at all densities less than the 
physically unrealizable p= l/vp • (All four quantities 
are, therefore, analytic at the respective close-packed 

and 

densities.) Secondly, not all the exact conditions on G 
which have been derived have been incorporated into 
the theory. For example, RFL determined but made no 

(1.1) further use of the jump in a2G/aA2 at >-.=!. More seri-

G(>-', p) = (27rpa2>-.kT)-'[aW(A)/a>-.] 

= - (27rpa2,\)-l[a lnpo(>-') /aA] 

where p is the number density. 

(disks) ,2 

(1.2) 

ously, the HFL G(>-') has, for all nonzero densities, a 
discontinuous slope at >-.=!, whereas the exact aG/a>-. 
for rigid disks is known to be continuous at that point 
whenever p<Po, the density at close packing. Finally, 
it is clear that additional exact conditions on G(>-., p) 
can be derived and "put to work." These considerations, 
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together with the substantial successes of the theory 
to date, suggest that further development of the scaled 
particle approach is a worthwhile task. 

Recently, Reiss and Tully-Smith have extended 
scaled particle theory for rigid spheres. In the earlier13 

of two relevant papers, a new integral equation for 
G("A, p) was derived (through consideration of the work 
of cavity formation and an application of the virial 
theorem) and several conditions on the coefficients in an 
expansion of G in powers of "A-I were obtained from it. 
Two new (approximate) equations of state were also 
produced, using two different functional forms for 
G("A~t) (both of them four term power series in "A-I). 
Later,14 the statistical thermodynamics of curved 
interfaces was utilized to derive (1) an exact thermo­
dynamic expression for G("A, p) in terms of "A, p, the 
pressure p(p), and the quantities 'Y.("A, p), the interfacial 
tension at the surface of tension outside an exclusion 
cavity of radius "Aa, and lit("A, p), the distance between 
the surface of the cavity and the surface of tension; 
(2) a system of three simultaneous partial differential 
equations-one exact only through terms in 1/"A-in 
the three unknowns 'Y., lh, and 8, where 8("A, p) is the 
distance between the surface of tension and the dividing 
surface for which the superficial density of rigid spheres 
vanishes. This approach is, in a sense, complementary 
to that we shall employ in the present work. While 
Reiss and Tully-Smith were primarily concerned with 
large exclusion cavities, we shall concentrate on cavities 
of molecular dimensions, devoting particular attention 
to the interval ~ ~"A~ 1/v'5. At the risk of oversimplifica­
tion, it could be said that they are endeavoring to 
approach "A= 1 from above (they view scaled particle 
theory, in fact, as "an extension of macroscopic ideas 
into the molecular domain"), while we are attempting 
to reach it from below. 

The remainder of this paper presents an extended 
scaled particle theory of rigid disks, whose primary goal 
is to describe that system more satisfactorily at high 
densities. The restriction to two dimensions greatly 
simplifies a number of essentially geometric arguments 
employed. In Sec. II, the correct limiting behavior of 
the contact pair correlation function at very high 
densities is determined. In Sec. III, a number of exact 
conditions are derived by expanding G("A) about "A=~ 
and-to leading order-about "A= 1/v'5. These condi­
tions, together with those derived previously, are then 
used (Sec. IV) to obtain the equation of state and 
expressions for G("A, p) in the intervals !~"A< 1/v'5 and 

A~ 1/v'5. Finally, our results are presented and discussed 
in Sec. V, while some possible further extensions of the 
theory are outlined in Sec. VI. 

II. THE CONTACT PAIR CORRELATION 
FUNCTION AT VERY HIGH DENSITY 

When A < ~, the con tact pair correlation function 
G("A, p) for rigid disks in two dimensions is given at all 
densities, by2 ' 

G(A, p) = 1/(1-1rpaW) , (2.1) 

where a is the diameter of the disks and Aa is the radius 
of the circular region excluded to their centers by the 
presence of a fixed scaled particle.15 We wish to deter­
mine how this function behaves for larger A when the 
system is nearly close packed. 

At the close-packed density Po, the unoccupied area 
in the system consists solely of the three-sided "holes" 
in the center of triplets of disks in contact. When 
!~A~ l/yJ, the scaled particle or "A-cule" of diameter 
(2A-1)a will fit into such a "hole"; its center can be 
placed anywhere within the region labeled nn(A) in 
Fig. 1. The probability PO(A) that the A-cule can 
successfully be added at a randomly selected point in 
the system is, therefore, just the ratio of the combined 
area of all the regions like Qo to the total area of the 
close-packed array. From Fig. 1, the area Ao of Qo is 
seen to be 

where 

and 
l/I=t1r-2 cos-1(1/2"A). 

Since, moreover, 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

and there are two "holes" for every disk in the system, 

Po("A, Po) =4Ao/v'5a2 

= 1-2v'5{ (A2-!)1/2+"A2[t1r-2 cos-1(1/2A)JI 

(~~A< 1/v'5). (2.6) 
From (1.2), then 

G("A, Po) = 1- (6/1r) cos-1(1/2"A) 
1-2v'51 ("AL !)1/2+A2[t1r- 2 cos-1 (2A)-IJI 

t~A< 1/v'5. (2.7) 
Furthermore, 

aG("A, Po) = 4yJA[t1r-2 cos-1(1/2"A) J[1- (6/1r) cos-1(1/2A) J 
dA (l-2yJ{ (A2-!)1/2+A2[t1r-2 cos-1(1/2"A)JI)2 

3 
!~A<l/v'5. (2.8) 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to

IP:  128.112.66.66 On: Tue, 07 Jan 2014 05:39:22



3358 M. A. COTTER AND F. H. STILLINGER 

FIG. 1. A three-sided "hole" in the rigid disk close packed 
array. no is the region within the "hole" available to the center 
of a X-cule of diameter (2X-l)a. 

Comparing (2.7) and (2.8) with the corresponding 
expressions when X<~, namely, 

1 
G(X, Po) = 1- (211'/YJ)X2 (2.9) 

and 

dG(X, Po) 411'X 

dX YJ[1- (211'/YJ)X2]2 
X<~, (2.10) 

we see that G(X, Po) is continuous at X=! but its slope 
is discontinuous and, in fact, becomes infinitely nega­
tive. G(X, Po) clearly diverges as X~1/YJ from below. 

When 1/YJ<X< 1, a X-cule cannot be fitted into the 
perfect close packed array; but if the density is slightly 
less than Po, there will be some vacancies present which 
can accommodate it. Or, alternatively, it can be forced 
into one of the interstices between disks, thus dis­
torting the "crystal" structure. In Appendix A, it is 
argued that only monovacancies contribute to the limit 
function G(X, Po) in this X interval, since the contribu­
tions from multiple vacancies and from interstitial 
positions should vanish at close packing. The density 
Pmv of monovacancies is asymptotically given by 

Pmv/p=C exp[ -C'/(o-l-1)]/6 (2.11) 

where (j= Po/ P and C and C' are positive constants. 
Near close packing, therefore, the probability po(mv) (X) 
that a X-cule, "tossed" into the system at random, will 
be found in a monovacancy must be exceedingly small, 
containing, as it does, the factor Pmv/ p. However, as X 
varies within 1/YJ<X< 1, po(mv) will undergo only 
modest relative changes, since it takes only a moderate 
amount of reversible work to expand a X-cule situated 
within a monovacancy, where its six nearest neighbors 
are essentially locked into place by the remainder of 

the array. In this range, then, we may set 

po(mv) (X) = (Pmv/P)PI(X) , (2.12) 

and heX) will be of order 1 near X= 1/YJ and will 
vanish at X= 1. (The largest X-cule a monovacancy can 
contain corresponds to X= 1.) Moreover, since G(X) is 
determined by the X-derivative of lnpo, and only 
monovacancies need be considered, it is clear that 
G(X, p) will have a well defined limit, independent of 
Pmv/p as ~Po. At the close-packed density, heX) is 
just [JoAI(X) , where Al is the area of the region rh in 
Fig. 2; that is, AI(X) is the area within a monovacancy 
available to the center of a X-cule. Clearly, 

AI(X) = (3YJa2/2) -3ax-3X2a2cjJ 

= (3YJa2/2) -3a2(XLi)1/2 

-6X2a2[i11'- cos-1(1/2X)] 

Thus, 

G(X, Po) 

=[ -YJ/41l'XA I(X)][dAI(X)/dX] 

(2.13) 

1/YJ:::;X<1. (2.14) 

(2.15) 

2[1- (3/11') cos-1(1/2X)] 

3(1- (2/YJ) {(XL i)1/2+2X2[i11'- cos-1(1/2X)]I ) 

1/YJ:::;X<1. (2.16) 

When 1<X<2/YJ, it is necessary to find a trivacancy 
in order to accommodate the X-cule. [By a trivial 
extension of the arguments in Appendix A, it can be 
seen that the contributions to Po(X) and to G(X) from 
larger vacancies and from interstitial positions should 
be negligible for p slightly less than Po.] G(X, p) is, 
therefore, determined by uW(tv)/uX, where W(tv) (X, p) 
is the reversible isothermal work of expanding a X-cule 
located within a trivancy. While the disks surrounding 

FIG. 2. A monovacancy in the highly compressed rigid disk 
array (p--+po). nl is the region available to the center of a X-cule 
of diameter (2X-l)a. 
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a monovacancy are virtually locked into place at densi­
ties near Po, the nearest neighbors of a trivancy are free 
to move inward, followed by motion of the second 
nearest neighbors, then the third nearest neighbors, 
etc., with the result that a X-cule present in such a 
vacancy can be strongly "crowded" by its neighbors. 
In the limit of close packing, the number of disks 
in this cooperative "crowding" diverges, causing the 
X-cule to experience an infinite inward mean force. 
(This behavior is illustrated in more detail in Appendix 
B.) aW(tv) / aX-HXJ , therefore, as rPo. When 2/-YJ < X < 
71/2/2, a tetravacancy must be found to accommodate 
the X-cule; when 71/2/2<X< 7-YJ/9, a 5-particle vacancy, 
etc. In each case, it is clear (for the reason just dis­
cussed) that aW;aX will diverge at close packing. Thus, 
the limit function G(X, po) does not exist for any 
X~ 1; i.e., 

lim G(X, p) = + 00 

P"'po 

when X> 1. 
The three well defined branches of G(X, Po) are 

shown in Fig. 3. G(X, p) for p somewhat less than Po 
should look quite similar, except that the spike near 
X=! will be rounded off and the divergences at X= 1/Y3" 
and X= 1 replaced by maxima proportional in height 
to (1/8-1)-1. Beyond X=l, G(X) will be large but 
finite and will undoubtedly show some "structure" 
near X=2/Y3", X=71/2/2, X=7Y3"/9, etc. The important 
point is that G(X) is strongly nonmonotonic in the 
ordered ("solid") phase of the rigid disk system and 
will almost certainly undergo a qualitative change in 
shape at the fluid-solid phase transition. Any truly 
satisfactory scaled particle theory must be able to 
account for this behavior. 

It is far from obvious how to modify the HFL theory 
so that it will predict a transition to an ordered phase 
at high densities. However, the following points seem 
clear: (1) The HFL expression G(X) =A(p)+B(p)/X 

a2po= 2 
13 
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FIG. 3. The limit function G(X, po). For all X ~ 1, lim G(X, p) =+ (Xl. 

p .... PQ 

for X>~ is simply not flexible enough to yield the sort 
of nonmonotonic behavior shown in Fig. 3. (2) The use 
of the same approximate analytic expression for G(X) 
over the entire range of values X> ~ does not seem 
adequate. Ideally, one would like to use different 
expressions in each of the intervals t~X<l/Y3", 
l/Y3"~X<l, and X~1. (3) It appears that special 
attention might profitably be given to the X range 
near 1/Y3", since at that point a circular region of 
radius Xa can first contain the centers of the triplet of 
disks shown in Fig. 1. Such triplets are the basic 
building block of the rigid disk close-packed array. 
With these considerations in mind, we have endeavored 
to produce an "improved" scaled particle theory of 
rigid disks. 

III. EXACT CONDITIONS ON G(X, p) 

When X<~, a circular region R(X) of radius Xa can contain the center of at most one rigid disk of diameter a. 
The probability po that such a region is empty is then just unity minus the probability that it contains one disk or 

(3.1) 
Thus, 

(3.2) 

as noted previously. Equation (3.1) can also be obtained from the expansion 

(3.3) 

(3.4) 

which is the two-dimensional form of the RFL Eq. (3.11) .18 When X<~, g(m), the m-particle correlation function,19 
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must vanish in the circular region R(A) for m2. 2. Therefore, 

poe).., p) = I-FI= I-p fR(X) g(1) (rl) drl 

= I-1Tpa2A2 A<~. (3.5) 

Furthermore, for ~~A<l/v'j, R(A) can contain the center of at most two rigid disks; hence Fm=O for mz3 and 

PO(A, p) = I-F1+F2 

~~A<l/V5. (3.6) 

As it stands, (3.6) clearly has no computational utility. It can be used, however, to obtain expansions of po and G 
about A=~. 

The integral F2 may be rewritten as20 

j :>.a j<rl+xa) 
F2= ~p221T rldrl 28m (rl, r2, A) g(2) (r12, p )rI2dr12, 

(I-A) a a 
(3.7) 

where the meaning of the various coordinates can be seen from Fig. 4. [(l-A)a is the minimum value rl can 
attain if disk 2 is to remain within the circular region.] Clearly, 8m , the maximum allowable value of 8 for a given 
A, r1, and r12, is given by 

where 

Therefore, 

Sl=rI/a, 

s12=rlda. 

When A is only slightly greater than !, S12 is confined to a narrow range of values Z 1. Thus we can write 

if we introduce the small quantity 
t=Sl+A-S12. 

Expanding the argument of the inverse cosine in powers of t and utilizing the series 

cos-1(1-!x2) =x+ (x3/24) + (3x5/640) +"', 
it can be shown that 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.14) 

(3.1S) 

(3.17) 

Then, (3.17) can be substituted into (3.13) and the integration over t performed to give-after considerable 
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rearrangement--

F2=4V17r (pa2)2 fA sd !CS1+A)Ao(Sl, A)G(1, p) (Sl+A-1)3/2 
(1-).) 

+H [(SI+A) A1(SI, A) - AO(Sl, A) JG( 1, p) +HS1+A) AO(Sl, A) (og(2) /iJsI2 ) 812=d (Sl+A-1)6/2 

+H [(Sl+A)A2 (SI, A) - A1(Sl, A)]G( 1, p) +i[ (Sl+ A)A1(Sl, A) - AO(Sl, A) J( og(2) /OS12) 8]2=1 

3361 

+ (4/15) (sl+A)Ao(st, A) (02g(2) /OS122)8!2=d (Sl+A-1)7/2+O[ (Sl+A-1)9/2Jlds1. (3.18) 

At this point, it is convenient to change the variable of integration from Sl to t, where 

(3.19) 

Then, we can expand Sl, Ao, AI, and A2 in powers of t, insert the expansions in the integrand of (3.18), integrate 
from t = 0 to t = 2A -1, and collect like powers of (A - ~) to obtain 

F2= 32V17r(pa
2
)W

/2 
{G(l, p) (A_~)6/2+ ~ [(1+~A)G(l, p)+2a (og(2») ] (A_~)7/2 

15 7 orl2 nl-" 

+ ! [[l+"A- (11/3)A
2
+iA

3
JG(1, p) +4(1+tA)a (Og(2») + ~ a2 (02g(:») ] (A-~)9/2+0[(A-~)11/2J} . 

21 A or12 rll-a 3 or12 r12-" 

(3.20) 

Finally, expanding the various functions of A in (3.20) in powers of (A-~) and rearranging yields the desired 
expression for F2 : 

F
2
= 327r(pa

2
)2 {G(l, p) (A_~)6/2+ ~ [a (Og(2») + 19 G(l, p)] (A-~)7h 

15 7 or12 r12=" 8 

+ 16 [a2(02
g

(:») +31 a (Og(2») +~G(1,p)](A-~)9/2+ ••• }. (3.21) 
63 or12 rl2""" 8 or12 rll-O: 128 

Furthermore, G(A, p) can now be determined through terms proportional to (A-!)7/ 2, since 

( ) ( ) 
olnpo 1- (1/27rpa2A) (oFdoA) 

GAp = - 27rpa2A -1 __ = ----'-------'---'-:-'--
, oA 1-7rpa2A2+F2(A, p) 

(3.22) 

[1- (1/27rpa2A) (oF2/oA) J[l-F2/ (1-7rpa2A2) + ••• J 

( 1-7rpa2A2) 
(3.23) 

Substituting oFdoA [from (3.21)J, together with expansions of A-I and (1-7rpa2A2)-1 in powers of (A-~), into 
(3.23) leads--after much tedious algebra--to 

G(A, p) = (1-7ra2A2p)-L 16~2p {G(l, p) (A_!)3/2+ [ta (Og(2») _ [1- (57/4)7r~2pJG(1, p)] (A_~)6/2 
3 (1-"i7ra2p) or12 rl2""O: 10(1-"i7ra2p) 

We shall make extensive use of this relation in Sec. IV. 
From (3.24) it is clear that both G(A) and oG/OA 

are continuous at A=!, (when P<Po) but that 02G/OA2 
is discontinuous and, in fact, diverges as (A-!)-1/2. In 
Appendix C, moreover, F3(A, p) is expanded to leading 
order in powers of (A-l/YJ) and it is shown that G and 
its first three derivatives with respect to A are continu­
ous at A= l/YJ (p<Po) while 04(;/OA4 is discontinuous 
there. All this provides information concerning the 

behavior of the exact G(A, p).21 In addition, it has 
recently been shownlO that G for large A can be expanded 
in nonnegative integral powers of A-I, and that the 
coefficient of A-2 in this series is identically zero. 
Finally, two more exact conditions on the contact 
correlation function are known1•2: the so-called integral 
and infinity conditions. Brief derivations of both of 
them are given below. 

From the definition of the reversible work W(A, p), 
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FIG. 4. A circular region of radius Xa. Points 1 and 2 represent 
the centers of rigid disks 1 and 2, respectively, both of diameter a. 

it is clear that W(l, p) is the change in Helmholtz free 
energy-at constant T and V-upon placing an addi­
tional disk of diameter a in the system at some fixed 
point. The chemical potential p. in the rigid disk 
assembly is, therefore, just W(l, p) plus a free energy 
of mixing term, or 

p./kT= In(pA2)+[W(1, p)/kTJ, (3.25) 

where A2 is the reciprocal of the (particle) translational 
momentum partition function. From (1.2), however, 
it can be seen that 

W(l, p) jl 
kT = 27rpa2 XG(X, p)dX; 

o 
(3.26) 

hence, 

(3.27) 

Substituting (3.27) into the thermodynamic relation 

p= jP p' (ap.,) dp' (3.28) 
o ap T 

and integrating by parts yields 

p (I 
kT =p+p2a2 Jft 27rXG(X, p)dA 

o 

-a2 jP p'dp' t 27rXG(X, p')dX. (3.29) 
o 0 

Finally, equating the right-hand side of (3.29) with the 
right-hand side of the well-known expression for the 
equation of state of rigid disks; namely, 

p/kT=p+!7rp2a2g(2) (a, p) 

(3.30) 

we obtain the integral condition 

~p2G(1, p) =2p2 t XG(X, p)dX 
o 

-2jP p'dp' t XG(X, p')dX. (3.31) 
o 0 

For very large X, W(X, p) is the work of creating a 
macroscopic cavity in the system, and pG(X, p) is the 
average density of disks (of diameter a) in contact with 
the outer surface of such a cavity. In the limit X-too, 
this surface becomes a hard flat wall with which the 
disks impulsively collide. Since the stress normal to the 
wall is purely kinetic, we can write 

p/kT= pG( 00, p), (3.32) 

where p is the hydrostatic pressure. Equation (3.32), 
together with Eq. (3.30), yields the infinity condition 

G( 00, p) = 1 +~7rpa2G(1, p). (3.33) 

IV. EXPRESSIONS FOR G(X, p) AND THE 
EQUATION OF STATE 

In this section, our task is to utilize the exact con­
ditions presented in Sec. III in order to obtain (approxi­
mate) expressions for G(X, p) in the various X intervals 
with X2::~. As was noted previously, one would like­
given Fig. 3-to use a different functional form for G 
in each of the intervals ~~X<1/v'J, l/v'J~X<l, and 
X 2:: 1. Toward that end, the small interval ~~X<I/v3 
can probably be spanned satisfactorily by the first few 
terms in (3.24); moreover, it is likely that a Laurent 
series in nonpositive powers of X can safely be used for 
X2:: 1, since such a series is asymptotically correct for 
large Xlo and is not-as was demonstrated by HFL-a 
bad approximation even for ~ ~ X < 1. The middle 
intervall/v'J~X<I, however, causes certain problems. 
First of all, although G(X) can be expanded about 
X= 1/v'J (see Appendix C) it seems unlikely that the 
resulting series can adequately span the entire interval 
without retaining more terms than there are exact 
conditions to determine the coefficients. Furthermore, 
an expansion about X= 1/v'J may well be a really good 
approximation only in the range 1/v'J ~ X < 1/v'1, since 
at X= 1/v'1 four disks of diameter a (in a square con­
figuration) can just fit into a region R(X) of radius Xa 
and some derivative amG/aAm (m2::5) will, therefore, 
be discontinuous.22 Similarly some higher X derivative of 
G will be discontinuous at A= [2/ (5-51/2) J1/2, the point 
at which R(X) can just contain 5 disks of diameter a in a 
pentagonal configuration.23 To avoid these difficulties, 
we have undertaken the somewhat less ambitious 
program of dividing the interval X 2:: ~ into only two 
subintervals: ~~A<1/v'J and X2::1/v'J. The resulting 
G(X2.1/v'J) will probably not have the correct slope 
and curvature near A= 1 at very high densities. In 
order to obtain a satisfactory equation of state, how­
ever, it is sufficient, in principle, to know G(X, p) very 
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accurately in the range ~~A<I/YJ, since the co­
efficient of (A_!)3/2 in (3.24) is a linear function of 
G(1, p). [Recall Eq. (3.30).J 

The expression for G we shall use in the interval 
~~A<I/YJ is 

G(A, y) = (l-b)-1+[y/(I-b)2J(A-~) 

-C1(y) (A-~)3/2+[y(1 +h) / (l-b)3J(A-~)2 

-C2(y) (A-!) 1i/2+[2y2(1 +b) / (l-b)4J(A-~)3 

-C3(y) (A_~)1/2 !~A<YJ-l, (4.1) 
where 

(4.2) 

and (-C1), (-C2 ), and (-C3) are the coefficients of 
(A_~)3/2, (A_~)6/2, and (A-~)1/2, respectively, in 
(3.24).24 Clearly, (4.1) was obtained from (3.24) by 
expanding (1-1I"a2A2p) in powers of (A-!) and truncat­
ing the series after the term in (A-~)3. Failure to 
perform this expansion would lead to an equation of 
state with an unwanted divergence at y=3. 

Section II provides us with seven exact conditions 
on G and there are three coefficients to be determined in 
(4.1). Therefore, we could use for G (A~ I/YJ) the first 
four terms of the aforementioned Laurent series 

G(A, y) =Ao(y)+[A 1(y)/AJ 

+[As(y) /AsJ+[A4(y) /A4J+. .•. (4.3) 

(A2 must be identically zero.!O) Instead, however, we 
shall adopt the somewhat more general expression 

G(A, y) =A (y)+[B(y)/AJ+[D(y)/(A-AS)SJ 

A~ I/YJ, (4.4) 

where As and A4 are constants. [We shall construct the 
function G(A, y) for a number of different pairs (AS, ~).J 
There are two principle reasons for this choice: (1) To 
obtain a really good approximation to the exact G(A), 
four terms in (4.3) are probably insufficient for A of 
order unity; with the proper AS and ~ we can compensate 
to some extent for the omission of higher order terms. 
(2) It is hoped that for certain values of As and/or A4 
reasonably close to 1/v3, a rapid variation in the high 
density G(A) will occur as A~I/YJ from above-in 
agreement with the behavior shown in Fig. 3. In the 
end, of course, the introduction of AS and ~ must be 
justified by the results to which it leads. Finally, let 
us note that the coefficient A (y) gives, in fact, the 
equation of state since, from (3.3) and (4.4), 

p/pkT=G( (0) =A. (4.5) 

Equating G(A= 11"'3), (aG/aAh=l/YJ, (a2G/aA2h.=1!VJ, 
and (asG/aA3h.=1/VJ from (4.1) with the corresponding 
expressions obtained from (4.4), yields the following 
relations: 

3D 4E -y _ 2n2y(l+h) _ 6n4y2(I+b) .a • 5 S 7 Ii 

3B+ (I/YJ- As)4 + (1/v3-~)6 = (l-b)2 (l-b)S (l-b)4 +2nC1+2n C2+ 2n Cs, (4.7) 

v3B 12D 20E _ 2y(l+h) 12n2y2(I+b) 3 C1 15 35 

6 + (1/v3- As)6 + (1/v3-~)6 - (l-ly)S + (l-b)4 - 4 -;; --rnC
2-T"n

3
Cs, (4.8) 

~4B 60D 120E _ -12y2(I+b) 3 C1 15 Cz 105 

.) + (1/v3- As)6 + (1/v3-~)7 - (l-b)4 - 8 n3 + 8" -:;; +-,=nCs, (4.9) 

where 
n= (1/v3-~)l/z. 

Furthermore, in terms of the coefficients A, B, D, E, C1, C2, C3, and the variable y, the infinity condition, the 
definition of C1 as a function of G(l), and the integral condition become, respectively, 

A = 1 + (311"/32) (l-b)Cl, 

A+B+ D + E = 311"(I-b)C1 
(1-A3)3 (1_~)4 16y 

[1
1/2 AdA f1/VJ f1 ] 

y(A-1)=2y2 (1 ~2)+ AG(!~A<1/v3)dA+ AG(A~I/v3)dA 
o -yl\ 112 1/VJ 

[ [11/2 AdA f1/VJ f1 ] 
-2 y'dy' (1 '~2)+ AG(~~X<I/v3,y')dA+ AG(A~1/v3,y')dX 

o 0 -y 1\ 1/2 1/VJ 

( 4.10) 

(4.11) 

( 4.12) 
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= -4In(I-.! ) _ +2 2 {[24(1-.! ) 1-1+ n
4
(1 +~n2)y + n

6
(1 +!n2) (1 +lY)y + n

8
(1+!n

2
)y2(1 +b) 

4Y y Y 4Y .J 4(I-b)2 6(I-b)a 4(I-b)4 

-.!n5(1+¥n2)CI-tn7(1+¥n2)C2-in9(I+Hn2)Ca+tA +(1-1/VJ)B+ [(2/VJ) -Aa - (2- Aa) ]),D 
5 (I/VJ- Aa)2 (I- Aa)2 2 

+ [ VJ-N _ (3- A4) ] .!E} -21
11 

, {[24(1-.! ')]-1+ n4(1+~n2)y' + n
6
(1+!n

2
)y'(1+lY') 

(I/VJ-N)a (I-A4)a 6 0 Y 4Y 4(I-b')2 6(I-b,)a 

n8(1+8 2) '2(1+ 1 ') + 47t!b')
4 

4"Y -in5(1+¥n2)CI-tn7(1+¥n2)C2-in9(I+Hn2)C3+tA+(1-1/VJ)B 

We now have seven simultaneous equations in seven unknowns. 
Solving the set of linear equations (4.6)-(4.11) for B, D, E, CI, C2, and C3 as functions of y and A(y), then 

substituting the results into (4.13) and collecting terms, we obtain 

[
'" -4'" + (tl+4t 2+tto)Y] A( )+ 111

[1-," +4'" '- (tl+4t2+ttO)Y'jA( ')d ' 
~ 0 ~ 2Y ( 1 _ b) y y 0 ~ 0 ~ 2Y ( 1-b') y y 

= -4In(l-b)+ Tly2 + HT2-tT1)ya + ~Ways(l+lY) + (tw4-1Wa)y4(I+b) 
(I-b) (l-b)2 (l-b)S (l-b)4 

-111 [ Tly' + HT2-tTI)y'2 + ~Wsy'2(I+lY') + (tW4-1Ws)y'S(I+ b ')] d' (4.14) 
o (l-b') (l-b')2 (l-b')S (l-b')4 y, 

where the t's, T's, and W's depend only on AS and A4. (Their quite complicated functional dependences on the 
parameters AS and N are given in Appendix D.) Differentiating both sides of (4.14) with respect to y then yields 

[
'" -4'" + (t1+ 4t2+ttO)Y] dA + [1-4," + (tl+4t2+ttO)Y + (tl+ 4t2+ttO)y2] A( ) 
~o ~2Y (I-b) y dy _ ~2Y (1-b) (l-b)2 y 

I+Tly T2y2 (WS+Tsy)y2 (W4+T4y)yS (tw4-1Ws)y4(I+b) (4.15) 
= (I-b) + (l-b)2 + (l-b)S + (l-b)4 + (l-b)5 ' 

or after a certain amount of rearrangement, 

=('"+'" +'" 2)-1 { -'+T+ T2y + (Ws+Tay)y + (W4+T4y)y2 + (tW4-1Ws)yS(I+b)}. (4.16) 
~o ~IY ~2Y Y 1 (I-b) (l-b)2 (l-b)a (l-b)4 

Moreover, it can easily be determined from (4.14) that 

A (0) = 1. ( 4.17) 

Thus the integral equation (4.14) is equivalent to the linear first-order differential equation (4.16) together with 
the boundary condition (4.17). 

When to is positive, the solution to (4.16)-(4.17) can be written 

(I-b) [rO+tly+t2y2] [(l/2ioH) 111 y'[(I/iol-I) (Q+tl+2t2y')r[ I+Tly' T2y'2 
A(y) = yl/iO[(q+tl+2t2y)/(q-tl- 2t2y)]r 0 [to+tly'+t2y'2]1/2i o q-tl-2t2Y' (l-b') + (l-b')2 

(Ws+Tsy')y'2 (W4+T4y')y'S (tw4-1Wa) (l+ b ')y'4] d ' 
+ O-b')S + (l-b')4 + (l-b')5 Y 

2 (tdto) +1 
r= , (4.18) 

4q 

if the quantity 
( 4.19) 
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is positive25 or 

(1-y/4) [SO+SIY+S2y2] [(l/2l"oH) jU y'[Wl"o)-I) 

A (y) = y1ll"o exp( -[2(sdso) + 1](2q*)-1 tan-1[(SI+2S2Y) /q*]) 0 [SO+Sly'+t2y'2] (2S0
)-1 

[
[2 (tdso) +1] -1 (SI+t2Y')][ 1+T1y' + T2y'2 + (Ws+TaY')y'2 + (W4+T4y')y,a 

X exp 2q* tan q* (1-b') (1-b')2 (1-b')S (1-b')4 

(iW4-lWa) (1+!Y')Y"] d ' 
+ (1-b')· Y 

if q2 is negative. On the other hand, when to is negative (we shall not consider the special case so= 0), there are an 
infinite number of solutions to (4.16) which also satisfy (4.17). The general expressions are26 

A = (1-b)y-l/l"o {tl+q*+2S2Y }--T f (-SO-SIY-t2y2)-1/2l"O (SI- q*+2t2y)-r 
(y) (-to-SIY-S2Y) (I-l/2l"o) SI-q*+2S2Y y(l-l/l"o) sl+q*+2S2Y 

[ 
1+TlY + T2y2 + (Wa+Tay)y + (W4+T4y)ys + (iW4-lWs)(1+b )y'] d 

X (1-b) (1-b)2 (1-b)3 (1-b)4 (1-b)5 y 

q2< O. (4.22) 

The only physically reasonable solution, however, is that for which A (y) is analytic at y=Q-a necessary con­
dition if a virial series for p/ pkT is to exist. 

The coefficients bn in the virial series 

(4.23) 

can be determined from (4.18), (4.20), (4.21), or (4.22). It is more convenient, however, to substitute (4.23) and 
the corresponding expression for dA/ dy directly into (4.16) and equate the coefficients of like powers of y on both 
sides of the resulting equation. In this manner, it is found that 

with more complicated expressions for b5, b6, etc. 

From (4.18), (4.20), (4.21), or (4.22), the function 
A (y) can be constructed for an arbitrary pair (Aa, A4). 
Then the remaining "coefficients" needed to determine 
G(A, y) can be obtained by substituting A back into 
the expressions for B, D, E, CI, C2, and Ca [as functions 
of y and A (y) ] derived from the set of linear equations 
(4.6)-( 4.11). 

v. RESULTS 

The function A (y) must be constructed numerically 
since the integrals in (4.18)-(4.22) cannot be expressed 
in terms of elementary functions. Equations (4.18) and 
(4.20) can be employed directly to evaluate A, but 

(4.24) 

(4.25) 

(4.21) and (4.22) are of little practical utility because 
of the presence of the indefinite integrals. For SO<O, 
therefore, the equation of state has been determined by 
solving the differential equation (4.16) numerically, 
using the fourth-order Runge-Kutta procedure.27 As is 
apparent from (4.21) and (4.22), specifying that 
A (0) = 1 and (dA/dY)II_o=! is sufficient to single out 
that solution for which A is analytic at y=O only when 
to~-1. Consequently, when -1<to<0, the Runge­
Kutta "machinery" must be started at some y~O. 
In such cases, y=0.01 has been used as the initial value, 
since A (0.01) can be determined to 11 significant 
figures from the virial series (4.24) truncated after 
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TABLE 1. The branch points y+ and y_ for a number 
of pairs (Aa, A4). 

Aa A4 y+ y-

O 0 -1.825 5.515 
0 0.2 0.546 5.247 
0 0.4 1. 973 4,..939 
0 0.55 2.734 4.669 
0.1 0 27.906 6.332 
0.2 0 1.479 5.088 
0.2 0.09 3.800 4.087 
0.2 0.1 4.288-1. 149i 4.288+1.1490£ 
0.2 0.12 -450.676 6.053 
0.2 0.14 -0.561 5.388 
0.2 0.2 1.365 5.111 
0.2 0.4 2.603 4.771 
0.2 0.55 3.139 4.534 
0.4 0 2.261 4.880 
0.4 0.2 2.813 4.703 
0.4 0.34 3.557 4.330 
0.4 0.35 4.056-0.517i 4.056+0.517£ 
0.4 0.36 -1. 769 5.394 
0.4 0.4 3.088 4.589 
0.4 0.55 3.510 4.360 
0.55 0 2.991 4.591 
0.55 0.2 3.298 4.469 
0.55 0.4 3.591 4.314 
0.55 0.544 4. 126-0.6OOi 4.126+0.600£ 
0.55 0.55 3.774 4.190 

b6y4, yet 0.01 is large enough so that the terms A/toy 
and [y(tO+tly+t2y2)]-1 cause no serious loss of sig­
nificant figures during the initial stages of the iterative 
computations. When to>O, on the other hand, A(y) 
has been calculated from (4.18) or (4.20), using 
Simpson's rule to evaluate the integrals. Before 
presenting the results, let us examine briefly the 
analytic structure of the function A (y). 

It is apparent from (4.18)-(4.22) that A(y) has a 
pole of order 3 at y=4. When to is irrational [as is the 
case for all pairs (A3, A4) with which we shall be con­
cerned], it also has branch points of infinite order at 
the roots 

Y±=[ -tl±(tI2-4tot2)112]/2t2 (5.1) 

of the quadratic equation 

(5.2) 

These branch points have been located for approxi­
mately 400 carefully selected pairs (A3,~) and a sam­
pling of the results is given in Table I. For all pairs 
(A3'~) such that 0~A3<1/v'j and O~~<l/YJ 
(excluding those pairs for which any of to, tl, t2, or the 
discriminant q2 vanishes), y+ and y_ are described by one 
of the following: (I) Both y+ and y_ are complex with 
real parts >4. (II) Both y+ and y_ are real with y+<O 
and y_>4. (III) Both y+ and y_ are real with 0<y+<4 
and y_>4. (IV) Both y+ and y_ are real and >4. 

Which of these statements is correct for a specific 
(A3, ~) can be seen from Fig. 5, where the A3~ plane is 
divided into four regions, each labeled with the appropri­
ate Roman numeral (i.e., at points in region I, state­
ment I is true, etc.) 

Neither the complex branch points nor the real ones 
greater than 4 need concern us, since y>4 is physically 
meaningless. (To be precise, y> 21l/YJ~3.63 is unattain­
able since 27r/YJ is the density yo at close packing.) 
Likewise, a root y+<O does not interfere with the 
calculation of A (y) using (4.18) (y+<O corresponds to 
to>O, q2>0.), although the virial expansion (4.23) will 
not converge for y> -y+ in such cases. We need, 
however, to look more clearly at points (A3, A4) in 
region III. There the equation of state is formally given 
by (4.21) since O<y+<4 corresponds to to<O, q2>0, 
and I ttl q* I > 1. Let us, however, use the alternative 
expression28 

(1-b)y-1Ifo 
A (y) = ----':--:--=:.:....:...:..-...,....,..-­

(y+ _ y) (Pl+1) (y __ y) (P2+!) 

>"3 

(5.4) 

FIG. 5. Regions in the AaA4 plane. At points (Aa, A.) in region I, 
the branch points y+ and y_ are both complex. In regions II, III, 
and IV, respectively, y+<O, y_>4; O<y±<4; and y±>4. 
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where 

PI= - (2to)-L [2 (tdto) +1] , 
4q 

P2=-(2to)-l+ [2 (tdI;) +1] , (5.5) 

Yl is some fixed lower limit (~O), and C l is a constant 
chosen so that28 

(5.6) 

Since F2 vanishes when y'=y+, the integral is finite 
when y= y+, and it follows that A (y) diverges as 
1/(y+ - y) (Pl+l) as y---+y+. Moreover, it can be shown 
that A is complex valued for y+<y<4. Clearly, there­
fore, we cannot use any pair of parameters (As, A4) for 
which y+ occurs at a low or moderate density. The 
exponent (Pl+ 1) is very large when y+ is close to zero 
(since y+---+O as to---+O) , but decreases as y+ increases. 
For y+ in the vicinity of yo= 27r/YJ, PI+ 1~1.9. [In 
contrast to this the exact function pi pkT(y) is believed 
to diverge as (1-y/YO)-l as y---+YO.29] 

A (y) has been calculated-at intervals Lly=0.02-
from y=O to y=4 (or to y=y+, where appropriate) at 
26 carefully selected points in the AsN plane: 15 from 

12.-----------------------------------, 

11 

10 

9 

8 

7 

5 

4 ---- A(y( 0.0) 

---- A(yI0.35.0.287) 

3 ......... (p~T tFL 
.. MD DATA 

2 

2.8 

FIG. 6. A comparison of three theoretical equations of state 
with the molecular dynamics results of Alder and Wainwright.ao.81 

0.5.--------------------------------,n 

0.4 

0.3 

0.2 

0.1 
"'!. 
~ 
Q. 

I 
0 -I 

~It 
-0.1 

-0.2 

-0.3 

-0.4 

Ll q.(yl 0.0) 

Llq.(yI0.3,O.225) 
Llq.(y 10.35 ,0.287) 
Llq. (yI0.5.0.4807) 

Llq. (yI0.55,O.5439) 
Llq. (yl 0.55 .0.5438) 

Llq. (yI0.45,0.415) 

• MD DATA 

y 

(HFLl 

FIG. 7. The quantity Aq,=p/pkT-i-P(3, 3) from the 
molecular dynamics data of Alder and Wainwright,3o,8i from 
HFL theory, and from extended scaled particle theory with seven 
different pairs (A3, A.). P(3, 3) is the Ree and Hoover Pade 
approximant33 given by Eq. (5.7). 

region I (here small changes in As or A4 produce relatively 
large changes in the equation of state), 4 from region 
II, 5 from region III, and 2 from region IV. On the 
basis of this "sampling," plus a knowledge of y+, y_, 
and the vi rial coefficients bs, b4, and b5 for approximately 
400 pairs (Aa, N), we are confident that the dependence 
of A(y) on As and N is well understood, qualitatively. 
[The qualitative behavior of A (y) can rather accurately 
be predicted from the values of the vi rial coefficients 
and the locations of the branch points.] 

In Fig. 6, plpkT=A(y) from y=O to y=2.80 for 
two sets of parameters (As, ~) : (0,0) and (0.35,0.287), 
are compared with the HFL equation of state and with 
the rigid disk molecular dynamics (MD) results of 
Alder and Wainwright.so,sl Except at the highest densi­
ties shown, it is clear that the MD triangles lie slightly 
below the (0,0) curve and somewhat above the HFL 
curve, but can be fitted quite well with the (0.35,0.287) 
curve. The first ten triangles represent a 72 disk system, 
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Q,,°ll­a. ~ 

,..--

y 

FIG. 8. The dimensionless pressure ppo/kT as a function of 
dimensionless density y near the "freezing" transition for rigid 
disks. The solid curve is characteristic of a first-order transition 
in an infinite system, while the dashed curve is an hypothetical 
isotherm for a finite system with N of order 1()2-103• 

while the last triangle, at y= 2.765, represents a periodic 
assembly of 870 hard disks. The latter undergoes a 
transition from a fluid with y~2.765 to a "solid" 
with y~2.865, and this result leaves very little doubt 
that an infinite system of rigid disks also exhibits a 
"freezing" transition, although probably with somewhat 
different "coexisting" densities. Unfortunately, we 
have not observed such a transition at any density for 
any pair (A3, A4). Rather, A (y) monotonically increases 
from y=O to y=ym, where ym~3.6, for all (As, A4) 
which lead to acceptable equations of state over the 
fluid range of densities.s2 Thus, our extended scaled 
particle theory has failed to achieve one of its prime 
goals, even though it can provide a very good descrip­
tion of the rigid disk fluid, at least for y::; 2.50. (The 
positions of the last two MD points relative to the 
theoretical curves will be discussed somewhat later.) 

Figure 7 presents a comparison of the molecular 
dynamics results, the HFL equation of state, and the 
functions p/ pkT for (A3, A4) equal to (0,0), (0.3,0.225), 
(0.35,0.287), (0.45,0.415), (0.5,0.4807), (0.55,0.5439), 
and (0.55, 0.5438), respectively. Instead of p/ pkT 
itself, the difference /1q,=(p/pkT)-1-P(3, 3) is 
plotted, where P(3,3) is the Ree and Hoover Pade 
approximant33 to p/ pkT-1 for rigid disks, given by 

'P(3 3) = h-0.0505200y2+0.0006986y3 (5.7) 
, 1-0.492043y+0.0607290y2 

This use of P(3, 3) as a "base line" makes it possible to 

display quite clearly-and in considerable detail­
differences among the theoretical curves as well as 
discrepancies between theory and "experiment." Of the 
seven pairs (A3, A4) represented, six correspond to 
points in region I of the A3A4 plane of Fig. 5. This reflects 
the fact that the best equations of state are obtained 
in this region, if we define a "good" equation of state to 
be one that fits the molecular dynamics data well. In 
regions II and IV, the curves /1q, (y I As, A4) 3L-and, 
therefore, A (y I As, A4)SL-for all (As, A4) lie significantly 
above the MD points, while in region III, the equations 
of state range from quite poor to highly pathological, 
except where the branch point y+ --t4. (This occurs very 
near the lower boundary of region I and in a very small 
area with A3>0.5 and A4--t1/v'J.) In particular, when 
y+ is near the close packed densi ty yo = 27f/YJ, 
A (y I As, A4) lies far below the MD resul ts. /1q, (y I 0, 0)­
the "best" curve from regions II and IV-is included 
to facilitate comparisons with Fig. 6. 

The curves /1q,(y I 0.3, 0.225), /1q,(y I 0.35, 0.287), 
/1q,(y I 0.45, 0.415), and /1q,(y I 0.55, 0.5438) in Fig. 7 
indicate clearly how the function A (y I As, A4) changes 
as the point (As, A4) moves along the lower boundary 
of region I toward (1/v'3', 1/v'3'); namely, if (As', ~') 
and (A3", A/') are two points on such a path, with the 
latter closer to (1/YJ, 1/YJ), then 

A (y I A3", ~") <A (y I As', ~') y< Y, 

A (y I A3", A4") > A (y I As', Al) y>Y, 

where Y, the intersection of the curves A (y I A3', Al) 
and A (y I As", N"), increases with the distance between 
(As', N') and (A/', A/'). The same sort of behavior 
occurs as (Aa, A4) moves toward (1/v'3', 1/YJ) along the 
upper boundary or through the center [compare 
/1q,(y I 0.5, 0.4807) and /1q,(y I 0.55, 0.5439)] of region 
I, or through region IV, or through the "thin" part of 
region II. [A (y I As, A4) changes little throughout the 
"fat" part of region II near the origin.] On the other 
hand, as (As, A4) crosses region I from the lower to the 
upper boundary, each succeeding curve A (y I A3, ~) 
lies above its predecessor at all densities, with small 
changes in (A3, A4) producing relatively large changes in 
the equation of state. [Compare /1q,(y I 0.55, 0.5438) 
and /1q,(y I 0.55,0.5439).] 

The statistical uncertainty in the molecular dynamics 
data can be estimated from their scatter in Fig. 7, 
since /1q,MD must be a smoothly varying function of y 
at all densities below the transition. Within the esti­
mated uncertainty, it is clear that at least /1q,(y I 0.35, 
0.287) and /1q,(y I 0.5, 0.4807) fit the first nine MD 
triangles. However, how are we to interpret the large 
deviations of the theoretical curves from the last two 
triangles, at y=2.59 (/1q,= -0.04) and y=2.765 (/1q,= 
-0.61), respectively? There are two relevant pos­
sibilities: (1) The 72/870 disk MD results adequately 
represent an infinite hard disk system arbitrarily close 
to the "freezing" transition, in which case our theory 
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provides a rather poor description of the rigid disk 
fluid over the highest 10% of its density range, despite 
the excellent agreement with "experiment" at lower 
densities. (2) The 72/870 disk results do not accurately 
describe the infinite system near the transition; rather, 
the rapid decrease in dq,MD (y ) as the transition is 
approached represents a kind of premonitory phenom­
enon resulting directly from the small numbers of 
disks considered. In this case, our theory may be able 
to describe the rigid disk fluid well at all densities. It 
is clear that both the 72 and 870 disk assemblies exhibit 
significant finite-size effects, since the former fluctuates 
between a high-pressure fluid state and a low-pressure 
"solid" state between y~2.69 and y~2.73, while the 
latter yields an isotherm fJp(y) with a van der Waals 
type loop between y~2.765 and y~2.865. However, 
there is at present no compelling reason to expect that a 
small system should display a premonitory flattening of 
fJP(Y) as the transition is approached. Nevertheless, this 
is not an unreasonable suggestion, as is indicated by 
Fig. 8, which compares a p-y isotherm for an infinite 
system (solid curve), with an hypothetical finite system 
approximation to it (dashed curve). (Note that the 
singularities at the solid and fluid densities have been 
rounded off in such a way that the pressure in the finite 
system is too low below the transition and too high 
above it.) Whatever the merits of this conjecture, it ap­
pears that the molecular dynamics computations have 
not conclusively determined the behavior of the rigid 
disk system near the transition, in the thermodynamic 
limit. (This would seem to require considerably more 
than 870 disks.) Therefore, we shall assess the functions 
A (y I h3, h4) strictly on the basis of their agreement with 
the first nine MD triangles (for which y<2.50) and 
shall regard their usefulness at higher densities as an 
open question. 

One measure of the agreement between any theoretical 
equation of state p/pkT=q,(y) and the molecular 
dynamics results is the average percent deviation E, 

defined by 

E= 100 i:.1 q,(Yi) -q,MD(Yi) I ' (5.8) 
i-I q,MD(Yi) 

TABLE II. Percent deviations from the molecular dynamics 
data and from the exact virial coefficients ba, b., and bs. 

(ha, h.) ~ba ~b. ~b5 

(0,0) 1.1 0.39 4.36 7.16 
(0.3,0.225) 0.8 -1.35 0.35 3.58 
(0.35,0.287) 0.5 -2.18 -1.32 1.44 
(0.45, 0.415) 0.9 -3.18 -3.28 -1.11 
(0.5,0.4807) 0.6 -2.97 -2.54 0.30 
(0.55,0.5438) 1.5 -3.76 -4.54 -2.94 
(0.55, 0.5439) 0.8 -3.42 -3.61 -1.35 
HFL 4.8 -4.09 -6.13 -6.38 
Pade 1.2 
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FIG. 9. The contact pair correlation function G(h) at five fixed 
values of y. ha=0.55, A. = 0.5438. 

where the sum is over the nine MD points with y~ 2.50. 
Table II lists the values of E for the nine functions 
p/ pkT represented in Fig. 7. The curves A (y I 0.3, 0.225), 
A (y I 0.35,0.287), A (y I 0.45,0.415), A (y I 0.5,0.4807), 
and A (y I 0.55, 0.5439) all agree with q,MD within 1%, 
the reported uncertainty in the machine computa­
tions.30 •31 (Note that, in contrast to this, EHFL=4.8%.) 
Furthermore, the value of E (0.5%) for (h3, h4) = 
(0.35, 0.287) confirms what is apparent from Fig. 7: 
that A (y I 0.35, 0.287) fits the MD data in an excellent 
manner. In fact, it provides a considerably better fit 
than does the Pade approximant P(3, 3), which was 
hitherto regarded as the best analytic approximation to 
the machine results. Finally, Table II also gives, for 
each equation of state, the percent deviation dbj of the 
virial coefficients b3, b4, and bo from their exact values 
b3=0.1955, b4 =0.06659±0.00006, and b6 =0.02086± 
0.00003.30 Clearly, the best values of b3 do not correspond 
to the best equations of state. Also, it is apparent that 
producing very accurate virial coefficients is not the 
forte of our theoretical apparatus. 
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FIG. 10. The contact pair correlation function G(>..) at five fixed 
values of y. ~=0.55, >..,=0.5439. 

For the remainder of this section, let us turn our 
attention to the contact pair correlation function G, 
given by (2.1), (4.1), and (4.4) when A<~, t:::;A< 1/v3, 
and A~ 1/v3, respectively. [As noted in Sec. IV, the 
coefficients B, D, E, CIt C2, and Ca can be calculated at 
any fixed density y= Y from (4.6) through (4.11) once 
A(Y) has been evaluated.] In order to determine its 
behavior at high densities, we have evaluated G(A, y) 
from A = 0 to A = 2 for five to seven fixed values of y at 
each of 18 points in the AaA4 plane of Fig. 5. Some results 
for four selected pairs (As,~) are shown in Figs. 9-12. 

In Sec. II, it was argued that G should be a non­
monotonic function of A for the rigid disk J'solid" and 
that, at sufficiently high densities, it should resemble 
G(A, po) (Fig. 3) with the spike near A=~ rounded off 
and the divergences replaced by finite maxima. Despite 
its failure to predict a phase transition, our extended 
scaled particle theory can produce-for selected pairs 
(As, ~)-functions G(A, y I As,~) with roughly the 
hoped for quali ta tive behavior over the range 0:::; A < 1 
at certain very high densities. This is demonstrated by 
Figs. 9 and 10, where (As,~) = (0.55, 0.5438) and 
(0.55,0.5439), respectively. In both cases, at sufficiently 

high densities, the curves G(A) exhibit a shoulder just 
above A=~, then rise steeply and go through a maximum 
(just above 1/v'J) followed by a minimum, after which 
they rise monotonically up to A= 1-a description that 
should also apply to the exact G(A, y). However, 
it is apparent that neither G(A I 0.55, 0.5438) nor 
G(A I 0.55, 0.5439) diverges at A= 1/v3 or A= 1 when 
y=Yo=21f/VJ. Rather, both are everywhere smoothly 
varying functions of A for all y<4, at which density all 
the coefficients A, B, D, E, C1, C2, and Ca diverge and a 
limit function G("A, y=4) does not exist for A~~. 
Moreover, for both pairs ("As, A4), the minima in G(A) 
somewhat above 1/v'J are much too shallow; the slopes 
oG/OA are too small near"A= 1; and G remains a mono­
tonic function of A up to a density y', which seems to be 
considerably too high. Despite these deficiencies, both 
sets of curves are great improvements over those 
obtained from the HFL expression for G("A, y). (See 
Fig. 13.) Clearly, our extended theory represents a 
step in the right direction with regard to describing the 
rigid disk system at high densities. 

Functions G(A, y) similar to those in Figs. 9-11 
[i.e., with the same number of maxima and minima in 
G("A) at high densities, arranged in the same order] are 
obtained only in portions of region I of the As~ plane. 
In regions II and IV and in the "usable"36 parts of 
region III, the contact pair correlation functions 
qualitatively resemble G("A, y I 0, 0) (see Fig. 12) ; that 
is, for sufficiently large y, G("A) has a maximum at or 
slightly above A=t then a minimum somewhere 

60 

A 

FIG. 11. The contact pair correlation function G(>..) at five fixed 
values of y. ;\.3=0.5, >...=0.4807. 
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beyond A= 1/V3 (at which G may be negative), after 
which it monotonically increases, at least up to A=2. 
Wi thin region I, G (A, y) changes with A3 and N in a 
fairly complicated manner. As the point (As, >-4) moves 
away from (1/V3, 1/V3) along a path near the center of 
the region, it can be seen, from Figs. 10 and 11, that 
(1) G(>-) remains monotonic up to higher densities. 
(2) The shoulders near A=! become less pronounced. 
(3) The maxima occurring just above A= 1/V3 slowly 
move to the right (i.e., to larger values of >-). (4) The 
minima following these maxima move more rapidly 
to' the right, markedly broadening the "half peaks" 
between the two extrema. On the other hand, from 
Figs. 9 and 10, it is clear that if A3 is held constant and 
N increases so that (A3, A4) moves across region I from 
the lower to the upper boundary, the following changes 
in G(A, y) occur: (1) Nonmonotonicity in G(A) first 
appears at a lower density. (2) The shoulders near 
A=! again become less pronounced. (3) The positions 
Am of the maxima somewhat beyond 1/V3 slowly move 
to the left while the quantities G(A".) rapidly increase. 
The last trend continues until the G(>-m) diverge at 
some point (As, N'). (N' appears to be independent of 
density as long as y is large enough so that G(A) is 
nonmonotonic.) For N>N', the functions G(A, y) 
qualitatively resemble G(A, y I 0,0) (Fig. 12), and as 
N~A/ from above, the positions Am of the minima move 
to the right and G(Am)~- exl. 

From the figures, it is apparent that the best looking 
high density contact pair correlation functions are 
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FIG. 12. The contact pair correlation function G(l\) at five fixed 
values of y. Aa=~=O. 
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FIG. 13. The HFL contact pair correlation function G(l\) at 
five fixed values of y. 

obtained with (As, A4) near (1/V3, 1/V3), where the 
equations of state are not particularly good. [See, for 
example, Llq,(y I 0.55,0.5438) in Fig. 7.J On the other 
hand, while A (y I 0.35, 0.287) proved to be our best 
equation of state, G(>-, y I 0.35, 0.287) is not very 
appealing. Taking both G (A, y) and A (y) into consider­
ation, it appears that of all the pairs of parameters we 
have considered, the best results, on balance, can be 
obtained with (As, A4) equal to (0.5, 0.4807) or (0.55, 
0.5439) . 

In the interval !::;A<l/V3, our theory seems to do a 
reasonably good job of predicting the A dependence of 
the contact correlation function at certain high densi­
ties. [To see this illustrated, compare G(A, 3.60) for 
(As, N) equal to (0.55, 0.5438) or (0.55, 0.5439) with 
the exact G(A, yo).J For fixed values of >- within this 
interval, it is less successful in predicting the y depend­
ence of G. Certainly, it does not yield a good enough 
C1(y) , since the equation of state gives no indication of 
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a phase transition. [Recall (4.10).] Moreover, at very 
low densities, the relations 

a( ag(2) / arl2) r12=a 

= (37r/64y) {S(1-ty)C2+~[1- (S7/4)y]Cd, (S.9) 

a2(a2g(2)/arI22)rl2=a= (37r/256y) {3S(1-ty)C3 

- (15/2) [1+ (23/4)y]C2 

- (143/8) [1 + (569/286)y+ (14 4S1/4552)y2]Cd, 

(S.10) 

derived from the definitions of C1, C2, and C3, give quite 
poor values for the slope and curvature of the radial 
distribution function g(2) (r12) at r12 = a. [Both these 
quantities should vanish as ~. As obtained from 
(S.9) and (5.10), however, they are both finite at zero 
density.] 

VI. DISCUSSION 

The extended scaled particle theory just presented 
was directed toward describing the rigid disk system 
satisfactorily at high densities, a task which involves 
two closely related goals: (1) to produce functions 
G(X, y=y') with the proper shape when y' is large; 
(2) to predict the occurrence of a "freezing" transition. 
Although we have completely failed to achieve the 
latter goal, enough progress has been made toward the 
former to convince us that we are "on the right track." 
Therefore, it seems appropriate to discuss in some detail 
possible further extensions of the theory. 

The first such extension which comes to mind 
utilizes the one exact condition on G(X, y) which has 
been derived but not used directly: the jump in a4G/ax4 

at X= 1/V3, given by Eq. (CI0) of Appendix C. 
In its present form, this expression cannot serve our 
purposes, since it introduces an additional unknown as 
well as providing another condition.37 However, if the 
triple contact triplet correlation function g(3) (a, a, a, p) 
were replaced by its equivalent in the superposition 
approximation, [g(2)(a, p)]3 or [G(l, y)]3, then (CI0) 
would enable us to add a term proportional to (X_~)9/2 
to our expression for G (~ S X < 1/V3) [the complete 
expansion of G about X=~ also contains a term propor­
tional to (X-~)4, whose coefficient can be shown to 
equal iyC12] or an additional term to G(X2: 1/V3) as 
given by (4.4). In either case, we could then derive 
eight simultaneous equations in eight unknowns: the 
analogues of (4.6)-(4.12), together with a new non­
linear relation obtained by adding the right-hand side 
of (ClO) to 

[a4G( ~ s X < 1/V3) /OX4},=I/v! 

[from (4.1)] and equating the sum to 

[o4G(X2: 1/V3)/aX4]A_I!v3" 

[from (4.4)]. Such a system of equations would, in 
principle, be only slightly more difficult to utilize than 

was the system (4.6)-(4.12); whereas the latter was 
reduced to a linear first order differential equation for 
one of the unknowns (A) as a function of y, the former 
could be reduced to coupled nonlinear first order dif­
ferential equations for two of the unknowns. Solving the 
final pair of equations numerically and substituting the 
results into the remaining relations of the set would 
presumably yield improved functions C1(y), C2(y), and 
C3(y), particularly if the term in (X_~)9/2 had been in­
cluded in G(~ < X < 1/V3). This would mean a better 
equation of state and, perhaps, satisfactory values of 
(ag(2)jaTI2)rJ2_ and (o2g(2)/arI22)r12=a at various densi­
ties. Finally, it should be noted that, for rigid spheres 
at least, superposition has been shown to be a sur­
prisingly good approximation in the solid or dense fluid, 
even at rl2=a (i.e., at contact between two spheres).38 

In Sec. V, it was noted that even for our best choices 
of (X3, X4), the functions G(X) remain monotonic up to 
densities that are too high, are smoothly varying for 
all fixed y<4, display too shallow minima above X= 
IjV3, and have slopes that are too small at X= 1. In 
addition, a maximum in G(X) just above X= 1, followed 
by a shallow minimum, was never obtained, although 
both these features should almost certainly be observed 
when y is very large. While some of the deficiencies in 
G(XS 1) could probably be eliminated in an extended 
theory using the superposition approximation and the 
jump in a4G/ox4 at X= 1/V3, it is clear that this approach 
would not produce the expected structure in G(X> 1), 
since our functional form for G (X2: 1/V3) [i.e., (4.4)] 
is simply not flexible enough-even with another term 
added-to give a "trivacancy peak" near X= 1 as well as 
the "monovacancy peak" near X= 1jV3. In order to 
obtain the additional maximum and minimum, it 
might well be necessary to subdivide the interval 
X2: 1/V3, using an expansion about X= l/YJ for 
G(I/V3sx<l) and a Laurent series or some modifica­
tion thereof [such as (4.4) with X3 and/or X4 slightly less 
than unity] for G(X2: 1). Although this option was 
considered and rejected for present purposes in Sec. IV, 
it is quite possible that the difficulties discussed there 
would have negligible physical consequences and that 
the use of the extra interval would, in fact, lead to an 
improved theory. Straightforward free area considera­
tions indicate that G and its first nine derivatives with 
respect to X are continuous at X= 1. This information, 
together with the integral and infinity conditions and 
the definition of C1, would permit one to determine 
thirteen unknown functions of y distributed as "co­
efficients" among the functional forms chosen for 
G(~SI\<I/V3), G(l/V3Sx<I), and G(X2:1), respec­
tively. 

So far we have discussed two suggestions for extend­
ing our theory, both of which followed quite naturally 
from previous considerations. It is clear, however, that 
any scheme which provides additional exact information 
concerning G(X, y) and a means of incorporating it into 
the theoretical framework can be used as the basis for 
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such an extension. In particular, one possibly fruitful 
procedure is to introduce a new work quantity Y (X, y), 
defined to equal W (X, y) when X < ~ and to equal the 
reversible isothennal work required to form a certain 
type of fixed bicircular cavity in the system when 
X~~. This cavity corresponds to the region that would 
be excluded to the centers of the rigid disks of diameter 
a by the presence of a fixed pair of rigid disks in contact, 
each with diameter (2X-l)a. The behavior of Yand 
some of its X derivatives can be detennined at X=~ and 
X~O.S476, the point at which the bicircular region can 
first contain the centers of three disks of diameter a. 
Furthermore, a number of exact conditions relating 
Y, W, and G can be derived, among them 

(:J(oY /OX},,_1 = 2[B( oW /OX},,=I- [G(l) jl( oG/OX},,=I] 

(6.1) 

= 2[2yG (1 , y) -[G(l, y) ]-1 (OG/OXh=I], 

(6.2) 

which is of particular interest since it is the first relation 
involving (oG/OX)x=1 that we have obtained. Although 
some of the new infonnation would be needed to 
determine various "coefficients" appearing in expres­
sions for Y(X), it is clear that this scheme would yield a 
net gain of several exact conditions on G(X, y), per­
mitting one to adopt more flexible functional fonns for 
that quantity in the various X intervals. 

With one of the extended theories just outlined, it 
might be possible to obtain an equation of state with a 
divergence at some density y* close to yo=27r/-..!J, 
together with functions G(X) with the proper non­
monotonic behavior when y is large but not very near y*. 
Using such approaches, however, it is not possible to 
produce a limit function similar to G (X, Yo), since if 
A (y) diverges as y--ry*, G (X, y*) will not exist (i.e., will 
be infinitely large) for X~~ (except possibly at a few 
isolated points). This is not necessarily a serious defect, 
since we are concerned primarily with densities in the 
range where the fluid-solid transition is believed to 
occur, not with densities near close packing. 

The theory presented in Sees. III-V is a linear one, in 
the sense that only the first powers of A and C1 appear 
in Eqs. (4.6)-(4.13). On the other hand, any extended 
theory utilizing the superposition approximation and 
the jump in fJ4(J/fJX4 at X= l/-..!J will clearly be nonlinear, 
whether or not the interval X~ l/-..!J is subdivided or the 
quantity Y(X) is introduced. In a linear theory, 
7ra2(:Jp(y) is an everywhere single-valued function of y, 
and a phase transition would be indicated by the 
presence of some unusual feature-probably something 
resembling a van der Waals loop-in this isotherm. 
With a nonlinear theory, however, it might be possible 
to obtain two distinct solutions to the particular 
system of simultaneous equations over some density 
range, one corresponding to a fluid and minimizing the 
Helmholtz free energy F at lower densities, the other 

corresponding to a "solid" and minimizing F at higher 
densities.39 The fluid~olid transition would then be 
located by equating the dimensionless pressures 
7ra2(:JPt(y) and 7ra2(:Jp2(y) and chemical potentials 
(:J/ll(y) and (:J/l2(y). Neither of the functions 7ra2(:JPt(y) 
or 7ra2(:JP2(Y) would have to do anything at all extra­
ordinary at or near this transition, whereas in a success­
fullinear theory, 7ra2(:Jp(y) would presumably have to 
change in a rather complicated manner over a narrow 
transition region in density. Intuitively, therefore, it 
seems that it might be easier to obtain a phase transition 
with a nonlinear theory than with a linear one. 

Finally, it should be noted that if-instead of sub­
dividing the interval X~!-we were to use a Laurent 
series in nonpositive powers of X for G(X~~), deter­
mining the coefficients from the properties of the exact 
G at X=~, the integral condition, and certain relations 
obtained from the statistical thennodynamics of curved 
interfaces, then it appears that inconveniently many 
terms would be needed to produce the complex behavior 
exhibited by G(X) at high densities. 
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APPENDIX A: G(X, po) FOR RIGID DISKS IN THE 
INTERVAL l/-..!J<X<l 

When l/-..!J<X<l and the number density P is 
slightly less than the close-packed density Po, a X-cule 
can be added to the rigid disk array in four different 
ways: it can be placed (1) in a monovacancy, (2) in a 
divancy, (3) in a trivacancy or higher-order multiple 
vacancy, or (4) in an interstitial position. G(X, p) will 
be proportional to the average collision rate R of the X­
cule with its surroundings, which can be written 

R= L PivRiv+(1- L Piv) Rint, (AI) 
i21 i21 

where Rint and Riv are the average collision rates for a 
X-cule in an interstitial position and in an i-disk 
vacancy, respectively, and po(iv) (X) is the probability 
that a X-cule, "tossed" into the assembly at random, 
will "land" in an i-disk vacancy (i = 1 for a mono­
vacancy, 2 for a divacancy, etc.) ; 

is, therefore, the conditional probability that the X-cule, 
having been successfully placed at some arbitrary point 
in the system, lies in an interstitial postion. 

The ratios Pi./ Ph (j~ 2) of the densities of multiple 
vacancies to the density of monovacancies vanishes 
as ~Po in such a way that, to leading order,40 

In (Pi./ Ph) = - (i-l) 2/ (0-1-1), (A3) 
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where () is the reduced density p/ Po. Since each Po(iv) 
contains a factor Piv and both R1v and R 2v remain finite 
as p---'>PO,41 it is clear that the term P2vR2v becomes 
vanishingly small in comparison to PlvRh as close 
packing is approached. Furthermore, although Riv for 
j~ 3 almost certainly diverges as p---'>Po (see Appendix 
B), PivRio/ P[vRlv should still vanish in this limit since 
Rio should diverge as some rather small power (quite 
possibly the first) of (/11-1)-1, while Po(iv) / #Iv) 
will contain the very strongly vanishing factor 
exp[-(j-l)2/(/lI-l)]. Equation (Al) can, there­
fore, be simplified to 

R=PmvRmv+(1-Pmv)Rint, (A4) 
, 

where the subscript mv denotes a monovacancy. 
In a perfect rigid disk "crystal" with a density P 

slightly less than Po, the average distance d between 
the centers of neighboring particles will slightly exceed 
the disk diameter a. Since 

/11= (d/a)2= [1+ (d-a)/aJ2""'1+2(d-a)/a, (AS) 

it follows that 

[Cd-a) /aJ""'H/lL 1). (A6) 

In order to insert a A-cule interstitially at some point 
in such a slightly expanded array, a large number of 
surrounding disks must give up some of their linear 
freedom of motion (essentially d-a). If each of these 
loses a finite fraction of its initial "play," then counting 
along a line of successive neighbors in the "crystalline" 
array, a number of disks proportional to (/lI_1)-IX 
(A-l/Y3) will be involved, and the total number n(A) 
of disks affected by the addition of the A-cule will be 
given by 

n(A) ""'K(/IL 1)-2(A-ljV3)2, (A7) 

where K is a constant. Because we suppose that each of 
these n(A) particles loses some finite fraction of its free 
area, the free energy of formation of the interstitial 
"site" will, in the free area approximation, be 

Fint(A) ~) [ initial free area ] -- = L.. In (AS) 
kT ;=1 free area after adding A-cule 

(K' is a constant.) The average collision rate Rint, 
being a surface stress quantity for the A-cule, is ob­
tained from the A derivative of (A9). Hence 

Rint(A) =j(A) (/lI_1)-2a-l(kT/m)1/2, (AlO) 

where j(A) is independent of () and is finite throughout 
l/v3<A< 1. In contrast to (A9) and (AlO), respectively, 
the work of formation of a monovacancy diverges only 
as 2kT(/lI-l)-1 as()~116 and Rmv can be approximated 
roughly by a-l(kT/m) 1/2, since a A-cule in a mono­
vacancy can "rattle around" rather freely. For p very 

near po, therefore, 
Pmv""' 1, 

1-Pmv::2: expf -K"[(A-l/VJ)/ (/IL 1) J2 

+2(/lL l)-I}, (All) 
and (A4) becomes 

R(A)""' Rmv(A) +a:-l(kT /m) 1I2j(A) (/IL 1)2 

X exp( - K"[(A-l/VJ)/ (/IL 1) J2+[2/ (/11-1) JI. 

(A12) 

The second term on the right vanishes strongly as ()~1, 
implying that R(A), and hence G(A), is determined in 
that limit exclusively by the monovacancy contribu­
tion. Interstitial addition is far too costly in terms of 
free energy to be a significant process. 

Finally, it should be emphasized that the preceding 
arguments are not, in any sense, rigorous. We believe, 
however, that they leave little practical doubt that the 
contributions from multiple vacancies and interstitial 
positions can safely be neglected when determining 
G(A, Po) for l/VJ<A<1. 

APPENDIX B: RELAXATION OF A RIGID DISK 
"CRYSTAL" INTO A TRIVACANCY 

In Sec. II, it was argued that a A-cule placed in a 
trivacancy in a rigid disk "crystal" should experience a 
divergent inward mean force in the limit ~Po, a result 
which seems to be clearly correct, intuitively, yet 
extremely difficult, if not impossible, to prove. In this 
appendix, we present a more detailed heuristic argu­
ment, based on the free area approximation, leading to 
the same conclusion. This is, however, merely an 
elaboration of the relevant portion of Sec. II, and 
certainly does not constitute a rigorous proof. 

Figure 14 shows a A-cule within a trivacancy in a 
nearly close-packed rigid disk assembly. When 
A<2/v3, the upper limit for trivacancy occupation, the 
three nearest neighbors (labeled with l's) are free to 
slide inward; the pairs (2,2') can then move in and 
apart, followed by similar motions of the pairs (3, 3') . 
The fourth nearest neighbors can then move singly, 
followed by the fifth nearest neighbors, etc. This 
process will continue until the optimal relaxation (in 
terms of free energy) for the imperfect "crystal" is 
attained. 

Let nj be the number of jth nearest neighbors to the 
trivancy. (nl=3, n2=6, na=6, n4=3, ns=6, etc.) The 
added free area Aai available to a jth neighbor after 
the relaxation should be proportional to some power of 
(2/v3-A); i.e., 

(Bl) 

where Aj;:::O and Pj>O. Actually, we expect that Pi 
should be ;::: 2 and may increase with increasingj due to 
cooperative effects. If the relaxation involves neighbors 
only through Nth order, then, in the free area approxi-
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mation,42 

-- =- L p,"ttjln AI/Pi --X F(A) N(X,p) [ (2 )] 
kT i-I V3 

(B2) 

and 
aF(A) N(X,p) 

(kT)-1 -- = [(2/V3) -A]-1 L p,"tt;, (B3) 
aA i-I 

where F(A) is the free energy of relaxation and aF /aA is 
just aW(tv) lax (see Sec. II), which is proportional to the 
average collision rate of the X-cule with its neighbors 
and to G(A, p) in the interval 1<A<2/V3. A rather 
crude free area argument very similar to that used to 
obtain Eq. (A7) predicts that N(A, p) and hence aF jaA 
will diverge roughly as (0-1- 1)-1 as 8=p/po----t1. 
Despite the lack of elegance or rigor, this indicates very 
persuasively that the X-cule should experience an 
infinite inward mean force and infinite average collision 
rate R tv in the limit of close packing, but that R tv 

should diverge, at worst, as some fairly small power of 
(0-1_1)-1,43 If this is so, then it is clear that Riv for 
i~4 will also diverge as p----tPo, since the disks surround­
ing higher-order multiple vacancies, like the neighbors 
of a trivacancy, are not locked into place by the remain­
der of the array. 

APPENDIX C: SINGULARITY IN G(A) AT A=l/V3 

When X::; 1/V3, all of the Fm in Eq. (3.4) vanish with 
the exception of Fl and F2• In the subsequent range 
1/V3 < A::; 1/v'2, three nonoverlapping disks can simul­
taneously have their centers within circular region 
R(A) with radius Aa [see Eq. (3.3) J, so then Fs will be 
nonzero as well. Written explicitly, Fs has the form 

F3=(tp3) [ dfl [ df2 [ df3g(S) (fl, f2, fs). (Cl) 
JR(}.) JR(}.) JR(X) 

. ~IG •. 14. A A-cule within a trivacancy in the highly compressed 
ngld disk. array (p->po). The first through fifth nearest neighbors 
are labeled. 
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FIG. 15. Schematic drawing of the small isosceles triangles to 
which disks 2 and 3 are confined, when 1 is fixed and A - (1/V3") 
is small. The bases are portions of the boundary of R(A), and 
the movable sides are generated by the singular rigid disk inter­
actions. The specific side positions shown for particules 2 and 3 
are the respective outermost limit consistent with given $1. 

Our objective is to deduce the leading-order behavior 
of Fa(A, p) as A just begins to exceed 1/V3. In this 
regime the disk centers at fI, f2, and fa are tightly 
constrained so as to form nearly an equilateral triangle, 
so g(a) in Eq. (Cl) will never deviate significantly from 
its triple contact value g(a) (a, a, a). Furthermore there 
are two independent and equivalent disk configurations, 
depending on whether fl, f2, fa occur serially in clock­
wise or in counterclockwise order at the periphery of 
R(A). To the requisite order therefore, 

Fs= (pS/3)g(S) (a, a, a) J T(X) dfldf2dfs, (C2) 

where six-dimensional region T(A) constrains non­
overlapping disks 1, 2, and 3 to the clockwise ordering. 

Particle 1 has the full polar angle 0::; 81::; 211' available 
to its center, measured from the center of circle R(A). 
However the corresponding radial coordinate rl will 
have narrow limits, which to leading order in A- (1/V3) 
will be 

(a/V3) - 2a[A- (1/V3) J::;rl::; Aa. (C3) 

We may immediately carry out the 81 integration to 
transform (C2) to the following: 

Fs=[211'psa/3V3Jg(S)(a, a, a) 

(C4) 

wherein U(rl, A) is the appropriate four-dimensional 
region for disk centers f2 and fs. 

On account of the minimal particle freedom of motion 
that obtains for small A- (1/v3), the bounding arcs 
experienced by particles 2 and 3 (when 1 is fixed) have 
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negligible curvature. As shown schematically in Fig. 15, 
particles 2 and 3 then reside in small isosceles triangles 
with apex angles 27r/3. The precise positions of the 
triangle sides for a given particle of course depend on 
the placement of the other two. 

It is convenient to introduce (see Fig. 15) the 
reduced coordinate 

(CS) 

to locate the radial position of particle 1. Similarly, 
reduced orthogonal coordinates S2 and t2 may be em­
ployed to measure the radial and tangential position of 
particle 2 in units a. As shown in Fig. 15, the origin for 
S2 and t2 is the innermost apex position consistent with 
the given SI value; hence S2 is confined between limits 0 
and SI. Subsequently one sees that Fa has the form 

27rpaa6 

Fa= -- g(a) (a a a) 
3\13 ' , 

(C6) 

where A (SI, S2, t2) is the area (in units a2) of the isosceles 
triangle available to 3 when 1 and 2 are fixed. 

One easily finds that 

A (S1, S2, t2) = (\I3S2-t2) 2/4\13. (C7) 

This allows us to conclude from Eq. (C6) that the 

leading behavior of Fa near X= 1/\13 must be 

Fa(X,p) =0 (X:::; 1/\13), 

= (27\137r/S) (pa2)ag(a) (a, a, a) [X- (l/YJ) J5 

+O{[X- (1/\I3)J61 X~ 1/\13. (C8) 

The sudden change in functional form implies, through 
Eq. (3.4), that the fifth X derivative of Po(X) suffers a 
simple discontinuity at 1/\13 by an amount proportional 
to the mutual contact triplet distribution function. The 
identity (1.2) requires in turn that the fourth X deriva­
tive of G(X) have a simple discontinuity at the same 
point X= l/YJ, the lower derivatives being continuous 
there. Specifically, 

G(l/\I3:::;X< 1/V2) =G(!:::;X< l/YJ) 

+ ~:2 (l~~Y) exp [2Y l2 X'GG:::;X'<l/YJ)dX'] 

Xg(a)(a, a, a, p)[X-(1/\I3)]4+0{[X-(1/\I3)]51, (C9) 

and, therefore, the jump in a4G/ax4 at X= 1/\13 is given 
by 

1m - - hm - = - ~----:--:-I. (a4G) . (a4G) 972 y2 

>'-(1/v.;)+ aX4 >'-(lfv.;)- aX4 7r2 (1-b) 

X exp [2Y {~v.; XG(!:::; X < l/YJ)- dX] g(a) (a, a, a, p) . 

(ClO) 

APPENDIX D: ~o, ~h ~2' Th T 2, Ta, T 4, Wa, AND W4 AS FUNCTIONS OF Xa AND ~'4 

In this appendix we shall display the quite complicated dependences of the nine coefficients ~o, ~1, ~2, T1, T2, Ta, 
T4, Wa, and W4 on the parameters Xa and X4. First, however, let us define the following quantities: 

1 (104/9)\13-20 18-(S7/S)YJ 
'Yl= (1/\I3-Xa)3 + (1/\I3- X3)6 + (1-X3)3 ' 

-3 140-80v3 24YJ-39 
'Y2= (1/\I3-X3)4 + 3(1/YJ- Xa)6 + (1-Xa)3 ' 

12 4Ov3-60 54-42\13 
'Ya= (1/\I3-Xa)5 + (1/\I3-Xa)6 + (1-X3)3 ' 

1 (208/9)YJ-40 18- (57/5)\13 
Ih= (1/YJ-X4)4 + (1/\I3-X4)7 + (1-N)4 ' 

-4 280-160v'3 24\0'3-39 
ch= (1/\I3-}\4)5 + (1/YJ-X4)7 + (1-X4)4 ' 

20 80v3-120 54-42\13 
oa= (1/\I3-N)6 + 0/\I3-X4)1 + (1-X4)4' 

fa=39-24VJ+ (52-42\13) (od03), 

f 2 ='Y2- (odoaha, f4= (32/7r) (1/\I3-~)1/2[j- (2VJ+3) (odoa)], 

QI = (57/5)\0'3-18+ (54-42\13) (OI/03) - [39-24VJ+ (54-42\0'3) (od03) ](fI/r2), 

Q2= (32/7r) (1/VJ-~)1/2{ Hj\l3-1) - (2\0'3+3) (01/03) -[j- (2VJ+3) (od03) ] (fI/f2) I, 
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Qa=t·- 2Y.3-¥(odoa)+ 7[1-jvJ+!(odoa) ](rl/r2)' 

jvJ-Aa [(2360/567) - (584/243)vJ] (2-Aa) (382/135)vJ- (362/63) 
nl= (1/vJ-Aa)2 + (1/Y.3-Aa)6 - (1-AaP + (1- Aa)a ' 

vJ-A4 (4720/567) - (1168/243)vJ (1-jA4) (382/135)vJ- (362/63) 
~= 3(1/Y.3-A4)a + (1/vJ-N)7 - (1-N)a + (1-A4)4 ' 

na= (7nl/oa) [!+[1-jYJ+!(02/0a)]( 'Ya/r2)]- (7n2/r2) [l-!Y.3+!(odoa)]+ (659/891) - (380/891)Y.3. 

In tenus of the above functions of Aa and N, the .I'S, T's, and W's can be written 

.10= 764 YJ_ 661 +2 [r3
n1+ (42vJ-54- ra'Ya)n2_ Ql na] , 

135 63 r 2 r 2 oa Qa 

_ 647 _ 191Y.3 (1/Y.3-~)1/2 (7809 YJ- 4416) (r -~r ) nl 
.11- 84 45 + 7r 8505 2835 + 4 2 a r 2 

+ [~ (l/vJ-~)-1/2+81-63v3+(!ra-r4) ;:]~ +(!QI-Q2-1) ~:, 

191 80 ranI ( ra )n2 (1-QI) 
.12= -YJ- - + -- + 42YJ-54- -'Ya - + na, 

270 63 r 2 4 r 2 40a 4Qa 

Tl = !.Io+.I1+1 

T2=!.T1+ i YJ-!.+2 [nl _ 'Ya n2 + (rl _1v3+1) na] 
4, 27 4, r 2 Oa r 2 r 2 3 2 Qa ' 
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