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LETTER TO THE EDITOR 

Critique of the cluster theory of critical point density fluctuations 

For two-dimensional lattice gases which possess a critical point (but where inter- 
actions are not necessarily restricted to nearest neighbours), we have investigated the 
form of the pair correlation function computed by a partial cluster diagram summation 
at the critical point. Diagrams taken into account are the entire set that may be con- 
structed from series and parallel connections of the fundamental Mayer cluster bond. 
Since the result fails ever to agree in its asymptotic large distance form with the known 
exact result for the special case of nearest neighbor interactions in the square lattice i), 
the inevitable conclusion must be drawn that the highly connected “basic” s) or 
“prototype” 3) diagrams which were neglected, and which in any event are difficult 
to compute, are important in correctly determining fluctuation correlations in the 
critical region, at least in two dimensions. 

The first attempts to predict the nature of critical pair correlations in classical fluids, 
by Ornstein and Zernike 4), were based on assumption of independently variable 
Fourier components of microscopic density, and yielded a relation for 

G(r) = g@‘(y) - 1 

(g(s) is the ordinary pair correlation function) of the form: 

VsG = ,csG, (1) 
where K is a constant which becomes zero at the critical point. In three dimensions, 
the appropriate spherically symmetric solution is well known to be an exponentially 
damped inverse distance function, which is perhaps qualitatively not unreasonable. 
Green 5) however, has shown that the same partial cluster summation technique as we 
have used, when applied to the three-dimensional continuum gas, casts considerable 
doubt on the validity of the Ornstein-Zernike theory. The inadequacy of eq. (1) is 
especially apparent in two dimensions for which the critical point solution is pro- 
portional to log r, which diverges at large distances in contradiction to the known 
general properties of g(s)(y). 

Kaufman and Onsager 1) have computed the persistence of order for pairs of 
sites along a row at the critical point of the two-dimensional square Ising net. In the 
language of the corresponding lattice gas theory, the asymptotic form of the pair 
correlation function (now defined only for vector separations + between lattice sites) 
is apparently isotropic e), and is given by: 

G(r) N C(r/a)-f 

G = exp{log(l + 2-*) - (1 + y)/4 +S!l[~ log(l - W2) + &I} (2) 

(y is Euler’s constant, and a is the nearest-neighbor distance). 
Van Leeuwen, Groeneveld and De Boer 2) have shown that the Mayer cluster 

theory of the pair correlation function leads to a coupled set of functional equations 
for this quantity which, for the lattice gas with pair interaction Q)(Y), may be exhibited 
in the form (/I = l/KT): 

g(2)(r12) = exp[--/%h2) + W12) + Wl2)l 

N(r12) = P~x(r13) [N(r32) + x(r32)l 
r3 

(3) 

Wl2) = g(2Yr12) - N(r12) - 1 
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The density p is the fraction of lattice sites filled by particles. If a, is taken to be 

positively infinite for zero argument, the sum in the second of eqs. (3) may be extended 
over all lattice sites. E represents the sum of “basic” or “prototype” clusters connecting 
sites 1 and 2 which have bonds corresponding to factors G(ru) ; the associated diagrams 
have no articulation points, nodes, or subdiagrams, and the field points (there must 

be two or more) are at least singly connected among themselves. 
Green 5) has pointed out how the continuum gas analogs of eqs. (3) may be analyzed 

to yield the asymptotic decay of g(2) at the critical point when the sum, E, of highly 

connected diagrams is disregarded. We have likewise found that the same approxi- 
mation may be investigated as to the asymptotic nature of g’s’ for the general two- 
dimensional lattice gas, with one site per unit cell, with result: 

G(r) N 4(3r~z)*~~-+/,)-~/s (4) 

where pC is the value of p at the critical point, and as is the area per site in the general 
lattice. This expression is independent of lattice chosen (hexagonal, square, triangular), 
and is valid whether or not interactions are restricted to nearest neighbors. We 
incidentally remark that although the value pe should rigorously be 8 in the model of 

Kaufman and Onsager, there is no assurance that the approximate versions of eqs. 
(3) will preserve this symmetry between filled and unfilled sites. 

Thus the approximate cluster theory yields qualitatively reasonable results in two 
dimensions, unlike the Ornstein-Zernike approach; the rate of decay of G however, 

is predicted to be too great for the square lattice with nearest-neighbor interactions. 
On account of this apparant over-correction of the divergent Ornstein-Zernike theory, 
it is tempting to speculate that in the analogous three-dimensional case, the true 
critical particle pair density fluctuations drop off as ~-a with 1 < a < 2 (G r e e n 5)). 

In order to preserve the Kaufman-Onsager result (2) for the near-neighbor square 
lattice, it is easy to demonstrate that E(r) necessarily is proportional to Y-) for large r. 
Therefore, in spite of the fact that the set of clusters contributing to E is highly cross- 

linked, the resulting sum decays slowly to zero near the critical point. Furthermore, 
Eq. (2) suffices to demonstrate that many (though not all) of the clusters in E in- 

dividually diverge at the critical point. 
The conclusion to be drawn for the cluster theoretic approach to systems exhibiting 

cooperative behavior is that highly connected clusters must be considered in obtaining 
a proper description of at least the critical point, if not the condensed phase. It 
therefore appears fundamentally necessary, at least for two-dimensional systems, 
to seek a renormalization transformation of the terms in the E series to provide a con- 
vergent result under conditions of cooperative transition. 
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