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We have examined an infinite class of fluids which exhibit a liquid-vapor critical point, with regard to 
corrections to thermodynamic scaling of critical phenomena. These "penetrable-sphere models" possess an 
underlying bilateral symmetry in their equivalent binary fluid mixture versions. After postulating a suitable 
scaling for these mixtures, we show that the transciption to the penetrable-sphere models produces a 
generalization of the conventional pure-fluid scaled equation of state. Some leading corrections to the 
scaled form of thermodynamic properties are derived and tabulated. These corrections are presented in a 
form that makes no explicit reference to their modelistic source, so in fact they may apply to real 
substances. 

I. INTRODUCTION 

It has been proposed1-5 that the equation of state of 
the lattice gas model6 in the one-phase region near its 
critical point, is of the form 

portant to find a generalization of Eq. (1.1) that is no 
longer dependent on the lattice-gas symmetry. The 
object of this paper, ultimately realized in Sec. III, 
is to propose such a generalization and to study some 
of its implications. 

A program of this kind was first undertaken by Green, 
Cooper, and Levelt SengersP Our approach differs 

(1.1 ) considerably from theirs, and the corresponding re-
sults of the two approaches differ in some respects, 

where J.I.(p, T) is the chemical potential as a function of though in many instances (especially if comparison is 
the number density P and the temperature T, with Pc made with the later works in Ref. 17) they are the 
and Tc the critical density and critical temperature; same. The procedure of Green, Cooper, and Levelt 
i) and f3 are two critical-point exponents; and where hi Sengers is not only directed only toward evaluating the 
is some function only of the ratio of T - Tc to I P- Pc Il/Il, effects of deviations from lattice-gas symmetry, but 
as shown. It has been subsequently found that the is intended also to yield the leading terms among those 
equation of state of a real fluid near its critical point corrections to the asymptotic formula (1.1) that are 
can be represented in the form (1.1) with considerable present even in the lattice-gas model. The present paper 
accuracy.7-10 has only the former object. The corrections to Eq. (1.1) 

J.I.(p, T) -J.l.(Pc, T) = (P-Pe) I P-Pe 16-1 

Xhl[(T-Te)/1 p-Pe 11I.9J, 

If Eq. (1.1) is to be a correct asymptotic form, it is that may become important outside the asymptotic 
essentiaP that J.I. (Pc, T), the chemical potential on the regime, when I T - Tc I or I P- pc I is not small, are not 
critical isochore, be analytic in T in the neighborhood of known with certainty even in the lattice gas, though 
T= Tc. Models are now knownll- 13 in which that condi- for that case their form has been conjectured by Domb.18 

tion is violated. In those models J.I.(Pe, T) in the two- Where it is possible to compare our correction terms, 
phase region is still analytic in Tat T= Teo but J.I.(Pe, T) which account for the deviation from latice-gas sym­
in the one-phase region is a different, and singular, metry, with those of Domb, we verify that ours are the 
function of T. The failure of J.I.(Peo T) to be a single larger; so that, if Domb's estimates and the present 
function of T analytic at Te is related to the lack in theory are both correct, the leading corrections to 
those models of the hole-particle symmetry of the Eq. (1.1) in real fluids will prove to be those that are 
lattice gas and to the associated failure of the law due to deviations from hole-particle symmetry and 
of rectilinear diametersY-14 It is now generally be- that have, therefore, no counterpart in the lattice gas. 
lievedll ,14,15 that in real fluids, too, hole-particle The basis of our analysis, as it is ultimately developed 
symmetry is absent, the law of rectilinear diameters in Sec. III, is the assumption that the form of Eq. (1.1) 
fails, and J.I.(Pc, T) is not a single function of T analytic remains correct even when the lattice-gas symmetry is 
at T= Te. Such effects are being actively sought in lacking, provided that the three quantities J.I.(Pe, T), 
experimentl6 ; but because Eq. (1.1), with its implicit T-Te, and P=Pc are replaced by three others, chosen 
assumption of hole-particle symmetry and analyticity so that in terms of them the fluid has thermodynamic 
of J.I.(Pe, T), does hold quite accurately, deviations from symmetries closely analogous to those which the lattice 
lattice-gas symmetry in real fluids are slight at most gas has in terms of the original variables. The possibility 
and will be difficult to establish. But in anticipation of of the existence of such symmetry variables in real fluids 
those deviations being ultimately found, and to provide is suggested in the first place by the penetrable-sphere 
some guide as to how they may be sought, it is im- modelll and by Mermin's modelsI2 ,13; but we shall show 
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CRITICAL-POINT THERMODYNAMICS OF FLUIDS 617 

in Sec. II that the transcription and symmetry rules 
first found in the penetrable-sphere model apply 
equally well to a very much larger class of model 
fluids, which includes one derived from the binary 
mixture of Gaussian molecules.19- 21 

In all these cases there is found to exist a line of 
symmetry (see Fig. 1), with the property that for any 
thermodynamic state on one side of the line there is a 
conjugate state on the other side in which the thermo­
dynamic functions of the fluid are related by a simple 
(though model-dependent) transformation to those in 
the original state. In the two-phase region the line of 
symmetry coincides with the locus of the midpoints of 
the diameters of the coexistence curve, that is, with the 
locus of states in which the density P is the arithmetic 
mean HPl+Pg) of the densities PI and Pg of coexistent 
liquid and vapor. In all known cases the chemical 
potential on the line of symmetry (hence, in particular, 
in the two-phase region) is an analytic function of Tin 
the neighborhood of T= Te. The lattice gas also has 
such a line of symmetry; but because conjugate states 
in the lattice gas are those related by the simple particle­
hole transformation, the line of symmetry is there just 
the critical isochore, p= Pc; whereas more generally, as 
shown in Fig. 1, the line of symmetry in the T, P plane 
is more complex. In each of the models of the class 
discussed in Sec. II, and in each of Mermin's models,12,13 
the density on the line of symmetry, as a function of the 
temperature, has a singularity at T= Te that is like 
that in the energy, 

I P-Pc 1,-..", I T-Te II-a (line of symmetry), (1.2) 

where a is the index of the divergence of the constant­
volume specfic heat. Because in the two-phase region the 
line of symmetry coincides with the diameter of the 
coexistence curve, (1.2) implies the failure of the law of 
rectilinear diameters. (It fails also in the model of 
Hemmer and Stell,t4 which is of a quite different kind.) 

The whole of the development in Sec. III presup­
poses the existence of a line of symmetry with the 
properties just described. If in a real fluid the chemical 
potential in the two-phase region is analytic in T at 
T= Te, then an operational definition of the line of 
symmetry in the T, p plane is that it is the coexistence­
curve diameter in the two-phase region and, in the one­
phase region, is the curve on which the chemical 
potential is the same analytic function of T as it is in the 
two-phase region. So far as it is now possible to tell from 
experiment,9,22,23 the chemical potential in the two­
phase region is indeed analytic in the temperature at the 
critical point. Should it ultimately prove to be singular 
it will mean that the equation of state to be proposed in 
Sec. III applies at most only to model systems with 
special symmetries; while for real fluids, instead of 
p.(p, T) some other thermodynamic function, perhaps 
a combination of chemical potential and pressure that 

T 

B 

p 

FIG. 1. Line of symmetry (ACB) and coexistence curve 
(DCE) in the temperature-density plane. The critical point is 
at C. The portion CB of the line of symmetry is also the locus of 
midpoints of the coexistence curve diameters, defined by P = 
!(Pl+PK)' 

in the two-phase region is analtyic in T at T= Te, 
would have been the appropriate quantity in terms of 
which to express the equation of state. 

II. GENERAL TRANSCRIPTION AND 
SYMMETRY RELATIONS 

In order to provide a concrete basis for justification 
of our generalized scaling formalism, we now consider 
an infinite class of binary fluid mixture models. These 
mixtures will be related in turn to equivalent pure 
fluids, which we shall collectively call "penetrable­
sphere models." The two constituents of the starting 
mixtures (denoted by 1 and 2, with respective molecular 
numbers Nl and N2) interact only in unlike molecular 
pairs. The components then are separately ideal gases, 
but in the mixture the total potential energy U(Nl I N2) 

will have the form 

Nl N2 

U(Nll N 2) = 2: 2: u(1 ri-Sj I), (2.1) 
;=1 ;=1 

in which positions ri and Sj refer, respectively, to 
molecules of types 1 and 2. 

We shall require u to be nonnegative: 

u(x) ~O (x~O), (2.2) 

for otherwise the mixture would be subject to cata­
strophic collapse in the conventional infinite system 
limit. In addition it is mandatory to require an inte­
grability condition; for all B>O we therefore demand 

1'" ;rd-l min[B, u(x) ]dx< 00 (2.3) 
o 

(the dimensionality d need not be restricted to 3). 
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618 B. WIDOM AND F. H. STILLINGER 

Under conditions of sufficiently high density or low 
temperature, U can produce phase separation of the two 
components, and the resulting critical solution point 
forms the major object of attention here. 

The mixture grand partition function has the follow­
ing form: 

Za (Yl, Y2, (3",) = exp ({3mpm V) 

= L (YlNIY2N2/NtlN2!) 
NloN2 

x J drl'" J dSN2 exp[ -(3",U(Nl 1 N2)], 

{3m= l/kTm, (2.4) 

where the Yl and Y2 are absolute activities, V is the 
system volume, and the mixture temperature and 
pressure are denoted by T", and pm. The two species of 
molecules are mechanically identical, so the mixture 
possesses an obvious symmetry relation, 

pm(Yl, Y2, (3m) = pm (Y2, Yl, (3m). (2.5) 

This component interchange symmetry is analogous to 
(but not trivially isomorphous with) the Ising model spin 
reversal symmetry. 

Owing to the simple structure of U, shown in Eq. 
(2.1), the integrals over positions of all component 2 
molecules may immediately be carried out in Za to give 

exp({3mp",V) = L (YlNI/Ntl)Jdrl' .. drNI 
NI 

where 

NI 
W(rl" 'rNu (3m) = J ds exp[ -(3m L u(1 s-ri I)] (2.7) 

i==l 

is an effective volume available to a particle of species 2 
when those of species 1 have fixed locations. 

If positions rl" 'rNI were widely dispersed relative to 
the range of u, W would differ from the geometric 
volume V by Nl localized decrements Vo, 

W~V-NlVo({3m), 

This observation motivates writing Eq. (2.6) III an 
alternative way, 

exp[({3mPm-Y2) V]= L (l/Nd) IYl exp[ -Y2Vo({3m)]INI 
NI 

x f drl'" JdrNI exp I Y2[W (1 , , ,Nl, (3m) 

- V+N1Vo({3m)]I. (2.9) 

The last result may be cast into the form of a grand 
partition function for a pure fluid, at inverse tempera­
ture (3o= l/kT, by adjusting Y2 to the value, 

(2.10) 

where E is an arbitrary positive constant. By that 

means Eq. (2.9) adopts the form 

exp({3opV) = L (yNI/Nl!)Jdrl'" JdrNI 
NI 

X exp[ -(3o<I>(1 .. ·Nl )]. (2.11) 

In terms of the mixture model quantities, the pure-fluid 
pressure, activity, and potential energy have been 
identified as follows: 

p= ({3mpm-Y2) /(3o; 

y= Yl exp[ -Y2VO({3m)]; 

(2.12) 

(2.13) 

<I>(rl' . 'rN1) = [E/VO({3",) ][V - NlVo({3m) 

-W(rl·"rNlJ{3m)]. (2.14) 

Although variations in E merely change the energy scale 
for <I> , different choices for the temperature parameter 
{3m for the underlying mixture yield fundamentally 
distinct potentials <I>. 

We can write <I> as the following integral: 

(2.15) 
where 

(2.16) 

On account of the nonnegativity of u, Eq. (2.2), we 
have 

(2.17) 
Notice that 

(1-<1a) (1-L4) = l-<1a- L4+<1aL42:: 1-<1a- L4, 

(2.18) 

if the <1's satisfy condition (2.17). Then at least for 
N l = 1,2 the integrand in Eq. (2.15) is never positive. 
Suppose for some integer M2:: 1 it has been established 
that 

M M 
1-<1:; II (1-<1;)2::1- L <1;, 

i~l ;=1 

where of course o~ <1~ 1. Then 

M+l 
II (1- <1;) = (1- <1) (1- <1M+l) 
i=l 

;::: 1-<1- AM+l, 
M+l 

=1- L <1i. 
i=l 

(2.19) 

(2.20) 

Hence by induction Eq. (2.19) must be true for all 
M2:: 1. The integrand in Eq. (2.15) therefore is never 
positive, so 

(2.21) 

for every pure-fluid model derivable from our symmetric 
mixtures. 

In order to most conveniently discuss the pure-fluid 
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CRITICAL-POINT THERMODYNAMICS OF FLUIDS 619 

thermodynamic properties, we introduce the following 
dimensionless quantities: 

Z=VoY 

p= (N1)vo/V 

8=~fJo=~/kT 

1/>= vo(1) )/V~ 

1f= fJopvo 

(activity), 

(density), 

(inverse temperature), 

(potential energy density), 

(pressure). (2.22) 

The mixture symmetry relation (2.5) connects pairs of 
points (Yl, Y2, fJm) and (Y2, Yl, fJm) that map into another 
pair (z, 8) and (z', 8') for the pure fluid. By virtue of 
transcription relations (2.10) and (2.13), these con­
jugate points for the pure fluid satisfy the thermody­
namic identity 

8'=z exp(8). (2.23) 

Furthermore, Eqs. (2.5) and (2.12) require 

1f'+8'=1f+8. (2.24) 

After taking the logarithm of both sides of Eq. (2.9) 
and then differentiating with respect to Y2, a third 
conjugate thermodynamic identity results, 

p'=8(1-I/>-p). (2.25) 

Obviously Eqs. (2.23) and (2.25) must remain valid 
under interchange of primed variables for unprimed 
ones. 

The bilateral symmetry line Yl = Y2 in the mixture 
maps into the pure fluid locus, 

z=8exp(-8). (2.26) 

Above the critical temperature for the pure fluid, this 
relation describes a single curve in the p, T plane which 
intersects the critical point (see Fig. 1). Below the 
critical temperature, however, Eq. (2.26) generates all 
points on or within the coexistence curve; in particular 
coexisting phases of the pure fluid have 

8'=8, 

(vapor phase) , 

(liquid phase). (2.27) 

Clearly the chemical potential is analytic in 8 along the 
entire locus (2.26). 

Out of the infinite set of pure-fluid models which can 
be generated by mixture interactions of type (2.1), 
only two have thus far received special attention: 

(a) The specific penetrable-sphere model introduced 
by Widom and Rowlinsonll selects u to be the rigid 
sphere interaction, 

U(X)=+oo, 

=0, 

(O':::;X<u) 

(u':::;x) . (2.28) 

The elementary volume Vo will equal the content of the 
spherical exclusion region in d dimensions: 

Vo= 2"rl/2qd / dr(td), (2.29) 

independently of the choice for fJm. The potential 1> 
then measures the total overlap volume of the Nl 
exclusion spheres. 

(b) The Gaussian mixture modelI9 •20 trades the clean 
geometric directness of model (a) for cluster integral 
simplicity by requiring for all positive x, 

U(x) = -Uo In[1- exp( -ax2) J, (2.30) 

where Uo and a are positive constants. Then when fJm is 
chosen equal to uo-1, the Mayer f function becomes a 
Gaussian, 

exp[ -fJmU(X) J-1 = - exp( -ax2) , (2.31) 

and for that unique temperature the cluster integrals 
may be computed (irrespective of topological com­
plexity) by quadratic-form diagonalization. Although 
this artifice fixes fJm, the pure fluid temperature param­
eter fJo (Le., 8) is still free to vary. 

In view of the fact that thermodynamic scaling 
provides an accurate description of the symmetrical 
Ising ferromagnet near its critical point, and leads in 
turn to the lattice gas statement (1.1), it is appealing 
to suppose that scaling might also apply to our sym­
metric mixture models. That hypothesis has in fact been 
tested for the Gaussian mixture,2o and appears to be 
valid, with a set of exponents that are distinctly 
"nonclassical" in three dimensions. We have therefore 
proceeded on the plausible assumption that thermo­
dynamic scaling applies to all mixture models obeying 
Eqs. (2.1)-(2.3). 

A possible format in which to express the scaling 
property for the mixtures is the following: 

In (~) = (PI-P2) I PI-P2IH hm C~~:~~~:;n, (2.32) 

where Pa= (Na)vo/V, and Yo is the common value of Yl 
and Y2 at the critical point. The general transformation 
from mixture to pure fluid carries this manifestly sym­
metrical relationship into one which is unsymmetrical 
in the pure-fluid (penetrable sphere) version. The basic 
aim of this paper is investigation of new terms that 
arise under this symmetry-warping transcription, which 
carries the specific statement (2.32) into 

In (~) = ( _ ') I - ' 16- 11. (In (88' /(
02
)) (2.33) 

8 P P P P '''m Ip-p'II/1l . 

In the next section we in fact propose and study an 
equation of state of the form of Eq. (2.33) as the 
generalization of Eq. (1.1) that is appropriate for this 
whole class of penetrable-sphere models. 
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620 B. WIDOM AND F. H. STILLINGER 

III. EQUATION OF STATE IN THE 
NEIGHBORHOOD OF THE 

CRITICAL POINT 

We now consider a generalization of Eq. (1.1) that, 
so far as possible, preserves its form, yet differs from it 
in this important respect: It is no longer assumed that 
on the line of symmetry (on which the chemical poten­
tial is an analytic function of the temperature) the 
density is simply the constant Pc, but instead the density 
on the line of symmetry is allowed to be a singular 
function of the temperature, as in Eq. (1.2). 

If p.(p, T) is again the chemical potential of the fluid 
at density P and temperature T, and if the analytic 
function M(T) is the chemical potential on the line 
of symmetry at the same temperature T, then for all 
the models with a line of symmetry given by Eq. (2.26) 
we have 

[}.t(p, T)-M(T)J/kT= In (z/8e-4) = In(8'/8), (3.1) 

where, as in the preceding section, z and 8 are the 
activity and reciprocal temperature in the thermody­
namic state p, T and 8' is the reciprocal temperature in 
the conjugate state. If at the same time p' is, as before, 
the density in the conjugate state, then the appropriate 
generalization of Eq. (1.1) for this whole class of models, 
in the one-phase region, is 

In (8'/8) = (p-p')1 p-p' IH h[t(8, 8')/1 p-p' 11/IIJ, (3.2) 

where t(8,8') is any symmetric function of 8, 8' such 
that t(8, 8) == 1/8-1/8c• Notice that this slightly modifies 
Eq. (2.33). 

On the interchange of the primed and unprimed 
variables, that is, under the transformation from any 
one thermodynamic state to its conjugate state, both 
sides of Eq. (3.2) simply change sign, so the proposed 
relation is invariant to that transformation. This is 
analogous to the way in which the particle-hole sym­
metry of the lattice gas is reflected in Eq. (1.1), both 
sides of which change sign when p is replaced by the 
conjugate p' = 2Pe- p; because of the particle-hole 
symmetry p.(p, T)+p.(2Pe-P, T) =2p.(Pe, T). 

Because in the lattice gas the density on the line of 
symmetry, Pis, is just the critical density, Pc, the variable 
P-Pe that appears in Eq. (1.1) is both P-Pls and 
!(p-p'). In the generalization from Eq. (1.1) to Eq. 
(3.2) these are no longer equivalent, and it is important 
that !(p-p') rather than P-Pls be chosen to play the 
role previously played by p-pe. Had P-Pc in Eq. (1.1) 
been replaced instead by p- Pis, then on account of 
Eqs. (1.2) and (3.1) the thermodynamic function 
p.(p, T) would thereby have been made to be singular 
along the whole of the critical isotherm in the one­
phase region. No such spurious singularities appear 
when p- Pc is replaced by !(p- p'), for p', unlike Pis, is 
just another thermodynamic function-typically, as in 

Eq. (2.25), it is 8(1-cP-p), with cP the potential 
energy density in the state p, 8-and is therefore, like 
p. (p, T), analytic at all points in the one-phase region. 

That the left-hand side of Eq. (3.2) differs by the 
factor l/kT from being the strict analog of the left-hand 
side of Eq. (1.1), is of no consequence. Because 

T-1= [1- (T-Tc)/Tc+'" J 
Tc ' 

the left-hand side of Eq. (1.1) could equally well have 
been taken to be [}.t(p, T) -p.(Pc, T) J/kT without 
altering its asymptotic properties or the asymptotic 
properties of any of the thermodynamic functions de­
rived from it. Similarly, any function t in Eq. (3.2) 
that satisfies the conditions stated for it is in that same 
sense equivalent to any other, and it is a matter of 
indifference which is chosen. For technical reasons that 
will become clear later it is convenient to choose 

t(8, 8') = 1/ (88') 1/2-1/8c (3.3) 

but this choice has no fundamental significance. 
When P-Pc in Eq. (1.1) was replaced by !(p-p'), 

the resulting factors 2-6 in the coefficient multiplying the 
function hi and 21/11 in the argument of that function 
were simply made part of the definition of the new 
function h in Eq. (3.2). Except for such scale factors, 
the functions h in Eq. (3.2) and hi in (1.1) might well 
be the same. One must in any event require the same 
properties of h in Eq. (3.2) that are required of the 
analogous function in the lattice gas.1•5 (i) hen is an 
analytic function of r in the neighborhood of r=O. This 
is necessary again to avoid spurious singularities at the 
critical isotherm in the one-phase region. (ii) h(O) ~O, 
so that the critical isotherm is of algebraic degree o. 
(iii) r-1I(H)h(r) is an analytic function of r-211 near 
r-2I1=O, when r>O. This is necessary to avoid spurious 
singularities at the line of symmetry p= P' in the one­
phase region. (iv) r-6(H)h(r) has a nonvanishing limit 
as r-~+ 00 • This makes p. (p, T) - M (T) proportional to 
P- P' in the neighborhood of the line of symmetry and 
so leads to a finite, non vanishing compressibility there 
for all temperatures T> Te. Two further conditions, 
(v) and (vi), concern the behavior of h at the boundary 
of the two-phase region. The critical-point exponent (j 
is defined to be such that the algebraic degree of the 
coexistence curve in the temperature-density plane is 
1/{3, so that as the critical point is approached the co­
existence curve in the temperature-density plane is 
asymptotically of the form -t=a I p-p' II/II, with P 
and P' then the densities PI and Pg of coexisting liquid 
and vapor, with t(8, 8') then just 1/8-1/8e, and with a 
some positive constant. Then: (v) h( -a) =0, so that 
8'=8 and p.(p, T) =M(T) at the coexistence curve. 
(vi) The derivative h'( -a) exists, so that the com­
pressibility in the one-phase region remains finite as the 
coexistence curve is approached at any point other than 
the critical point. 
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+ 

The logical status of Eq. (3.2) with respect to the 
class of models discussed in Sec. II is the same as that 
of Eq. (1.1) with respect to the lattice gas, viz., that of a 
well-motivated conjecture, supported by experience, 
with no known contradictions. Equation (1.1), as 
already mentioned, has proven useful also in the inter­
pretation of the properties of real fluids. Similarly, the 
hope is that the present results, though most narrowly 
construed only as a description of the penetrable­
sphere models, may also prove useful in applications to 
real fluids. Some such generalization of Eq. (1.1) will 
in any event be required if or when p.(Pc, T) and the 
coexistence curve diameter, are found to be singular. 
That Eq. (3.2) may be more generally applicable than 
was at first intended is indicated by the fact that, if 
Eq. (1.1) is assumed to be correct for the lattice gas, 
then p.-M(T) for Mermin's bar model12 has the asymp­
totic form given by Eq. (3.2), even though the bar 
model is not one of the class of penetrable-sphere 
models.24 However, Eq. (3.2) is probably still too model 
dependent to be universal; it is in any case not in a 
convenient form for applications to real fluids, because 
as it stands it requires a knowledge of the thermody­
namic functions both in the given state and in its 
conjugate state. But the consequences of Eq. (3.2), as 
they are derived below, are ultimately stated in a form 
that makes no explicit reference to the models in which 
they originated, so those results may be directly ap­
plicable to any fluid with a line of symmetry, including 
real fluids if these prove to have one. 

The origin and status of Eq. (3.2) having now been 
explained, the remainder of this section is devoted to an 
examination of its consequences. The chemical potential 
p., the derivatives (aP./ap)T and (a2p./ap2h (the first of 
which is equal to 1/ p2x, where X is the isothermal com­
pressibility), the pressure p, and the constant-volume 
heat capacity c., as obtained from Eqs. (1.2), (3.2), 
and (3.3), are evaluated along one or more paths that 
pass through the critical point: the critical isochore, the 
line of symmetry, the coexistence curve, or the critical 
isotherm. Each function so evaluated is expressed as a 
leading term (or terms) plus correction terms, the 
leading terms being the same as in the lattice gas and the 
correction terms accounting for such deviations from 
lattice-gas symmetry as the nonanalyticity of p.(Pc, T) 
and the failure of the law of rectilinear diameters. An 
exception is (ap./aph on the critical isochore and on the 
line of symmetry, which is obtained for a purpose other 
than that of illustrating deviations from lattice-gas 
symmetry, and for which only the leading term is found. 

The results are in Table I. There follows here, for 
each of the five thermodynamic functions in turn, an 
outline of the derivation of the entries in Table I and 
remarks on their significance. 

A. p. 

It is being assumed that there is a line of symmetry 
on which the chemical potential is a function M(T) 
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622 B. WIDOM AND F. H. STILLINGER 

analytic at Tc, so the second and third entries for J./, in 
Table I are just M (T), and A_= O. The remaining 
entries for J./, are calculated from Eqs. (3.1)-(3.3) with 
P' and 8' assumed given by Eqs. (2.25) and (2.23), but 
the results are then expressed in a language that makes 
no explicit reference to any model. 

On the critical isochore in the one-phase region 
(T> Tc), the potential energy density cf> is assumed to 
be of the form cf>c+terms of order (T-Tcp-a, where cf>c 
is the value of cf> at the critical point and ex is the index 
of the divergence of C; and explicit use is made of 
property (iv) of the function h. On the critical isotherm 
cf> is found from the thermodynamic identity (iJcf>jiJp)8= 
(iJ InzjiJ8) p, and explicit use is made of property (ii) of 
the function h. 

It is found that on the one-phase portion of the 
critical isochore, near the critical point, J./,-M(T) is of 
order (T-Tcp-a+P(6-l). But in Sec. IILB, below, 
(iJJ./,jiJph is found to vanish as (T-Tc)P(6-l), so that 
Eq. (3.2), like the earlier Eq. (1.1), entails the exponent 
relation 'Y={3(0-l), where 'Y is the index of the diverg­
ence of x. Thus, the correction term in J./, on the critical 
isochore may be expressed as (T-Tc)'Y+ I - a, and it is so 
entered in Table L This result was already obtained 
for the penetrable-sphere model much more simply,!l 
and it is rederived here only to verify the consistency 
of the present theory. 

In the lattice gas, J./, is analytic on the critical isochore, 
so A:I:(T-Tc)'Y+I - a is the first example of a term that 
has no counterpart in the lattice gas and that begins to 
account for derivations from particle-hole symmetry. 
As remarked earlier,!l this correction to J./, on the critical 
isochore does not affect its continuity at the critical 
point nor that of its first two temperature derivatives, 
so it is hardly conceivable that it will ever be seen in 
experiment with any certainty. It is in fact character­
istic of all the predicted deviations from lattice-gas sym­
metry that they will be very difficult to establish experi­
mentally. 

In the expression for J./, on the critical isotherm, as 
entered in Table I, the correction term that appears in 
the brackets is of order I p- Pc IH/P, which is roughly of 
order (p_Pc)2. It will be found in Sec. IILD, below, 
that the corresponding correction term in the expression 
for p on the critical isotherm is of order (p- Pc). This 
significant difference between J./, and p is due to its 
having been J./, rather than p that was, in the first place, 
imagined to be analytic on some line of symmetry, and 
therefore to its having been J./, rather than p that was 
directly given in the basic equation of state Eq. (3.2). 
The term of order I p- pc 1

6- I/P in the brackets agrees 
with the corresponding term as given by Green, 
Cooper, and Levelt Sengers. It is of lower order (i.e., 
larger) than the term of order I p-pc 11/fJ, roughly of 
order I p-pc 13, which appears in the analogous place in 
Domb's estimatel8 of the corrections in the lattice gas 
that arise from being outside the final asymptotic 

region around the critical point; so this is the first 
indication that the corrections due to deviations from 
particle-hole symmetry are the more important. This is 
true also in two dimensions, where 0-1/ {3= 7 while 
1/{3=8. 

This density derivative follows from the same basic 
equations that yielded J./,. It may be evaluated on those 
portions of the critical isochore and the line of sym­
metry that are in the one-phase region, by making 
explicit reference to properties (iii) and (iv) of the 
function h. Only the leading terms in (iJJ./,/iJph are found 
in those cases; for the purpose of finding (iJiJ./iJph 
there is only to verify that it is of order (T-Tc){J(6-1). 
Thus, as explained in IILA, one may conclude from 
the definition of the exponent 'Y that 'Y={3(0-1), and 
(T-Tc)P(H) may thereafter be called (T-Tc)'Y in 
Table L It is of interest that the same coefficient D 
(see Table I) appears both on the critical isochore and 
on the line of symmetry. To evaluate (iJJ./,jiJph at the 
coexistence curve (approached through the one-phase 
region), which is the remaining entry in the second line 
of the table, requires recognition of properties (v) 
and (vi) of h. The correction term, represented by 
F:I:(Tc-T)'Y-H{J in the brackets, is of interest for two 
reasons. First, it is essentially equivalent to the ob­
servation of Mermin and Rehr25 that as the critical 
point is approached the difference between the iso­
thermal compressibility X in the liquid and vapor 
phases diverges proportionally to (Tc- T)-HP. Second, 
(Tc- T)'Y-H{J, because of the expected exponent rela­
tion ex+2{3+'Y= 2 which is verified in IILE below, 
is larger than (Tc - T) ; so this provides another example 
of a deviation from particle-hole symmetry leading to a 
more important correction than the one that Dombl8 

estimates to be present in the lattice gas. 

C. (iJ2J./,jap2)T 

This second density derivative, evaluated on the 
critical isochore in the one-phase region, is of interest 
because it vanishes in the lattice gas. Thus, even the 
leading term is now associated with a deviation from 
particle-hole symmetry. The result quoted in Table I 
is equivalent to one first found by Swift26 using Kada­
noff's operator calculus27 .28 together with an assumption 
about the form of the density operator that was 
motivated by one of the modelsl3 in which particle-hole 
symmetry is lacking. The coincidence in the results 
of the two calculations verifies the mutual consistency 
of the quite different sets of ideas that underlie them. 

D. P 

The basic idea behind the calculation of p, and 
thence also of C. in IILE below, is the following. 

At a fixed value of the product 88', we have from 
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Eq. (2.23), 

(1+o-1)dO+d Inz=O (88' fixed). (3.4) 

But with 7r again the dimensionless pressure-to-tem­
perature ratio, as in Sec. II, we have by thermodynamic 
identity 

d(-n+8) = (1-ct»d8+pd Inz, 

so from Eqs. (2.25) and (3.4), 

d(7r+8) = - (p-p')d In8 (88' fixed). 

At the same time, from Eqs. (2.23) and (3.4), 

(3.5) 

(3.6) 

dln(8'/8)=-2dln8 (88' fixed). (3.7) 

Then from Eqs. (3.6) and (3.7) there follows 

(
a(7r+8») =1.( _ ') (a In(8'/8») (3.8) 
a (p- p') 88' 2 p P a (p- p') 88,' 

which holds for the whole class of models discussed in 
Sec. II. It is the existence of the relation (3.8) that 
dictates (3.3) as the convenient choice for the function 
t(8, 8'). Equation (3.8) is to the equation of state (3.2) 
as the simpler identity (ap/ap)r= p(aJ.L/ap)T is to the 
lattice-gas equation (1.1); the same technique previ­
ously used1 to obtain p from Eq. (1.1) may now be 
used to obtain 7r+8 from Eq. (3.2). 

The result is that if (7r+8) Is means 7r+8 evaluated 
as a function of t= 1/(88')1/2-1/8c on the line of sym­
metry, then 

f
allfl 

7r+8= (7r+8) Is+~ y-13(8+1)-1g(ly)dy 
I p-p'l-lI~ 

+At13(8+1)l(t), (3.9) 

where the function g is related to the function h in the 
equation of state by 

(3.10) 

where A is the constant 

(3.11) 

and where 1 (t) is the unit step function, equal to 1 
when t>O and ° when 1<0. By property (i) of h, the 
function g(r) defined by (3.10) has a power series 
expansion, 

(3.12) 

Because 11"+8 must be analytic in t at t = ° for all fixed 
p-p' other than p-p'=O, the singular part of (7r+p) Is 
may be explicitly isolated from (3.9) and expressed in 
terms of the coefficients g .. , 

(7r+8h=w(t) + (-Al(t)- a13~1) 

X t g.. (±a)n) 1 t 113(6+1), (3.13) 
n-O n-~(o+l) 

where w(t), the nonsingular part of (7r+8) Is, is analyict 
at t=O, where ± means + when 1>0 and - when 
t<O, and where the formula is subject to the usual 
modification1 in the event that ~(o+1)=2 (which 
corresponds to a logarithmic divergence of C.). In these 
terms, Eq. (3.9) may be re-expressed as 

(7r+8) =w(t) -~ t g.. tn 1 p- p' 1-[n-13(8+1))/13, 
.. =on-~(o+l) 

(3.14) 

which is the more convenient form near t= ° and near 
the critical isotherm, although the original Eq. (3.9), 
with (3.13), is the more convenient near the line of 
symmetry p-p', and near the critical isochore. 

With 8' and p' assumed given by Eqs. (2.23) and 
(2.25), and with J.L (hence also z) already known on the 
critical isotherm, 7r (hence also p) on the critical 
isotherm may be calculated from Eq. (3.14). The result 
is entered in Table 1. The difference between the form 
of the correction term in p and that of the corresponding 
term in J.L has already been commented upon. It should 
be observed that the quoted form of p is an inevitable 
consequence of that of J.L simply because of the thermo­
dynamic identity (a7r/ap)8= pea lnz/ap)e, so it is not 
necessary that p on the critical isotherm be obtained 
via Eq. (3.14), but obtaining it by that route provides 
a useful test of consistency. 

C. is later seen to diverge as 1 T - Tc 113(8+1)-2, so we 
have the expected exponent relation ~(o+ 1) = 2-a. 
Where the exponent ~(o+l) appears it may then be 
replaced by the more familiar 2-a, and that has been 
done in the remaining entries for p in Table 1. The 
pressure on the line of symmetry, as given in the table, 
is an immediate consequence of Eq. (3.13). The pressure 
at the coexistence curve, as well as on that portion of 
the critical isochore that lies in the two-phase region, 
is the same as the pressure on the line of symmetry 
T<Tc. 

The behavior of p on the critical isochore when 
T> Tc follows from Eqs. (3.9) and (3.13) and from the 
already known behavior of J.L. (The latter is relevant 
because z appears in 8' and therefore in t.) In the 
resulting expression for p we do not have in the brackets 
any correction term of order 1 T-Tc 1

1-a-13, though such 
a term is found in the work cited in Ref. 17. It is pointed 
out by Rehr29 that that term disappears when, as here, 
it is assumed that there is a line of symmetry. 

E. C. 

Thermodynamically, C. is intimately connected to p 
in a number of ways. For the model systems of Sec. II 
it may be shown that 

d~ (c.-p) (dp/dO) 2 

d82 = -82-- + pZx (on line of symmetry) 

(3.15) 
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and 

d27r/d02= (c.-p)/02 (in two-phase region), (3.16) 

where the appropriate dimensionless variables, like 
those defined in Sec. II, are being used, and where in 
particular Cv is a dimensionless form of the heat capacity 
per unit volume Cv/V. 

Cv on the critical isochore in the two-phase region 
follows from Eqs. (3.16) and (1.2), and from the 
properties of 7r as determined in III.D, above. The 
result is entered in Table I. Note that S_=O, so that on 
the two-phase portion of the critical isochore there is in 
the brackets no analog of the term X± I T-Tc II-a 
subsequently found there for C. on the line of sym­
metry. 

It is convenient to next find C. on the line of sym­
metry, before completing the evaluation of C. on the 
critical isochore by extending the calculation to the 
one-phase region. The compressibility X in the one­
phase region diverges so rapidly as the critical point is 
approached that the second term on the right-hand side 
of Eq. (3.15), despite the diverging value of dp/ dO on 
the line of symmetry that is implied by Eq. (1.2), 
proves not to contribute to C. to within the accuracy 
with which the latter is ultimately quoted. It is also to 
be recognized that Cv is essentially V Cv, and that 
according to Eq. (1.2) the volume V of the fluid on the 
line of symmetry differs from its volume Vc at the 
critical point by an amount that is proportional to 
I T-Tc II-a. Then Cv on the line of symmetry follows 
from Eqs. (3.15) and (1.2), and from the properties of 
7r as determined in III.D, above. The resul t is given in 
Table I. 

The remaining entry in the table, which is Cv on the 
one-phase portion of the critical isochore, may now also 
be found. If Co' and C." are, respectively, the values of 
Cv on the line of symmetry and on the critical isochore, 
both at the same temperature T> Te, and if V' and V" 
are the corresponding values of V, then 

Co"""Cv' + (acv/aVh(V"- V'), (3.17) 

where (acv/avh, which by thermodynamic identity is 
also T(a2p/ap)v, may be imagined evaluated on the 
critical isochore at the temperature T. But a2p/ap)v 
on the critical isochore is known from IILD, above; 
Co' has just been calculated; and V" - V' is known from 
(1.2) to be of order (T-Te)l-a. Thus, Cv", which is Cv 
on the critical isochore at T> Te, may now be evaluated. 
The result is in the table. The argument given here, 
taken alone, would have left open the possibility of a 
term S+ I T - Te II-a in the brackets, but more detailed 
calculation29 shows that the terms of that magnitude 
that come from the two terms on the right-hand side 
of (3.17) cancel exactly, so that S+, like S_, is O. 
As seen above, the reason such terms are present on the 
line of symmetry is that C. is essentially V times the 
simpler heat capacity per unit volume Cv, and it is just 

that factor V which contributes the extra correction 
term. But on the critical isochore V is constant, so no 
correction term comes from this source. 

In all these calculations the leading term in Cv first 
appears as a term proportional to I T - Te 1"(0+1)-2; but 
then, as mentioned in the earlier discussion of p, this 
very fact allows 2-,8(0+ 1) to be identified as the 
specific heat exponent a, and to be so called in the table. 
[Because it was previously verified that ,8(0-1) =')', 

this also entails the relation a+ 2,8+')' = 2, as was 
anticipated earlier.] 

The terms proportional to I T - Tc la that appear 
inside the brackets, when combined with the factor 
I T - Tc I-a outside, yield constants, which are then 
just part of the analytic background in C •. The next 
terms in the brackets, proportional to I T-Te II-a, 
yield the first singular corrections. For Cv on the critical 
isochore, just as for p on the critical isochore, Green 
et al. l7 have in the brackets a term proportional to 
I T - Te II-a-Il of which we have no counterpart. Such a 
term would in any case be smaller than I T - Te la. 

IV. DISCUSSION 

The foregoing considerations raise several funda­
mental issues that demand further attention, both from 
experimental and theoretical points of view. 

(a) Although the types of asymmetries suggested by 
this and related work have not yet been visible in 
experiments on real fluids, we feel the search should 
vigorously be pursued. To be sure, there are discrepan­
cies between the corrections suggested by the various 
theoretical approaches. But all agree that the rectilinear 
diameter hypothesis should break down, and they agree 
that the breakdown should entail a "l-a" singularity. 
This aspect then remains one of the best candidates for 
test of hole-particle symmetry absence in real fluids. 

Specifically, it might be advantageous to make careful 
optical measurements vs Tc- T of the interface height 
in a sealed cell containing an average density precisely 
equal to Pc. The conventional rectlinear diameter law 
would have this height vary as (Tc-T)I-", and 
increase as T approaches Tc from below. The extended 
scaling approach advocated here however requires that 
sufficiently close to Te the interface position should vary 
as (Tc-T)I-a-Il, while also increasing with T. The 
distinction may well be experimentally visible.30 

(b) In spite of the fact that the thermodynamic 
scaling hypothesis seems plausible for the entire class of 
mixtures discussed in Sec. II, direct support is available 
only from the Gaussian mixture. Although indirect 
support is also offered by success of scaling for the 
Ising model (in its binary alloy guise), one would like 
a further more direct test. A likely possibility seems to 
be the binary mixtures for which unlike-pair repulsive 
interactions describe oriented squares (d= 2) or cubes 
(d= 3) .31 These models do not possess the rotational 
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symmetry of U(Nl I N2) in Eq. (2.1), but like the 
Gaussian mixture their cluster integrals can be reduced 
to elementary form regardless of topological complexity. 
Standard series analysis could then be used to test for 
those critical exponent relations which are required by 
scaling. 

(c) One of the most intriguing theoretical questions 
that remains is the analyticity at Tc of the coexistence 
chemical potential, as a function of T. That all known 
models imply analyticity may merely reflect the fact 
that they possess an internal symmetry in some version 
(spin reversal for the Ising model, component inter­
change for our mixtures). Therefore we stress the 
desirability of expending effort either to find a new 
model which violates chemical potential analyticity, or 

·Permanent address: Department of Chemistry, Cornell 
University, Ithaca, N. Y. 14850. This author also 
acknowledges support from the Office of Saline Water, U.S. 
Department of the Interior, and from the Advanced Research 
Projects Agency through the Materials Science Center at 
Cornell University. 

18. Widom, J. Chern. Phys. 43, 3898 (1965). 
2L. P. Kadanoff, Physics 2,263 (1966). 
3c. Domb and D. L. Hunter, Proc. Phys. Soc. Lond. 86, 1147 

(1965). 
4A. Z. Patashinskii and V. L. Pokrovskii, Zh. Eksp. Teor. Fiz. 

50,439 (1966) [Sov. Phys.-JETP 23, 292 (1966)]. 
SR. B. Griffiths, Phys. Rev. 158, 176 (1967). 
&r. D. Lee and C. N. Yang, Phys. Rev. 87,410 (1952). 
7M. S. Green, M. Vicentini-Missoni, and J. M. H. Levelt 

Sengers, Phys. Rev. Lett. 18, 1113 (1967). 
8M. Vicentini-Missoni, J. M. H. Levelt Sengers, and M. S. 

Green, Phys. Rev. Lett. 22, 389 (1969). 
9M. Vicentini-Missoni, 1. M. H. Levelt Sengers, and M. S. 

Green, J. Res. Nat!. Bur. Stand. (U.S.) A 73, 563 (1969). 
10M. Vicentini-Missoni, R. I. Joseph, M. S. Green, and J. M. 

H. Levelt Sengers, Phys. Rev. B 1,2312 (1970). 
118. Widom and J. S. Rowlinson, J. Chern. Phys. 52, 1670 

(1970). 
12N. D. Mermin, Phys. Rev. Lett. 26, 169 (1971). 
13N. D. Mermin, Phys. Rev. Lett. 26, 957 (1971). 
l'p. C. Hemmer and G. Stell, Phys. Rev. Lett. 24, 1284 (1970). 
IsN. D. Mermin and J. 1. Rehr, Phys. Rev. Lett. 26, 1155 

(1971). 
16J. M. H. Levelt Sengers, J. Straub, and M. Vicentini-Missoni, 

J. Chern. Phys. 54, 5034 (1971); A. B. Cornfeld and H. Y. 
Carr, Phys. Rev. Lett. 29, 28 (1972). 

17M. S. Green, M. J. Cooper, and J. M. H. Levelt Sengers, 
Phys. Rev. Lett. 26,492 (1971); Phys. Rev. Lett. 26, 941 
(1971). See also the more recent work: M. J. Cooper, Phys. 
Rev. A 5, 318 (1972); F. J. Cook and M. S. Green 
(unpublished), and M. J. Buckingham, Phase Transitions and 
Critical Phenomena edited by C. Domb and M. S. Green 
(Academic, London, 1972), vol. 2, chap. 1 in which there are 

to discover a deep reason why analyticity is universally 
to be expected. 

(d) Finally, we remark that corrections to the strict 
scaling behavior for molecular distribution functions2 

could also be examined using the same strategy that 
has been employed here for thermodynamic behavior. 
One would initially assume that scaling applied to the 
distribution functions of the binary mixture, invoking 
the symmetry as justification, and then analyze 
asymmetries generated by the transcription to the single­
component penetrable-sphere fluid. 

ACKNOWLEDGMENTS 

We are grateful to J. M. H. Levelt Sengers and to 
J. Rehr for helpful comments. 

proposed more general equations of state, encompassing both 
that of Green et al. in this reference and that of Domb in 
Ref. 18 below. 

18C. Domb, seminar at summer school on "Critical 
Phenomena," Varenna, Italy, july 1970 (proceedings 
unpUblished). 

19F. H. Stillinger, Jr., and E. Helfand, J. Chern. Phys. 41, 2495 
(1964). 

2oE. Helfand and F. H. Stillinger, Jr., J. Chern. Phys. 49, 1232 
(1968). 

21J. S. Rowlinson was the first to observe that the mixture of 
Gaussian molecules (Refs. 19 and 20) is related to a 
thermodynamically equivalent one-component system by the 
same transciption which, applied in reverse, relates the 
penetrable-sphere model to a thermodynamically equivalent 
two-component system (Ref. 11). We are grateful to 
Professor Rowlinson for communicating to us his results, on 
which we based the further generalization given in Sec. II. 
See also T. W. Melnyk, 1. S. Rowlinson, and B. L. Sawford, 
Mol. Phys. 24, 809 (1972). 

228. Wallace, Jr., and H. Meyer, Phys. Rev. A 2, 1563 (1970). 
23H. A. Kierstead, Phys. Rev. A 3, 329 (1971). 
2'G. Mulholland (private communication). 
2sN. D. Mermin and J. J. Rehr, Phys. Rev. A 4, 2408 (1971). 
261. Swift (private communication). 
27L. P. Kadanoff, Phys. Rev. 188,859 (1969). 
28L. P. Kadanoff, Phys. Rev. Lett. 23, 1430 (1969). 
291. Rehr (private communication). For an approach that is 

close to ours in strategy and in its final results, but is 
formulated rather more generally, see J. Rehr, Ph.D. thesis, 
Cornell University, Ithaca, N. Y., 1972. 

»ntis discussion assumes that gravity only serves to fix the 
vertical ordering of phases with a flat interface. In a real 
experiment, of course, hydrostatic compression effects must 
be very carefully analyzed; this would probably require 
separate measurement of the density profile. 

31 J. P. Straley, M. A. Cotter, T.-I Lie, and B. Widom, 1. Chern. 
Phys. 57,4484 (1972). 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Wed, 08 Jan 2014 04:58:17


