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Structure in Aqueous Solutions of
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Underlying assumptions have been examined in scaled-particle theory for the
case of a rigid-sphere solute in liquid water. As a result, it has been possible to
improve upon Pierotti’s corresponding analysis in a way that explicitly incor-
porates measured surface tensions and radial-distribution functions for pure water.
It is pointed out along the way that potential energy nonadditivity should create
an orientational bias for molecules in the liquid-vapor interface that is peculiar
to water. Some specific conclusions have been drawn about the solvation mode
for the nonpolar rigid-sphere solute.
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1. INTRODUCTION

The scaled-particle theory of classical fluids offers a powerful conceptual and
computational framework within which to examine molecular order and
thermodynamic properties. This fiethod was originally devised to describe
only the rigid-sphere model without attractive forces.!!*? Nevertheless, its
scope has since been increased to include models for a wide class of real
substances.®® Furthermore, the underlying theory has been substantially
strengthened and deepened in comparison to its early version.®~®

The initial attempts to apply scaled-particle theory to liquid water were
disappointing. Both the surface tension and the isothermal compressibility,
along the saturation line from 0° to 100°C, were predicted to be too low and
to have improper temperature variations.® In view of the strong, directional,
and nonadditive interactions that operate in water to produce extensive
hydrogen bonding, this failure seems hardly surprising.

1 This paper is substituted for the talk given at the symposium, “The Physical Chemistry of
Aqueous Systems,” held at the University of Pittsburgh, Pittsburgh, Pennsylvania, June
12-14, 1972, in honor of the 70th birthday of Professor H. S. Frank.

2 Bell Laboratories, Murray Hill, New Jersey 07974.
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One of the key quantities in the scaled-particle theory is W(1), the amount
of reversible, isothermal work necessary to create a spherical cavity of radius
Aa in the fluid of interest, whose interior is devoid of molecular centers.
Following the usual convention, we use a here to denote a convenient fixed
molecular length, and A varies in the range 0 < A < . In order for a nonpolar
spherical solute molecule to dissolve in a liquid, it must at least have available
to it the requisite cavity; as a consequence, W(4) for the appropriate size
Aa becomes an important contribution to the solubility of that nonpolar
solute.1® :

Pierotti'" has specifically applied the scaled-particle theory to description
of aqueous solutions of nonpolar gases. Somewhat surprisingly, he finds that it
is possible to predict heats, entropies, and molar heat capacities of solution
merely under the assumption that the water molecules arrange themselves
spatially in the pure liquid as would rigid spheres of appropriate size. In view
of the current understanding about the interactions between water mole-
cules,*#19 this apparent success must be somewhat fortuitous. Certainly,
the molecular structure in water revealed by x-ray scattering experiments”
seems quite different from that appropriate to rigid spheres. It is therefore
the purpose of this paper to reexamine one aspect of application of scaled-
particle theory to aqueous solutions of spherical, nonpolar solutes, with the
aim of restoring chemical detail.

For completeness, Sec. 2 provides an outline of the main ingredients in
the scaled-particle theory as well as some numerical results for Pierotti’s
specific method of application. Section 3 discusses the character of the planar
water interface that obtains in the A — o limit and points out some features
of molecular arrangements in the interface that are peculiar to water.

We offer in Sec. 4 a more detailed version of scaled-particle theory for
water as a solvent than has heretofore been available. This version incorporates
both measured surface tensions and radial-distribution functions for the pure
liquid. The results are interpreted in Sec. 5 in a way that accords with the
special nature of intermolecular forces in water.

2. PRELIMINARY RESULTS

Consider a set-of N molecules confined to the interior of a region with
volume V. Thermal equilibrium at absolute temperature T will be assumed.
For the moment, at least, no special restrictions need to be imposed about the
internal structure of the molecules or about the way in which they interact
with one another.

We wish to examine the way that this N-molecule solvent responds to
the insertion of a special type of solute particle. This solute particle has the
property that it interacts with the solvent molecules only in being unable to
get closer than distance Aa to the center of each. Thus each solvent molecule
has associated with it an exclusion sphere of radius Aa, and the center of the
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solute particle must forever remain outside of all of these exclusion spheres.
Equivalently, solvent melecules are excluded from a sphere of radius Aa
surrounding the solute particle.

The probability P(4) that a randomly chosen position in the pure solvent
lies outside of all exclusion spheres is equal to the fraction of ¥ uncovered by
those spheres. This probability can in turn be related® to the cavity-creation
work W(A) mentioned previously:

P(%) = exp [-W(A)/kT] 1)

where k is Boltzmann’s constant. If 4 is zero, P =1 and W = 0; by contrast,
P(2) will be very small for large positive A, and W(2) will be large and positive
since many solvent particles would normally have to be moved out of the way
to create an uncovered location.

For arbitrary 4, the density of solvent molecule centers, at the surface of
the empty radius-Aa sphere S, surrounding the solute, is traditionally denoted
by pG(4), where

p=N|V 2)

By considering the work expended during increase of the solute size from 0
to Aa, it may be shown‘V that

W()kT = dnpa® j : WY G)dX 3)

Another fundamental relation in the scaled-particle theory results from
expressing P(4), the probability that S, is empty, in terms of molecular
correlation functions g™ for molecular centers in the pure solvent. One thus
has the following identity: ("

P =1+ 3 (ot [ dryooo [ drg®om) @

The terms in this series will all vanish for orders n exceeding the maximum
number of solvent molecule centers that can be packed into sphere S,.

Let a be the distance of closest approach of two solvent molecules to
each other. Then when 0 < A < 4, all terms in (4) beyond n =1 vanish. Since
gV =1, we then have in this initial A range

P(J) =1 — (4npa?/3) 2
W(A)/kT = —In[1 — (4npa?/3) A3] &)
G(A) = [1 — (4npa?(3) 23]

As A begins to exceed 4, two solvent centers can fit into S,, so the n =2
term in series (4) begins to contribute. Nevertheless, each of P(1), W(4), and
G(%) remain continuous and differentiable at A = 4, and only the last of these
three functions can suffer a simple discontinuity in its second A derivative
there.
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As A — o, W(A) becomes dominated by work against the external pressure

p and against the surface tension y for the cavity—solute interface.> Thus we
have

W(A) = (4npa®|3) 23 + (4ny, a*) A> — (16my, da) A + O(1) 6)

here y,, stands for surface tension in the planar interface limit, and é provides
the leading curvature dependence for the mechanical tension y:(®

7~ Yall — (26/4a)] ™

The integral connection (3) between W and G allows us to conclude that the
latter has the following large-A behavior:

G(A) = (plpkT) + (2y/pakT)|A — (4y ,8/pa* kT)[A* + -+ ®)

Insofar as G is concerned, the essence of Pierotti’s calculation is to
consider the three terms explicitly shown in Eq. (8) to be alone an adequate
approximation for all A > 4. The pressure p is chosen according to experi-
mental circumstances, and the solvent contact distance a is assigned the value
2.75 A (at least below 70°C). The requirement that the 1 > 4 approximation
to G must continuously and differentiably connect to the exact expression (5)
at A =4 then allows one to calculate y, and 6. The results are the following:

3ykT | 1 3 y p
Yo = ) - - (9)
ma® |1—y 2 (A —y? pkT
s=—ol14 3 (10)
8 2+y—2(1 —y)*(p/pkT)

where y = npa3/6.

Table I lists some values computed for y, and é by Egs. (9) and (10) at
selected points along the saturation curve for water. The table also includes
the measured liquid—vapor interfacial tension for comparison, as well as the
dimensionless compressibility factors p/pkT.

Once 7, and é have been evaluated, G(1) may then be obtained. Figure 1
shows the resulting G(A) at 25°C (and the corresponding pressure for the
vaporization curve). Its most distinctive feature is the maximum at Aa = 2.009
A. Similar maxima occur for other temperatures, always at

(AQ)max = 40 1)

in this Pierotti approximation. Evidently the predicted G’s are rather insensitive
to temperature below 100°C.

The most significant point to realize about this approximation for G(2)
is that the only explicit information it requires about the molecular structure
of water is a, the distance of closest approach. Thus water could as well as

3 The Gibbs dividing surface for which y is appropriate is the geometric surface of S;.
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Table I. Surface Tension (y,) and Curvature Parameter (§) Calculated for
Liquid Water at Its Saturated Vapor Pressure® Using the Pierotti Approxi-

mation®
t P 71.(expt) ¥ [Eq. (2.9)] ¢ [Eq. (2.10)]
°C) (10**cm™) PIpkT (dyncm™') (dyn-cm™*) A)

4 0.033443 6.3533 x 10~¢ ©75.07 51.44 0.5026
25 0.033346 2.3068 x 10~3 72.01 54.97 0.5022
50 0.033043 8.3683 x 103 67.93 58.35 0.5010
75 0.032599 2.4606 x 10~* 63.49 60.96 0.4992
100 0.032043 6.1391 x 104 58.78 62.86 0.4970
200 0.028917 8.2325 x 1073 37.81 63.82 0.4845
300 0.023818 4.5597 x 102 14.39 52.18 0.4648

2 Measured values for p, p, and y,, have been taken from E. Schmidt, Properties of Water and
Steam in SI Units (Springer-Verlag, New York, 1969).
® The molecular size a has been assumed to remain constant at 2.75 A.

not have consisted of rigid spheres (with long-range attractive forces to
stabilize the liquid), and no interaction anisotropy.

The shape of the G(X) curve is intimately related to the occurrence of
“contact pairs” of solvent molecules at the solute’s exclusion cavity S;. As
Fig. 2 shows, we consider two infinitesimal volume elements dv, and dv, in
contact with (but exterior to) the exclusion sphere and separated by angle 0
measured from the center of that sphere. The probability that both dv, and
dv, are simultaneously occupied by solvent molecule centers then may be
written :

p? GD(A, 4, 0) dv, dv, ' (12)

xa (A)
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N
Fig. 1. G(2) for liquid water, calculated in the Pierotti approximation. The temperature is
25°C, and the pressure is that of the vapor-pressure curve. The maximum occurs at da =
2.009 A.
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Fig. 2. Arrangement of differential
volume elements dv, and dv, on the
solute exclusion sphere, used in definition
of the contact-pair correlation function
G?(4,4,0).

thereby introducing a contact-pair analog G® of the singlet quantity G.
For very large A and nonzero 6, we naturally expect to have the reduction

G?(,2,0) ~ [GA)P (13)

that results from statistical independence of dv, and dv,.
A general relationship has been derived” which links G and G-

3G(A)|04 = —2mpa® 22 fo d0sin 6(1 — cos ){G>(4, 4, 6) — [GA)?}
(14)

Thus the rate of change of G with A depends specifically on the deviations of
G® from the asymptote (13); those deviations in turn sensitively reflect the
arrangement patterns preferred by solvent molecules around the solute.

When 0 < 4 < 4, at most one solvent molecule can be in contact with S,
so G® must vanish for all angles 0. Equation (2.14) then reduces to

0G(1)[|04 = 4npa® 2 [G(A))P (0<i<P) : 15)

One easily verifies that the last expression in (5) satisfies this differential
equation.
At the maximum in G(%), one must have

0= fo d9'5in (1 — c08 0) {GX(Lmass Amars 8) — [G(Rman) P} (16)

This identity would seem to be potentially useful in deciding what must be the
geometric nature of the solvation sheath for this specific interesting solute
size.

The partial molar volume of a solute at infinite dilution, #®, roughly
speaking, represents three distinct contributions:

1. The first is the volume increase that would result even for a point
particle (not interacting with the solvent molecules) on account of its kinetic
contribution to the pressure. The magnitude of this part will be proportional
to the pure solvent’s isothermal compressibility.
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2. Thesecond is just the geometric volume occupied by the solute particle.
In the general case, there may be some ambiguity about the precise magnitude
of this volume, but for the present model solute it is clearly (1) = 4na®A3/3.

3. Finally, one expects that solvent molecule rearrangement to accom-
modate the solute particle will normally result in a change in packing efficiency
for those solvent molecules.* This will also contribute to 7.

It is known® that @ for our model solute may be written in terms of
G(2):

5O(2) = (KTIp) (@p/3p)r + 7(3) + 470 KT (@p[op)y [, dA ('Y

x (9/9p) [pG(A") — (p/kT)] 17)

The three terms added together in the right member, are respectively, the
three contributions (1), (2), and (3) just mentioned.

Entropy provides a fundamental thermodynamic parameter for measur-
ing structure in the solution. From the standpoint of the statistical theory of
the present nonpolar solute model, the most revealing comparison occurs
between entropy for the pure solvent plus noninteracting point solute (all in
volume V) and entropy for the same number of water molecules plus repulsive
solute molecule in volume V + 7(4). With this convention, the volume accessible
to the centers of solvent molecules is unchanged, and the resulting entropy
variation measures only the result of restructuring around the inserted
exclusion sphere. The Helmholtz free energy associated with expansion of the
solute sphere (4 increasing from zero to the required final value) and the change
in system volume is

4, AR = W () — pr(d) (18)
the corresponding entropy change will be
4,8 =—(0W/[0T)y + (1) (dp/oT)y, (19)

Ordinarily, solution thermodynamic properties are experimentally
observed at constant p. The resulting system volume increment then would be
9©(4) rather than t(%). Thus the more conventional solution process quantities
are

4, A(A) = W(4) — pt9(2) ' (20)
and
4, S =—(0W/oT), + (3ps®/dT), 21

For water under ordinary temperature and pressure conditions, the second
terms in the right members of Eqs. (19) and (21) are negligibly small, so that
solution entropy can be explained satisfactorily in terms of W alone.

4 In principle, this phenomenon could be assessed quantitatively by computing the mean
Voronoi (nearest-neighbor) polyhedron volume for solvent molecules with and without
the solute present.
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3. PLANAR INTERFACE .

As A approaches infinity, the surface of S, locally takes on the appearance
of an impenetrable planar wall, so far as the neighboring water molecules are
concerned. We now turn attention specifically to the question of how these
water molecules are arranged in the immediate vicinity of this limiting flat wall.

Heretofore we have not had to commit ourselves about the position of the
“center” of a water molecule with respect to its nuclear framework. Indeed the
general exact results of the preceding section are invariant to the choice of
“center” (provided we still have a > 0). It is characteristic, furthermore, of the
Pierotti approximation that specification of the “center” position is un-
necessary. Now, however, we must recognize that it is this “center” which
encounters and is repelled by the surface of S;.

We thus choose to identify the position of the oxygen nucleus in each
water molecule as the “center.” This choice is suggested by the periodic
arrangement of oxygen nuclei in ice (in contrast to the disorder that charac-
terizes proton positions) and by the fact that the pair-interaction potential
between water and the simple solute Ne is nearly spherically symmetric about
the oxygen.*® With this convention, one recognizes that the protons of the
water molecules can penetrate S, to an extent consistent with the intramolecular
bond length (~ 1 A).

Since there are no forces of attraction between water molecules and the
surface of S,, we cannot expect that the surrounding liquid will “wet” the
surface. This fact is borne out by the small value of the molecular density
actually in contact with the flat wall:

pG(x) = p(p|pkT) (22)

Table I shows that the compressibility factor p/pkT is only about 2 x 1075 at
room temperature, so the contact density is only 2 x 10~ of that in bulk
water. In effect, then, the very large sphere S, must be immediately surrounded
by a thin film of water vapor.5 As one proceeds outward from the S, surface
toward the interior of the bulk-water phase, the average density must rise
(probably monotonically at low temperatures) to p, its large-distance limit.
While the external pressure p is at or near the saturated vapor pressure
for the given temperature, there is essentially no driving force within the
system to eliminate the vapor film surrounding S,. The film thus can become
rather thick on the molecular scale, and its character can properly be assessed
in terms of known facts about bulk water vapor. The zone of transition between
low vapor density in the film and high liquid density farther out is therefore
determined primarily by the same factors®® that determine the normal
liquid-vapor interface structure at that temperature. The surface tension y,,
then should be very close to the measured liquid-vapor surface tension y,,

5 At room temperature, the water-vapor second virial coefficient is negative, so in fact the
water molecule density (22) is slightly less than that of the saturated vapor.
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Fig. 3. Water molecule density p(z) vs normal distance z from the surface of S;. This
schematic diagram refers specifically to the A — = limit for which the impenetrable surface
appears locally to be flat. The vapor film results from the nonwettability of the surface.

(some values are listed in Table I). Figure 3 indicates schematically the water-
molecule density distribution expected to obtain near the flat boundary.

\ As the external pressure is isothermally increased, the vapor film will be
squeezed out. The pressures required to effect significant changes, though,
are rather large in ordinary terms. If the film were to be expelled to the extent
that the surface density rose to half that in the bulk water (i.e., p/pkT = %),
about 700 bars would be required at 25°C. Small pressure increments above
the saturation vapor pressure would mainly have the effect of moving an
unperturbed liquid—vapor interface inward, and the y_ that is relevant to the
large-A asymptotic expansion of G(1) [Eq. (8)] remains equal substantially to
the measurable interfacial tension y,,. But at very high external pressures the
surface density profile will have been crushed into a totally different form, and
the required y,, must come from some other source.

The parameter 6 [also appearing in the asymptotic series (8)] has the
dimension of length. This length (more precisely 26) measures the apparent
distance inward from the surface of S, at which the surface tension of the
spherical interface seems to act mechanically. At very low pressure increments
there can be no doubt that —26 ought to measure the vapor film width. Of
course, under extremely large p it is unclear what § measures; although we
expect it to remain comparable to molecular size, even its sign is uncertain.

These considerations cast some doubt on the accuracy of the approximate
water calculation outlined in the preceding section. Table I shows that the
computed surface tension has the wrong temperature variation. Furthermore,
the computed values for 6 have the wrong sign and are certainly too small.
Though we cannot be certain what its value strictly ought to be, it seems clear
that —26 should be no less than measured interfacial widths. Experiments by
Kinosita and Yokota,®" using an ellipsometric technique, suggest that this
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width is about 8 A at 25°C. The Pierotti calculation therefore seems seriously
to misrepresent § near saturation pressure.

Having established that the low-pressure interface next to the flat repelling
surface is closely related to the free liquid surface, it is relevant to inquire how
water molecules are oriented within both. The preferred orientations depend
on the molecular structure and on the nature of water-molecule interactions.

One orienting agency was previously pointed out by Stillinger and
Ben-Naim,?® which stems from the electrical asymmetry of the separate
water molecules. The sign of the axial quadrupole moment indicates that the
effective position of the molecule’s permanent dipole moment is forward of
the oxygen nucleus (i.e., toward the bisector of the line connecting the protons).
As a result, there is a mean torque on molecules in the interface tending to
orient their dipoles toward the bulk liquid. Consequently, the mean electro-
static potential increases upon passage through the interface from the vapor
side to the liquid side, since molecules at the surface tend to immerse their
protons and expose their lone-pair electrons.

The peculiar character of interaction nonadditivity in water is also
capable of biasing the interfacial-region orientational distribution. The
predominant nonadditive component to the potential in a water molecule
assembly is probably three-molecule nonadditivity, which depends strongly
on the hydrogen-bond pattern.'> Any hydrogen-bond network with. perfect
fourfold coordination has an invariant number of three types of molecular
neighbor trimers: ‘

(a) Double donor trimer—one molecule simultaneously donating its
protons in hydrogen bonds to two other molecules;

(b) Double acceptor trimer—one molecule simultaneously acting as the
acceptor for two protons donated by distinct neighbors;

(©) Sequential trimer—a central molecule simultaneously accepts a
proton from one neighbor and donates one of its own to a second neighbor.

The relative network occurrence frequencies for these three neighbor
types are respectively 1:1:4. The three-molecule potential energy nonadditivity
V' is positive for the first two types but negative for the last type. Figure 4
shows specific examples of each of the three types. For counting purposes in
an extended network, these trimers may be regarded as “belonging to” the
middle one of the three molecules.

Although liquid water might properly be described as a random, three-
dimensional, hydrogen-bond network,?® it surely cannot have invariant
fourfold coordination. Instead, some of the hydrogen bonds must be broken
and others severely strained in length and direction. Nevertheless, a significant
fraction of the molecules (in cold water especially) should be four-coordinated,
though possibly with somewhat distorted hydrogen bonds.

In a rough way, we can think of the free liquid surface at low temperature
as having been formed by passing a mathematical surface through the bulk
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Fig. 4. The three distinct types of water-molecule trimers, involving two linear hydrogen
bonds (dotted lines). These all occur in hydrogen-bond networks with fourfold tetrahedral
coordination. The sign of the potential nonadditive component, ¥'®, is shown for each.

liquid, snipping all bonds that cross the surface, and then separating the two
halves of the bulk phase. Figure 5 shows two water molecules that become
residents of the outermost surface layer after the cutting and separation
process. Both were four-coordinated to begin with, and both have two of the
hydrogen bonds snipped.

One can readily count how many trimers of each type ‘“belonging to”
the resultant surface molecule have been disrupted by formation of the surface.
Figure 5 shows the counts for its two examples. In view of the ¥ signs shown
in Fig. 4, it is clearly more costly in energy, other things being equal, to cut
apart configuration 5(b) than 5(a). Accordingly, we would expect to find
doubly coordinated surface molecules of type 5(a) energetically preferred in
a real surface over those of type 5(b).

R CUTTING

T TN T T T T T SURFACE ™ T,
\K
/
/ b 4 R
z—y” N ’ s
/7
; ¢ =~ S
/ ‘\ ‘\ / \
H H
7w
(@) 10.0., ID.A., (b) 1D.A., 4 SEQ.
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Fig. 5. Two types of four-coordinated water molecules which become two-coordinated
surface-layer molecules. The “cutting surface” is the mathematical surface at which bonds
are snipped to produce fresh liquid surfaces. The numbers of trimers of each type disrupted
by surface formation are shown for the two initial configurations.
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A configuration conjugate to 5(b) should also be considered, having both
protons pointing upward across the cutting surface to neighbors above it.
After cutting and separation, these protons would point out of the underlying
liquid and, of course, be unbonded. We know from preceding considerations
of electrical asymmetry for the molecules that this third configuration “5(c)”
is itself energetically less favorable even than 5(b). We note here for com-
pleteness that ““5(c)”” would require breakage of one double donor trimer and
four sequential trimers, so surface molecules of type 5(a) are still the preferred
species on the basis of ¥® discrimination. '

It is not possible to identify a similar energy bias, based on V' signs,
which operates on surface molecules that either were less than four-coordinated
to begin with, or that had one or three hydrogen bonds snipped during surface
preparation. Nevertheless V® is substantial in magnitude relative to kT at
room temperature,> and the argument just posed is apparently relevant to
a significant fraction of the molecules. Therefore, this phenomenon ought to
comprise a major interfacial orienting effect whose presence should be

acknowledged both in scaled-particle theories of water and in study of the

free liquid surface. One must keep in mind, for the remainder of this paper,
that the measurable surface tension y,, is numerically affected by this non-
additivity phenomenon.

4. REVISED G FOR WATER

We now undertake to improve the calculation of G(4) for the rigid-sphere
solute in pure water. Both the liquid-vapor surface tension and the radial
distribution function for pure water will be used as input data. We shall
continue to set a=2.75 A to be consistent with the preceding length scale,
though no direct structural significance will now be implied by that choice.

The most accurate determination to date of the oxygen-oxygen pair
correlation functions g@(r) in liquid water has been carried out by Narten
and Levy.©# Their results show that virtually no pairs of oxygen nuclei occur
closer than 2.40 A (at least below 100°C). Therefore, the last expression in (5)
will be correct for G(2) in the range 0 < A < 0.4364. For-larger 4, at least the
pair term in P(4), Eq. (4), should contribute, and so the same would be true
of G(2).

In ice, the strong and directional forces between neighbor molecules
produce characteristic isosceles triangles of oxygen nuclei, as illustrated in
Fig. 6(a). The apex angle is, of course, the tetrahedral angle 6, = 109°28’;
since the hydrogen bonds in ice have length 2.76 A, the smallest sphere which
could enclose these isosceles triangles would have radius Aa =2.25 A. For
ice then, nothing beyond the pair (n = 2) terms in P(1) and G(1) would be

S The author is grateful to Dr. Narten for supplying a numerical tabulation of the function
2@(r), which has been used in the present paper.

I
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(a) (b)

Fig. 6. Triads of oxygen nuclei. In (a) the arrangement shown corresponds to bonded
neighbors in ice, with §, = 109°28". The distorted triad (b) is used to estimate the radius of
the smallest sphere which could reasonably be expected to circumscribe triads in the cold
liquid.

required, provided that Aa did not exceed 2.25 A or, equivalently, that A did
not exceed 0.8182.

The hydrogen-bond pattern present in ice surely undergoes major
distortion upon melting. Still, the coordination number in the liquid remains
low, and it seems abundantly clear that the tendency toward tetrahedral
bonding is a dominant feature in the liquid.> Consequently, it seems to be
a reasonable assumption for cold liquid water that triads of oxygen nuclei are
seldom distorted into a more compact arrangement than would result from
reduction of 6, to 90°. The correspondingly distorted configuration, shown
in Fig. 6(b), will now just fit into a sphere with radius

la=195A (23)

which occurs at 1 =0.7091. Although some oxygen-nucleus triads in the
liquid may have apex angles less than 90°, it seems likely that the necessarily
weakened bonds will increase in length, thereby still obeying the estimate (23).

In order to specify G(1) beyond the limit (23) explicitly in terms of
molecular correlation functions, knowledge of g, g, ... would be required.
That knowledge, of course, is unavailable.” Instead, we can rely on the con-
ventional Laurent series format for G(4), Eq. (8), suitably truncated. The
continuity and differentiability of G(4) at point (23) subsequently can be used
to fix unknown parameters.

The summary for G(4) thus is the following:

GA)=[1-@4n/3)pa*A*]! (0<la<1.20A)
1 + (npa®[3) f:‘ dt g (1) 12(t — 24)

G(A) = - :
1 — (47/3) pa® 22 + (npa®)? j dt g d(e) 1233 — 2221 +$ 13)

¢ (120 A<ia<1.95A)
G(2) = (p/pkT) + (2y1,/pakT2) + (G2/A%) + (Gu[2*)  (1.95A <la< x) (24)
7 For simple liquids, the Kirkwood superposition approximation might suffice to estimate

g, 8", ... in terms of g'®, That approximation is likely to be very poor for liquid water,
however, and will be avoided here.
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100°C, 2 bars

Fig. 7. Contact correlation function G(J) calculated according to the method of Sec. 4.

The second of these functional forms results after carrying out the n=2
integration in Eq. (4) and then using Egs. (1) and (3) to yield the explicit G
expression. The 13 term is missing in the last of the three forms in (24), as
required by the general theory,” so that W (1) will be free of contributions
proportional to InA. The quantities G, and G, are adjustable parameters
whose values effect smooth connection at Aa = 1.95 A.

The function G(A) has been calculated according to this procedure for
the two sets of conditions: (1) 4°C, 1 bar; and (2) 100°C, 2 bars.® The results
are displayed in Fig. 7. After comparing these curves with that in Fig. 1, we
see that the present more accurate procedure tends to give G(1) substantially
larger maxima (though at roughly the same A value) than the Pierotti hard-
sphere approximation. Furthermore, the Pierotti approximation is far less
sensitive to temperature (it depends essentially on the number density aloné,
which is nearly constant) than the more detailed result.

5. CONCLUSIONS

The fact that the revised G(A) calculation leads to larger maxima is
relatively easy to understand. Unlike the Pierotti hard-sphere approximation,
it accounts explicitly for the strong and directional hydrogen-bonding forces
in water, not only through the pair correlation function g‘® that it utilizes
but also in the selection of the A range toward which triplets first contribute.
As the exclusion sphere S, expands, it is forced to stretch and tear the hydrogen-
bond network in its neighborhood. While this process occurs, the remaining
hydrogen bonds probably reach around S in a tightly drawn net, which
surely enhances G.

8 The slight overpressures are invoked to prevent the vapor film from widening as 4 — «,
as discussed in Sec. 3. If this measure were not adopted, the asymptotic development (8)
for G(4) would contain terms that were not merely integer powers of A.

(4
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At 4°C, the G(2) maximum shown in Fig. 7 has the value
G(Amax) = 2.3959
@mex =2.1075 A (25)

The inward stress, or “pressure,” exerted by the water molecules at the surface
of S, subsequently may be evaluated:

Pmax = kaG(Amnx)
— 3.0657 kbar (26)

This presumably measures the extent of network stretch.

Next, we can use the general expression (14) [in the special case shown in
(16)], to reveal some information about solvation of S, at the maximal size
Amax- It seems reasonable to suppose that the contact-pair correlation function
G is simply proportional to g'® at the appropriate straight-line distance:

GP(, 4,0) = A,[G(A)) g®[r (4, 0)] (27
where
r(4,0) = ai[l — cos 0]'/ (28)

By substituting this approximation for G into Eq. (16), a unique determina-
tion of the multiplier A, results:

- -1
Ao=2 { fo d6'sin 6(1 — cos 6) g @[ (Anar, 0)] ,

2aAm,

—dat it { fo " drr? g(z)(r)} i (29)

The value implied by Eq. (29) for 4 at 4°C is
Ao =1.048 (30)

Figure 8 shows a plot of the resulting function G®(Apax, Amax,0) Vs angle.
Similar curves could be obtained for 4 # A, from Eq. (14), but the results
would be trivial for small 4; the réesults would furthermore be unreliable at
large A because estimate (27) would then become inappropriate.

It is important to reflect upon the local solvent structures which might
contribute to the function G‘®(4, 4,0). To be sure, a wide variety of hydrogen-
bond network fragments must be present in liquid water,?® but statistically
they seem to present important common features. Figure 9 shows a specific
example of the way that the network can surround S; when the size parameter
is approximately A,.. This particular cage consists of 12 water molecules
arranged into four pentagons and two hexagons. Only the oxygen positions
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Fig. 8. Surface-pair correlation function G®(Amax, Amax,8) for water at 4°C and 1 bar.
Figure 2 provides the relevant geometry, with la = 2.1075 A.

Fig. 9. “Random” water-molecule cage
enclosing the rigid-sphere solute, whose
exclusion sphere is denoted by S,. The
oxygen nuclei are shown as dark circles, and
hydrogen bonds as dark lines. Protons can
be distributed asymmetrically along the
bonds 'in a variety of canonical ways.
Oxygen nuclei ““1” are closer to the solute
than those of type *2.”

are explicitly shown (as dark circles). The protons can be assigned to the
‘hydrogen bonds (dark lines) in a variety of ways that is analogous to the variety
underlying the configurational disorder in ice.®

Notice that the eight water molecules nearest to the center of S, which
have been indicated by ““1” in the figure, are all oriented so that one of the four
tetrahedral bond directions points radially outward, i.e., away from the center
of S,. For each of these eight, then, the remaining three bond directions
straddle S,. As a result, the dipole-moment direction for these solvent mole-
cules cannot point either toward, or directly away from, the hard-sphere solute.
The four more remote solvent molecules denoted by “2” in Fig. 9, however,
can point their dipole-moment vectors either inward or outward along the
radial direction. :

Model building shows that this orientational bias for nearest-neighbor
solvent molecules is very marked and extends to S, radii well in excess of
@l = 2.1 A. Evidently the geometric requirement that the nearest solvents
form a predominately convex solvation ‘“cage” forces them to adopt the
straddling mode. The cages present in aqueous clathrates'?”” exhibit precisely
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this characteristic too, though they represent only a small fraction of the total
possible cage geometries. Probably the largest convex cage that could reason-
ably be expected to form on energetic grounds would be the one whose bonds
have the pattern displayed by soccer balls: Sixty water molecules form 12
pentagons and 20 hexagons, and each of these molecules straddles the cavity -
interior.®

The water molecule bonding situation depicted in Fig. 9 is unrealistic in
that no severely stretched, twisted, or broken hydrogen bonds are shown.
The true situation is therefore more complicated, but the orientational bias
just adduced for first-layer solvent molecules must still be a substantial
phenomenon since extensive hydrogen bonding exists. For the statistical
tendency to be present, of course, we need not demand that the random
solvation cages be perfectly bonded. In any event, the orientational bias
certainly becomes less pronounced as temperature increases.

The situation which leads to the small-cavity solvation effects on water
molecule orientation is not relevant to large A. When Aa exceeds the range
3-4 A, the processes leading to formation of the free liquid surface (at low
pressure) described in Sec. 3 would probably dominate. One should keep in
mind, however, that many interesting solutes have sizes below this range, so
that convex cage statistics is indeed relevant to their solutions.

As a useful “thought experiment,” we can imagine placing electrostatic
charge uniformly on our hard-sphere solute particle to convert it into a
monatomic ion. The strong electric fields that result would have the effect of
twisting first-layer solvation molecules out of “straddling” configurations into
those with radial directions for dipole moments. This structural rearrangement
likely plays an important role in the thermodynamics of ionic solvation.?®

It would be very desirable to augment the conclusions in this paper with
independent evidence. The molecular-dynamics technique has recently been
adapted to the study of pure water.?® In principle, it could be modified to
incorporate rigid-sphere solutes of arbitrary size. Not only would this permit
the G(2) curves in Fig. 7 to be checked quantitatively, but the geometry of
solvation cages could also be observed. It would then be interesting to see if
the approximation, on which the function G® shown in Fig. 8 was calculated,
was in fact accurate. In the long run, there is hope that the combination of
such stylistically independent procedures could lead to understanding solva-
tion subtleties such as hydrophobic bonding in the biochemical regime.®
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be
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EDITOR’S NOTE

at

This paper was substituted for the talk originally given by Dr. Stillinger
the H. S. Frank Symposium. Consequently, no Discussion section is

available.
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