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Using the 1/Z ( = X) perturbation format, analytical properties of eigenstates in the complex X plane
have been studied for two- and three-electron atoms, using simple nonlinear variational calculations. The
ground states for both systems are included, as well as four excited states for two electrons. The results

suggest a general partitioning of bound states into two categories: (i) If the singly charged anion is

bound, analytical continuation in X along the positive real axis causes the energy to penetrate the
continuum, and subsequently to terminate at a branch point. (ii) If the singly charged anion is unbound,
the energy is tangent to the continuum edge, and analytic continuation in X to larger positive values

creates a non-normahzable wave function.

I. INTRODUCTION

Perturbation theory constitutes one of the most
povrerful tools available in the study of the quantum
mechanics of atoms and moleeules. But in spite
of widespread application, its basic analytical
properties are poorly understood. Our objective
in this papex is to illustrate selected important
aspects of that version of perturbation theory which
treats the full electron-pair interaction as the per-
turbation. Specifically, ere shall be concerned with
the ground states of the two- and three-electron
atoms, and arith four excited states of the former.

In the case of n electrons bound to a nucleus with
atomic number Z, the nonrelativistie Hamiltonian
may be written in the follovring reduced manner:

a(x) = --,'(v', + ~ ~ ~ +v2)

1 1 ~ 1 1
~ ~ ~ ~~ +g A. =—

+n i&/=a +kg

Hex'e we have used Z-reduced length and energy
units:

length unit =if'/m, Ze',

ellergy unit =t1l+Z 8 /W
I

In this formulation the nucleus has been treated as
infinitely massive.

The physically realizable cases in (1.1) of course
require that X be the reciprocal of a positive in-
teger. But it is mathematically important to broad-
en the scope of inquiry to include any arbitrary
complex value for the coupling constant X. The
eigenvalues «'"&(X) then may be examined, through-
out the complex X plane, as a set of analytic func-
tions whose singularities become a propex object
for attention.

The two-electron (n =2} isoelectronic sequence
has been studied numerically in great detail. Hyl-

leraas' vras the first to stress the importance of
Z (l.e., X) powel' sel'les fol' the l&olllld states:

«'& "&(A}=Q«&l" &Z&,

)=0
(1.3)

This is the singularity closest to the origin, and
thus its position determines the radius of convex-
gence of the perturbation series. That « "&(X)
should exceed =2 (the continuum edge) before X

reaches ~* while its derivative remains positive
has been independently vex ified, ' and this fact pro-
vides a contradiction to the orthodox opinion' that
the wave function should become infinitely extended
as the ionization energy goes to zero.

Although ~ pow'er-series eoeffieients are avail-
able for a few helium-sequence excited states, '9
their precise calculation to high-order j is an
arduous task. Kith three or more electrons, the
computational requirements are so demanding that
no analytical conclusions can currently be drawn

and he provided aeeux ate values for the first fear
coefflclents ~~&0& for the ground state. Vrith the
advent of modern computing facilities, precise
knowledge of these power-series coefficients has
advanced dramatically. ' In addition, Kato'has
rigorously proved that series (1.3) for the two-
electx'on ground state possesses a nonzex o radius
of convergence, so that the full set of coefficients
«&l~& uniquely defines a function «lo&(l&.) analytic in
the neighborhood of X =0.

For any analytic function, the large-order as-
ymptotic behavior of its power-series coefficients
is characteristically influenced by the singularities
of that function nearest the origin. ~" By using
these connections, it has been possibl' to infer
that « "&(X) for the helium isoelectronic sequence
(n =3) exhibits a branch point, with index approxi-
mately —,, at

X = X*=-1.1184.
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from power series. " Development of alternate
means to investigate the analytic properties of
energy in the complex A, plane therefore seems
important.

With this end in mind, we report here the results
of some simple nonlinear variational calculations
for n =2 and 3, which qualitatively exhibit the
requisite branch-point behavior for the energy on
the positive real axis, in those cases for which
this feature has been thought to be present. ' It
follows from another theorem due to the Kato"
that linear variational approximations with a finite
basis are incapable of producing this behavior.

Section II is devoted exclusively to discussion
of the two-electron ground state. This is fol-

,
lowed in Sec. III by presentation of correspond-
ing results for four excited states of the same
system, each the lowest state of a given symme-
try. The three-electron ground-state variational
results appear in Sec. IV. A wide range of issues
raised by the present general inquiry into analytic
perturbation theory is discussed in the final Sec.V.

II. TWO-ELECTRON GROUND STATE

Here we have set

(2.3)

spect to which the variational energy should be
minimized for every value of the perturbational
coupling constant ~.

When X vanishes, the exact eigenfunction of H(0)
is obtained when a = P =1, for which e'0'(0) = -1.
For nonzero X, the variational wave function (2.1)
only provides an approximation to the- exact spatial
eigenfunction of H(X), but its flexibility in being
able to permit eW P incorporates radial correlation
between the two electrons. Its principal short-
coming is failure to describe angular correlation.
However, more extensive calculations which do
include angular correlation" clearly show that the
effects of primary concern in this paper are not '

drastically altered by that omission.
The variational energy expression for wave func-

tion (2.1) is a rational function of o., P, and X:

a(a, p, z}=fdr, dr, qa}a}t} fdrdr, g',,

(2.2)

P(r„r,) =e "'~ '~+e (2.1)

The orbital exponents n and P were regarded as a
pair of nonlinear variational parameters with re-

Since H(X}, Eq. (1.1), is spin independent, it is
generally possible to restrict attention to the spa-
tial part of the wave function, provided that this
part is suitably constrained. The two-electron
ground state is conventionally designated (1s)"S,
and its spatial part must be symmetric with re-
spect to interchange of electron positions.

For reasons of analytical convenience, we have
chosen to work with the Hylleraas-Eckart-Chan-
drasekhar" "wave function:

E, (}1}= (1 +@)'(1+vP)+128q4,

E,(q, A} = (1 +q}[2Xq(1+@)'(1+3q+q')

+40k@~ —2 (1 +q)8 —128qs],

E~(q) = 2 (1 + q)8+ 128@'.

(2.4)

The way in which e(n, P, }}.) has been written in
Eq. (2.2} arbitrarily singles out o! as a common
scale factor in g. That o.' should appear only qua-
dratically for fixed q is a general feature, and we
know that minimization of e with respect to o.',
holding q constant, will automatically cause the
virial theorem to be satisfied. " The value of n
which achieves the minimum is the following:

(1 +q)((1 +q)'+ 64'' —}}[q(1+ q)'(1 + 3@+q') + 20@'])
(1 +q)'(1+g') +128q' (2.5)

This expression may next be used to eliminate o.'from Eq. (2.2), resulting in an energy function
e(q, X) that subsequently needs only to be minimized with respect to q:

(1+q)'f&[q(1+@)'(1+ 3@+qn}+20@']—(1 +q)8 —64@'j2
2[(1 +q)'(1 + q') +128q'] [(1 +q)'+64q'] (2.6)

Our numerical analysis has been devoted to the
study of Eq. (2.6), for selected A. values, in a di-
rect search for minima and maxima with respect
to q variation. Owing to the fact that the starting
wave function (2.1) is symmetric in o, and P, e(q, A.)

has turned out to be invariant under replacement of
g by q '. It suffices then to restrict attention to
~@~&1, since any extremum q in %is domain auto-
matically has a partner g ' which is also an ex-
tremum of the same kind.
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Figure 1 shows the extremal real q values as
functions of real, positive X. The branch beginning
at q =1 for A. =0, and declining monotonically as ~
increases, corresponds to the "physical" minimum
in e(q, &). It is this branch whose energy values at
X=1, g 3 4 . . represent variational approxima-
tions to the ground-state energies of H, He, Li',
Be",. . . . It ends with a vertical tangent at point
B in Fig. 1, for which

A. (B)=1.0780113, (2.7}

and this is the point at which confluence with an

energy maximum branch occurs.
A total of four extremum branches are shown in

Fig. 1. As g declines from 1, they may be con-
tinuously traced out, with alternating minimum
and maximum branches, in the order ABCD. In
addition to point B, vertical-tangent conf luences
occur at

X(C) =0.993296, A(D) =1..4283. (2.8)

It is interesting to note that the minimum branch
CD passes through the point X =1, q =0 in its down-
ward course; since Eqs. (2.3) and (2.5) show that
n =1, P =0 there, this point corresponds physically
to a single bound electron in a hydrogenic 1s orbit-
al, plus an electron at infinity with zero kinetic
energy.

The energy e(q, A), evaluated along the four
branches in Fig. 1, has been plotted in Fig. 2.
Figure 3 provides an expanded view of the region
around X =1. The points B, C, and D which located
vertical tangent positions for q(X) in Fig. 1 have
been mapped into cusps.

The "physical" branch AB for the energy indi-
cates binding for the hydride ion at ~ =1. Specif-
ically, the calculations show that

E"' (A. = 1)= -0.513 302 8855, (2.9)

well below the ionization limit --,'. Actually very
accurate calculations devoted specifically to this
ion" suggest that the correct value should be

e +'(A. = 1)= -0.527 751 014. (2.10}

The error in result (2.9) for wave function (2.1)
can be ascribed mostly to lack of angular correla-
tion. "

The "physical" energy curve AB in Figs. 2 and 3
crosses the continuum edge (e = ——,') when X in-
creases to

A.,= 1.048 486. (2.11)

This result should be compared to the analogous
quantity proposed earlier' for the exact ground-
state energy, namely,

X, = 1.0975. (2.12)

—0.1

-0.2

Although the ionization potential is predicted to
go to zero at ~„ the wave function remains bound
and localized (i.e. it remains normalizable}. Ana-
lytic continuation in ~, through ~„ is possible and
evidently produces bound states in the continuum.
This situation persists until point B is reached.

1.2 —0.3

1.0& +A -Q4

0.8 -0.5

0.6

Q 4 -0.7

0.2
—0.8

-0.9
-0.2—

I I I I I I I I I I I I I I I

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
—1.0

A
I I I I I I I I I I I I I I

0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 1. Extrema for the Hylleraas-Eckart-Chandra-
sekhar wave function, Eq. (2.1). The uppermost branch
AB is the one which yields valid approximate wave func-
tions and energies for the physical states A, =1, 2, 3, etc.

FIG. 2. Energy curves corresponding to the extremals
shown in Fig. 1. Points A, B, C, and D are mappings
of points with the same names in Fig. 1.
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q(P) =0.15414 (2.13)

in the neighborhood of which the curve is cubic.
Since the two-variable function e(q, A.) .is non-

singular near q(a}, A.(a), it may be expanded in a
double Taylor series about that point:

~(q, ~) = W, +A, n.x+W, n. ~A@+A,(~q)'+ ~ ~ ~

~~=~-~(a}, ~q=q-q(a) (2.14}

The coefficients appearing in this expansion have
been found to have the values

A, = -0.493 415 4015,

A, =0.170508 2019,

A2 =1.155,

A3 =2.384.

(2.15)

Consequently, ve identify the A, value at point B,
shown in Eq. (2.V), as an approximation to the
exac't problem quantity X of Eq. (1.4) which also
reyx esents the limit for bound. states in the con-
tHluum.

Equations (2.3) and (2.5) have been used to eval-
uate the orbital exponents a and P along the four
extremal curves. The results are displayed in
Fig. 4.

In order to clarify the confluence phenomenon
at point B, a family of e(q, &) curves versus q are
shown in Fig. 5. These are plots of the function
shown in Eq. (2.6), for five X choices centered
about the critical value X(a) given in Eq. (2.V), and
separated by X increments of &.01. The extrema
are indicated by vertical arrows Th.e X(a) curve
possesses only a horizontal point of inflection at

If interest is confined to the immediate neighbor-
hood of q(a), A,(a), the explicitly shown terms in
Eq. (2.14) will alone give an adequate representa-
tion for ~(q, X). They imply that se/sq vanishes
when .

(2.16)
These extrema are real when X «&(B), with the
upper sign corresponding to a minimum, and the
lover sign to a maximum. By substituting ex-
pression (2.16}in (2.14), the extremal energy
values. are found to be

I

c(&) =Ao+A, b A. +2A, (-A2hA/3A, )' '+O((h&} ).
(2.1V)

This result demonstrates that point 8 is a branch
point of order -', for the energy, which may be com-
pared with the apparent order 6, adduced earlier
for the analogous branch point in the exact solu-
tion. '

When X exceeds X(a}, the extremal q values rep-
resented by Eq. (2.16) move off the real axis. At
the same time e, Eq. (2.1V), becomes complex,
with an imaginary part depending on which side of
the branch cut [extending from X(a) along the posi-
tive real axis toward infinity] one has elected to
use. In particular, choosing to go below the cut
produces a negative imaginary part:

~,.= -O.3O84[~ —~(a}]'~*i+.~ ~, (2.18)

where we have inserted numerical values (2.15)
into Eq. (2.1V}. With a negative imaginary part,
the quantum state decays Ul time, and ve can use
expression (2.18) to estimate lifetimes ~ for the
unstable complex:

1.2

1.0&

0.8

X
taJ

0.6
0

0.4

CO

0.2

-0.52
0.98

I I I l l

1.00 1.02 1.04 1.06 1.08 1.1 0
I I 1 I i I I I I l l I i l

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

FIG. 3. Expanded view of the energy curves in the
region around A, =1.

FIG. 4. Orbital exponents 0. and p for the Hylleraas-
Eckart-Chandrasekhar wave function, Eq. (2.1).
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~ = lf/le, .l. (2.19)

Under the assumption that the leading term shown
in Eq. (2.18) affords sufficient accuracy at A. =1.5,
we calculate that the lifetime of the two-electron
complex [subject to the Hamiltonian (1.1) with n =2,
X=1.5=Z '] will be

r(A. =1.5) =6.42X10 "sec. (2.20)

III. EXCITED STATES FOR TWO ELECTRONS

The variational principle may directly be applied
to excited states, provided those states are the

The emphasis in this section has focused atten-
tion largely on the existence of a binding limit when

the coupling constant reaches a sufficiently large,
positive value A.(B}. However the reader should re-
main aware that the customary ~ power series
themselves can also be developed for the Hyller-
aas-Eckart-Chandrasekhar approximate wave func-
tion. We note in passing that the expression (2.6)
for e(q, A) may be used as the basis for a small-A,
iterative development, with the end result that the
ground-state energy (the "physical" branch) has the
expansion":

&«&(~)=-1+-'~-—"X2- "~'- '"' ~'- ~ ~ ~ .8 256 2048 393218

(2.21)

If this series were extended to sufficiently high
order, the set of coefficients could be used to
identify the position and the nature of the singular-
ity nearest the origin. Although it is our opinion
that the branch point at A. (B) fulfills this role (as
does its analog in the exact solution}, strict con-
firmation would require generalizing our numeri-
cal study to complex X.

lowest ones in energy for separate symmetry
classes. We have numerically studied four ex-
cited states, for two electrons, which meet this
criterion. In order that each of these states be
described on a basis consistent with that used for
the ground state, two orbital parameters were in-
cluded in the respective variational wave functions.
As before, the energy was minimized for each
value of A. with respect to these nonlinear param-
eters.

In order to provide a common descriptive lan-
guage for the four states, we define the mutually
orthogonal atomic orbitals,

u(r, a)=e "',
~(r, p}={(3/(n+ p)1 rre-
w, (r, y)=xe "",

(3 1)

N(n„n. ) = &tl 0&,

r.(n„n.) =(tlr, '+r. 'l0&,

r.(a„n,) = (ylr;,'I y&,

r, (n„n, ) =(glV', +V', [Q&.

(3.3)

In each case, these matrix elements will be homo-

with w, and zo, defined analogously. Each varia-
tional wave function |t has been synthesized from a
pair of these orbitals. Indeed the Hylleraas-Eck-
art-Chandrasekhar function could be considered
in this light as the combination

u(r„a)u(r„p) +u(r„p) u(r„a). (3.2)

Suppose that &, and n2 are the orbital parameters
occurring in g for a given state. We require the
following matrix elements:

-0.486

—0.488

—0.490

. —0492

-0.494

-0.496

FIG. 5. Energy curves
vs q, for several values
of the coupling constant
~ in the neighborhood of
~P) =1.078 0113. Maxima
and minima are indicated
by vertical arrows point-
ing, respectively, upward
and downward.

-0.498— )E(B)—0.02

-0500 I I I I I I I I I I I ) I I I I I I I

0.06 0.08 0.1 0 0.1 2 0.14 0.16 0.1 8 0.20 0.22 0.24 026
'9
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geneous functions of e, and ~,. Setting

3I = n, /n„
we have

N(n„a, ) = n,-'N(1, rl),

I„(a„a,) =a', kI„(1,3I),

I,(n„a,) =a,' kI, (1,3I),

Ik(ak ak) = ai Ik(1,. 3I),

(3.4)

(3.5}

where P is an integer. The variational energy
therefore becomes

""'(n„nk, ~}=&~III(~)ly»&ply},

=[--I (l, a)a'-I. (l, a)a

+ XI,(1, rI)a, ]/N(1, q}. (3.6)

This quadratic form in e, will be minimized when

n, =[-I„(1,q) + &I,(1, q)]/I (1,q), (3.7)

and this value automatically causes the virial theo-
rem to be satisfied. "

By substituting Eq. (3.7}for a, into Eq. (3.6}, one
obtains

( p j( )
[ I (1 'g) + AI(1 1q)].

2N(1, q)Ik(1, rI)
(3.6}

An expression of this type was extremalized with

respect to q for each of the four excited states,
which we now discuss sequentially.

I n )= 2w'(-3n'+3nkp -4a'p'+ ap' —7p')
k( s p a3p5(a p)2

The exact unperturbed wave function is obtained
for ~ =1, p=-,', and the corresponding energy is

Figure 6 shows that the computed g de-
c1.ines monotonically as A, increases from zero,

A. (1s)(2s) 3S

Triplet states require the spatial wave function
to be antisymmetric with respect to electron inter-
change. Consequently, we take

g[(ls)(2s) 3$] u(r„a-)-v(r„p) -v(r„p) u(r„a),
(3.9}

and identify a = a„p = a„3I= p/n. One finds

6w'(n' —ap+ p')
a'p'(a+ p)'

3w'(2n' —n'p+ 3p'}
3 1 n3p5 (n p}3 t

(3.10)

3w (ak+ n'p+4ap'+2p') 24w'
a'p'(a+ p)' (a+ p)' '

and exhibits a simple zero at X=1. We have dis-
covered no analog of the vertical tangent behavior
shown earlier for the ground-state q; indeed q for
this excited state continues its downward drift
until X is at least 10.

The energy versus X is shown in Fig. 7, and the
orbital parameters appear in Fig. 8.

This excited state presents a behavior that is
obviously distinct from the pattern established by
the ground state. Most importantly, the hydride
ion is not bound in this state, as has been known
for some time. " This is manifest in the present
calculations by tangency of the energy curve, Fig.
7, to the continuum edge at -2, precisely when

That the state should lie below this con-
tinuum edge for any A. &1 follows from the fact that
the nucleus plus core electron present a net posi-
tive charge [1 —X in units for which II(X) is written
in Eq. (1.1)] which can always bind the outer elec-
tron in any one of an infinite number of extended
hydrogenic orbitals. The decrease of orbital ex-
ponent P through zero at X =1 confirms that fact.

Evidently, analytic continuation through A. =1 is
possible for wave function and energy. The present
example therefore seems to conform to the general
critical binding phenomenon that has been analyzed
by Lekner. " By virtue of the negative p values ob-
tained by the continuation, the wave function has
ceased to be normalizable.

Although no singularity was encountered along the
positive real ~ axis, singularities may well occur
in the complex A. plane relatively close to the ori-
gin. In this connection the near-hyperbolic shape
of the energy curve given in Fig. 7 is suggestive.
Near X =1, this energy is very roughly equal to the
hyperbolic function,

-0.47 —0.15[(A. —1) + (0.2)3] ' 3, (3.11)

0.8—

0.6—

0.4

0.2

-0.2

-04—

06 I I I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0,8 1.0 1.2 1.4 1.6 1.8 2.0

FIG. 6. Extremal values of the nonlinear variational
parameter g for the Ps) (2s) SS excited state for two
electrons.
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—0.50

-0.52

—. 0.54

-0.56

-0.58

-0.60

CONTINUUM

(

The required integrals generated by this choice
are the following:

N(a, p}=

( )
v'(2a+ p)

II t n3
(3.14)

s' n'+ 5 a'p+ 10a'p'+ 10np'+ 2p'
s( i p ) (n + p)5 a2p4

-0.62

064 I I I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

FIG. 7. Energy for the two-electron excited state
(1s) (2s) 3$, determined variationally from the wave
function (3.9).

A. =1 +0.2i. (3.12)

It should be noted in passing that such a pair of
singularities near the real axis, if they are the
closest singularities to the origin, will produce
perturbation coefficients with signs that alternate
slowly with increasing order; interestingly, that
seems to be the behavior obtained recently by
Midtdal, Lyslo, and Aashamar in their exhaustive
study of the perturbation coefficients. '4

B. (1s)(2p) 3P

The antisymmetric wave function was taken to be

(I([(ls)(2p) 'P] =u(r„a)w, (r„p) -w, (r„p)u(r„a).
(3.13)

which possesses a complex conjugate pair of branch
points at

The unperturbed values for o. and P are 1 and &,
respectively, giving e(1=0) = -8. Our calculations
show that q = P/a declines monotonically for real
positive X without interruption, in a manner closely
analogous to that encountered above for (ls)(2s) 'S.
Figure 9 shows that behavior, while Fig. 10 gives
the energy, and Fig. 11 the separate orbital ex-
ponents a and p. This is clearly another case. for
which the hydride ion (A. =l) has vanishing ioniza-
tion potential, with energy that is locally quadratic
at this point of tangency to the continuum edge. As
before, analytic continuation through X =1 is pos-
sible to a regime with a nonintegrable wave function.

C. (1s)(2p) 'P

This case differs from the preceding one only by
change of sign in f:

(I([(ls)(2p) 'P] =u(r„a)w, (r„p)+w, (r„p)u(r„n),
(3.15)

to produce a spatial function symmetric under
electron interchange. The integrals N, I„, and I~
are unchanged by this modification, so the expres-

1.2

1.0

0.8—
X
IU
X
p 06—
lL
X
UJ

0.4

fn 0.2
D

(1s)(2s) sS

1.0

0.8—

0.6—

0.4

0.2

(1s)(2p)

-0.2—
I I I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
X

FIG. 8. Orbital exponents for the variational wave
function (3.9) representing the two-electron excited
state (1s) (2s) 3$.

-0.2—

-0.4—
I I I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 'I.8 2.0
)((.

FIG. 9. Extremal values of variational parameter
g =P/e, for the two-electron excited state (1s) (2P) ~P.
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—0.44—

-0.48— II CONTINUUM

(1s)(2 p) ~P

-0.52

-0.56

-0.60

FIG. 10. Energy for the
two-electron excited state
(1s) (2P) 3P, correspond-
ing to wave function (3.13).

-0.64—

-0.68—

072 I I I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

sions (3.14}for them are still relevant. However,
I, suffers a sign change in its last term to become

branch point on the positive real A. axis, at

A. = 1.182 144, (3.17)

a)= a'+5a'p+10a'p'+10ap'+2p'
2( yP (a P)2 a2p4

(3.16}

This state shares, with the preceding two ex-
cited states (1s)(2s) 2S and (1s)(2p) 2P, vanishing
of the ionization potential as X approaches 1. Like-
wise q and P have simple zeros there, and analytic
continuation through X=1 leads to P &0 and a non-
normalizable wave function. Figures 12, 13, and
14 show the detailed behavior of g, a and P, and

~, respectively.
A surprising new feature is the appearance of a

within the non-normalizable regime. This point is
analogous to point B discussed previously for the
ground state, in that the g, e and P curves devel-
op vertical tangents there as a result of confluence
with maximum branches. Also following the
ground-state pattern, the energy possesses a -', —

power cusp at this point.
If the approximate power-series coefficients

(available from extensive variation-perturbation
calculations" ) are any indication, the positive-
real-axis singularity (3.1'1} is not the nearest one
to X =0. Instead, at least one pair of complex con-
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I I I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -0.6
0 0.2 0.4 0.6 0.8 1.0. 1.2 1.4

FIG. 11. Orbital exponents for variational wave func-
tion (3.13), representing the two-electron excited state
(1s) (2P) 3P.

FIG. 12. Extremal values of g=P/n for the two-elec-
tron excited state (1s) (2p) P.
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1.2

1.0

0.8—

Z
UJz Q.6—
O
X
UJ

Q4
I-
Cl

0.2

(1S)(2p) 1P

-0.2—
I

0 0.2 0.4 0.6 0.8 1.0 1.2 1,4
X

FIG. 13. Orbital exponents & and P for the two-elec-
tron excited state (1s) (2P) ~P. For each, the upper
branch corresponds to the "physical" energy minimum,
and the lower branch to an unphysical energy maximum.

ization potential is only about one-eightieth that
of the ground state. ' In the present series of cal-
culations, it was assumed that the antisymmetric
wave function could be approximated adequately
by:

$[(2p) 'P) =w (r„n)w, (r~, p) -w, (r„a)w,(r,p)

+w, (r„p}w,(r„n}-w, (r„p}w,(r„a).
(3.18}

This in turn leads to the following integrals:

1 i024
&(ni p}=4&'

nsg + (a, p)io ~

n+ p 1024
I„(n, p) =2m', ~ +

(
(3.19}

I a )= 2n'( n' +5a'p+9n'p'+5np'+ p')
'p'( p)'

672m

(n+ p)"
n'+ p' 2048 apI,(a, p) — 4m, ~ +

( )„
jugate singularities seems to fill that role. If this
is indeed the case, our nonlinear variation calcula-
tion (though approximate) effects analytic con-
tinuation beyond the convergence radius for the
perturbation power series.

D. (2p)23P

This is the only excited state known definitely
to be bound for the hydride anion, though its ion-

-0.36

Figures 15-17 show the computed results.
It is striking how similar they are to their
ground-state analogs. In particular, singular
points A', B', C', and D' can be identified, which
are the analogs of A, B, C, and D in the earlier
Figs. 1-4. The following values were found for
the coupling strength at these singular points:

&(B')=0.9842, X(C') =0.9502, A.(D') =1.3994.

(3.20}

Considering how small the exact ionization poten-

-0.40 1.2
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0.8

)2 3p
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0.6
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FIG. 14. Energy for the two-electron excited state
(18) (2P) &.

FIG. 15. Exfremal values of q =P/n for the tvvo-elec-
tron excited state (2P)~ 3$'.
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tial at X =1 is for this excited state, a very flexible
(and consequently very accurate) variational wave
function would be required to produce any binding
at A. =1. The trial function (3.18) does not possess
sufficient flexibility for that purpose. Nevertheless
it is significant that function (3.18) has produced
the same sort of singularity in the continuum, for
real positive X, that occurs for the ground state.
We believe that a sequence of improved variational
calculations for (2p)"P will cause X(B') to increase
beyond unity, so as to come into close agreement
with the singular point

A,
*= 1.0128 (3.21)

that has been inferred' from the accurate ~ power-
series coefficients. '

IV. THREE-ELECTRON GROUND STATE

The preceding calculations seem to suggest a
general code of behavior: If the anion is bound, the
state remains normalizable as ~ increases and
enters the continuum, terminating finally at a
branch point. On the other hand if the anion [A. =1
for two electrons, A. = 1/(n —1) for n electrons] is
unbound the energy curve is tangent to the con-
tinuum and the point of tangency marks the onset
of wave-function non-normalizability.

We have examined the three-electron ground
state, to see if its results were consistent with
the proposed behavior.

Including both spin and space coordinates, the
doublet eigenfunctions for three electrons conform
to the following structure:

$(123)=f (r„r2~r~)n(1)n(2)p(3)

+f(r„r,~rm)n(1)p(2)n(3)

+f(r„r,~ r, )p(1)n(2) n(3). (4.1)

The spatial function f is required to satisfy two
conditions":

f(r„r,(r,) = -f (r„r,~ r,);

f(r„r,(r,)+f(r»r, (r,)+f(r»r, ~r, )=0.
(4.2)

(4.3)

—v(r„p) u(r„n)] u(r„n), (4.4)

which identically satisfies conditions (4.2) and
(4 3)

The earlier formulas (3.7) and (3.8) are once
again relevant, with n, =n and @=p/n. For the
present case, the various integrals are found to
be22 ~

—0.8

-0.10

The first ensures over-all antisymmetry for P,
while the second automatically removes quartet
spin character from g.

The ground state for three electrons has the
designation (1s)'(2s)'S. It may be variationally
approximated by selecting f to be a suitable com-
bination of the orbitals defined in Eq. (3.1). The
specific form used was

f(r„r,~r, ) =[u(r„n)v(r„p)

-0,12

05~ A

0.4

C

D

—0.14

-0.1 6

D

Z
0.3

X
LLI

0.2
I-

o 0

-0.18

—0,20

-0.22

—0.1—
-D

I I I I I I I I I I I I I I I

0.2 0.4 0.6 O.B 1.0 1.2 1.4 1.6
k

-0.24

0 26 I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 16. Orbital exponents for the two-electron ex-
cited state (2p) 3P.

FIG. 17. Energy for the two-electron excited state
(2p)23J'. The inset provides an expanded view of the
region near X =0.97.
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V. DISCUSSION

The purpose of the present paper has been to
demonstrate the relevance of simple nonlinear
variational calculations to the study of quantum-
mechanical perturbation theory with arbitrary cou-
pling strength. Although we believe the results are
qualitatively significant, it will be necessary to
use more elaborate trial wave functions to achieve
more impressive numerical accuracy. It should b8
obvious that each elaboration comylicates the nu-
merical analysis by introducing further variational
parameters that with their predecessors require
simultaneous extremalizlng.

For those eigenstates which possess branch
points on the positive A, axis, we expect normally
to find that any wave function of finite complexity
wQl produce energy branch points with charac-
teristic exponent —,'. However, it appears that the
exact 8'"'(X) can exhibit somewhat different pow-
ers. e These modified exponents then must arise
as a property of that limit in which arbitrary flexi-
bility is present in the trial wave function. , and for
which the energy must be extremalized over a
parameter space of infinite dimensionality.

Each calculation presented in this paper involved
only two variational parameters at the outset. Con-
siderations related to the virial theorem reduced
the dimensionality to one. Energy extrema in the
one-dimensional (q} space could only be simple
minima or maxima (except at the precise point
of 'confluence when a horizontal point of inflection
obtains). But with a number q & 2 of variational
parameters in g, energy extrema in the reduced
space with dimensionality q —I &1 can be of several
types, depending on the signs of principal curva-
tures. The resulting normal circumstance whereby
a singular point would develop for a "physical"
energy branch, would entail confluence of a rela-
tive minimum '(all curvatures positive) with a
saddle point (one curvature negative, the others
positive). These considerations suggest that con-
siderable care should henceforth be exercised to
understand the differential geometry of energy
hyper surfaces in multidimensional parameter
spaces.

It has not escaped our attention that the energy
curves shown in Fig. 5 resemble pressure iso-
therms in the critical region of a condensing gas
described, for example, by the van der Vials
equation of state. " Indeed the mathematical sin-
gularity of the energy, for sufficiently large posi-
tive A,, is analogous to the free-energy singularity
at the critical point of a many-body system which
can undergo a phase change. It seems likely,
therefore, that a suitable version of the renormal-
ization-group techniques that apply to calculation

of critical exponents" could be used to clarify
the singularities of the 8'"'(X}.

The analytical perturbation theory advocated
here shouM be useful for understanding at least
some resonances in electron scattering exyeri-
ments. " Heretofore, the available theoretical
methods for calculating the positions and widths
of scattering resonances have seemed mathemat-
ically ambiguous. However, analytic continuation
of an eigenvalue 8'"'(X) into the continuum is un-
ambiguous, and we have seen that the imaginary
part of the energy beyond a branch point may be
extracted to give the lifetime of that compound
state directly.

In this regard, the ground state of the ten-elec-
tron system (corresponding to the real particles
F, Ne, Na', Mg", Ais', . . .) offers a particularly
interesting example. Since the singly charged
anion F (X =—,

' }is bound, we expect that further
increase of A, would cause penetration of the con-
tinuum and eventual encounter with a branch point.
It will be valuable to determine whether this branch
yoint A.

* occurs before X reaches —,', corresponding
to the oxide anion 0 . If A, *&—„this anion would
have a finite lifetime determined by the computed
imaginary part of the energy at X =—,'. On the other
hand, if X*~8, 0 would have an infinite lifetime
(in the present Schrodinger-equation description).
Note that although 0 has reportedly been ob-
served, "its lifetime is not experimentally known.

These 0 results would be directly applicable
to the scattering of electrons from 0 . The real
part of the ten-electron encl"gy analytically con-
tinued to ~ = —,

' predicts a resonance position, equiv-
alent to the negative electron affinity of 0 . If
X*&-,', the resonance width would be predicted by
the lifetime already mentioned; if X*~-,' the reso-
nance would be extremely narrow.

It should also be mentioned that the energetics
of 0 " is important in the Born-Haber cycle for
oxide crystals, ~ from which the negative electron
affinity of 0 can be extracted. This solid-state
application adds extra motivation to applying our
analytical perturbatlon theory speclflcally to the
ten-electron case.

Extension of the present perturbation technique
to polynuclear systems opens uy a rich area of
further application. For example, the ability of
two protons to bind three electrons depends on
internuclear distance B. For large 8 the system
readily forms H+H . But as R decreases toward
the united-atom limit R =0, the capacity to bind
the third electron must disappear since we know
He is not stable. - Evidently the transition occurs
at some R,&0 which must mark the intersection
of potential-energy curves for H+8 and for H+H.
The nature of this intersection can effectively be
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studied by simultaneously considering both R and
& variations. The resulting potential curves should
then be useful in analyzing inelastic H+H colli-
sions in which an electron is lost."

Apparently the reverse situation can also occur.
Neither of two widely separated Be atoms will add
an extra electron. The corresponding united atom,
however, is 0, which easily forms 0 . Again a
critical distance R, for binding could be identified.

In a more general context, it will probably be
valuable to study the role of electron-electron re-
pulsions via analytical perturbation theory in all

classes of chemical compounds. It seems clear
that directed valence and covalent bond formation
is already implicit in the ~ =0 limit, which is corn-
putationally simple even for rather complicated
molecules. The extent to which more subtle ef-
fects (such as hydrogen bonding, ligand field ef-
fects, and barriers to internal rotation) owe their
existence to nonzero A. surely deserves to be ex-
amined in depth. Upon its essential completion,
analytical perturbation theory could serve to
foment a didactic revolution throughout all of struc-
tural chemistry.

*Resident visitor.
~E. A. Hylleraas, Z. Phys. 65, 209 (1930).
J. Midtdal, Phys. Rev. 138, A1010 (1965).
T. Kato, Perturbation Theory for Linear OPerators
(Springer, New York, 1966), pp. 410-413.

4P. Dienes, The Taylor Series (Dover, New York, 1957),
Chap. XIV.

SM. E. Fisher, Repts. Prog. Phys. 30, 615 (1967); in
particular see Sec. 7.2.

~F. H. Stillinger, J. Chem. Phys. 45, 3623 (1966).
7E. Brandas and O. Goscinski, Int. J. Quantum Chem.

4, 571 (1970).
H. A. Bethe and E. E. Salpeter, Quantum Mechanics of
One- and Two-Electron Atoms (Springer-Verlag, Ber-
lin, 1957), p. 156.
F. C. Sanders and C. W. Scherr, Phys. Rev. 181, 84
(1969).
In the case of the three-electron ground state, only
&

p to cg have been determined; see S. Seung and E. B.
WQson, Jr. , J. Chem. Phys. 47, 5343 (1967).
Reference 3, p. 120, Theorem 6.1.

~2E. A. Hylleraas, Z. Phys. 54, 347 (1929).
~SC. Eckart, Phys. Rev. 36, 878 (1930).
~4S. Chandrasekhar, Astrophys. J. 100, 176 (1944).
~5F. H. Stillinger and T. A. Weber, following paper, Phys.

Rev. A 10, 1122 (1974).
P.-O. Lowdin. Adv. Chem. Phys. 2, 207 (1959); see

pp. 219-223.
C. L. Pekeris, Phys. Rev. 126, 1470 (1962).
The exact solution for comparison (see Ref. 2) has the
form E "(~)=-1+8 A, -0.157666' +0.008699'
—0.000889K.4 —~ ~ ~ ~

J. Lekner, Mol. Phys. 23, 619 (1972).
J. Midtdal, G. Lyslo, and K. Aashamar (unpublished).
R. J. White and F. H. Stillinger, Phys. Rev. A 3, 1521
(1971).
Since H(A) is spin independent, these matrix elements
need only be (and were) calculated using just one of the
three spin components shown in Eq. (4.1). The other
components just repeat the quoted integrals.
R. S. Berry, Chem. Rev. 69, 533 (1969).

24L. Pauling, The Nature of the Chemical Bond (Cor'nell
U. P. , Ithaca, 1960), p.40.
J. O. Hirschfelder, C. F. Curtiss, and R. B. Byrd,
Molecular Theory of Gases and Liquids (Wiley, New
York, 1954), p. 364.

2 K. G. Wilson, Phys. Rev. B 4, 3174, 3184 (1971).
YG. J. Schu].z, Rev. Mod. Phys. 45, 378, 423 (1973).
H. Baumann, E. Heinicke, H. J. Kaiser, and K. Bethge,
Nucl. Instrum. Methods 95, 389 (1971).

29Reference 24, p. 510.
We are grateful to Dr. John C. Tully for an edifying
discussion of this phenomenon.


