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Variable dimensionality in atoms and its effect on the ground state of the helium
isoelectronic sequence
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%'e calculate binding energies for heliumlike ions of variable dimensionality (D) with the wave
functions A = e&-+&i-«.&+e~-«i-0&. & and 8 =A(1+ cA»). The binding energy decreases
with increasing D. Functions A and 8 predict "critical binding dimensionalities" at D= 3.99
and 4.89, respectively, above which there is no binding in the hydride anion. The exact ground-
state binding energy at D = 5 is shown to be equal to that of the doubly excited 2p' 'I" state
into in three dimensions. By "dimensionality scaling" of atomic units the D = 1 atom is trans-
formed the 5-function model for which exact energies are known. In the infinite dimensional
limit, function A predicts no exchange contribution to binding for nuclear charge Z & Q2, with
a. +P only for Z & g2.

I. INTRODUCTION

%e describe in this paper a general method for
studying the ground-state binding energy of helium-
like ions of arbitrary dimensionality. Dimension-
ality here refers to the number of Cartesian co-
ordinates necessary to specify the position of each
electron with respect to a fixed attractive nucleus
located at the origin.

Variational calculations are performed to deter-
mine binding energies as a continuous function of
dimensionality in order to understand better the
observed energies in three dimensions. Two trial
wave functions are used. The first is a simple
two-parameter Hylleraas -Eckar t —Chandrasehkar
(HEC) function' '

e- aRi- BR2 + e- BRl aR
+Hi'. C

where A, and R, are the radial coordinates of
electrons 1 and 2. The second function is the
Chandrasekhar (C) modification' of p„, , ,

(2)

which contains some angular correlations through
the interelectron separation R». %bile neither of
these functions represents an extremely accurate
description of the exact wave function in the con-
ventional three-dimensional ions, the novelty of
our introduction of the dimensionality (D) to the
problem makes them quite adequate for establish-
ing trends in the D dependence of the binding en-
ergy over the range 1 & D

While the existence of D-dimensional atoms is
purely hypothetical, our study of their energy is
impor tant for the following reasons. First, it is
known from previous investigations of the ground
state in three-dimensions by Stillinger and co-

workers' ' that when the nuclear charge (& =l)A. )
is sufficiently small the energy penetrates into the
1sks continuum corresponding to one bound and
one free electron. This penetration occurs at A.

=1.0975, and as A. is increased further the energy
rises until a, branch-point (A. *) singularity of order
=—-', is reached at A. *=—1.12. Similar behavior was
found' for the doubly excited 2h' P' state, although
the order of the singularity is =1.07 in this state.
In both cases the energy of the hydride (A. = I) is
strongly influenced by the order of the singularity
due to its proximity, and a knowledge of correla-
tion effects necessary to describe accurately the
energy branch point is perforce relevant to the
hydride anion at A. =1. lt is clear that the long-
range correlations are most important in any state
which penetrates into a continuum, and in fact a
recent study by Bosenthal' of the 5-function atom
(in which all long-range Coulomb potentials are
replaced by short-range 5 functions) shows that the
ground-state energy is tangent to the continuum
edge at A. =2.66736. Until now, no attempt has been
made to relate the ~ dependence and energy
branch-point behavior of these three states, since
at first sight they appear to be quite independent of
one another. By allowing the dimensionality of the
atom to differ from a=3, however, we find the re-
markable result that (a) the 2f ''P state is identical
to a. Is' 'S ground state with D= 5, and (b) the 5-
function atom ground state is identical to the limit-
ing case of a Coulomb 1s''8 ground state with D
=1. Thus by setting D at "nonphysical" values
(i.e. , D&3) we are able to obtain at once a sim-
plification and unification of seemingly unrelated
questions associated with the penetration of the
ground state into the continuum.

Although our application of variable dimension-
ality to the two-electron binding energy is the
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first of its kind, there is ample evidence in other
areas of physics that such a generalization is val-
uable. We cite for instance the theory of critical
phenomena in which a branch-point singularity is
observed in the free energy as temperature is
varied. ' The classical "mean-field" model pre-
dicts simple critical singularities with analytical
properties the same in all numbers of dimensions.
Recent work' has in fact shown that when D~ 4 the
exact critical behavior is identical to that of the
classical result, and for D&4 expansions of the
critical exponents in power series of (4 —D) have
been generated.

The analogy between the critical-point behavior
of the free energy and the observed singularity in
the atomic ground-state binding energy at A. * is
quite interesting. For instance it can be shown'
that any trial wave function which does not coin-
cide with the exact wave function will give a "clas-
sical" &-power singularity at its A. *. It would of
course be desirable to obtain an expansion of the
exact exponent in terms of D with respect to a
dimensionality where the exponent is either & or
fixed at some precisely known value. For this
reason our variational results are potentially use-
ful, since they establish the approximate depen-
dence of the energy upon D.

Our calculation of energies and branch-point
singularities as a continuous function of dimension-
ality is not unlike the calculation of Regge trajec-
tories' "of poles in the S matrix as a continuous
function of the angular momentum. In fact, just as
discrete values of the angular momentum in Regge
theory correspond to physical states, so does our
discrete "spectrum" of integer dimensionalities
correspond to problems of physical interest.

In Sec. II we define an extension of the one- and
two-electron atomic Hamiltonians for arbitrary D,
and a set of '*dimensionality-scaled" length and en-
ergy units is introduced. These units show ex-
plicitly the D dependence of the Ha, iltOniann, and
in the limit of D=1 the equivalence of the Cou-
lomb potential with the 5-function model is demon-
strated.

Section III contains a description of the energy
expressions and integrals obtained from the HEC
and Chandrasekhar wave functions. The HEC re-
sults are presented in Sec. IV, and the Chandra-
sekhar results are given separately in Sec. V. Dis-
cussion of these results and comparison with the
"exact" energies at D=1, 3, and 5 appears in Sec.
VI. The possibility is also raised of a "critical
binding dimensionality" above which there exists
no bound 1s' state. Concluding remarks and a
discussion of the feasibility of extending the pres-
ent results to more complicated atoms and mole-
cules appear in Sec. VII.

II. SCALED D -DIMENSIONAL HAMILTONIAN

In a D-dimensional vector space the position
vector R of each electron is defined in terms of its
Cartesian coordinate X, (k = 1, 2, . . . , D) with re-
spect to a nucleus fixed at the origin. We define
the D-dimensional analog of the usual (D=3) hy-
drogen atom Hamiltonian to be

2Hoa =-a+~+2/R, (3)

with

(Hn -Ea)4-0. (4)

The bound-state solutions of (4) are g~ = U„~~(R) 1'~ ~,

where X~ is a D-dimensional spherical harmonic"
with characteristic value A(A+D 2) for A-
=0, 1, . . . , and U„~~ is a radial function,

U~A~=ÃR~e '"M( n+A—+1;2A+D —1;2kR). (7)

Here N is a normalization factor, k=(—2E) 2, and
~ is the confluent hypergeometric function. '~ The
energy is determined from integer values of the
principal quantum number n ~ A+1 by the relation

E„==,'[n+(D —3)/2] ',
in which A does not appear. This degeneracy of
states of different A having the same principal
quantum number was shown by Alliluev" in direct
analogy to Fock's' result for D=3.

Defining y„~ =R ' 'U„A, the equivalent radial
Hamiltonian results:

8 A(A + D —2) + [(D —1)/2][(D —3)/2]
8R R

———2E y q=0.2 ~ ~z)
n n

This explicit dependence upon D shows that for
D+3 there is a repulsive R ' "dimensionality bar-
rier" which produces states more diffuse radially
than those at D=3 having the same n and A." For
1 &D&3 on the other hand the R ' potential is at-
tractive relative to D = 3, and gives rise to more
tightly bound states.

Thus, as D is increased the states tend to be-
have very much as excited states do when D=3. In
fact it has been shown" that Eq. (9) is invariant to
the transformation (A, D, n) —(A+1, D —2, n +1).
For instance the 1s (D= 5) radial function is iden-

Here 6 and R are the Laplacian and the radial
coordinate,

D'"'= ~.x (5)
A'= 1

~=(px;)'.
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tical to the 2P (D=3) radial function. "
The corresponding two-electron Hamiltonian is

—2II =6 +6 )+—+———(D) (D) 2 2 2&

8 A1 2 12
(10)

r» = [2/(D —1)]R», k =1, 2

= [(D- I)/2]'II

eD = [(D —1)/2]'E

(11a)

(11b)

(11c)

These relations are designed so that when D=3,
length and energy are unchanged. When A. =0, the
ground-state energy is at -1 with respect to the
doubly ionized species. The singly ionized continu-
um edge is at &D= —2 for all A. . We do not consider
values of D&1, since in unscaled units the A, =O

ground state is unnormalizable.
In general, the ground-state wave function is

dependent upon only the three coordinates r„r„
and r»—= u, and transformation of (10) to this sys-
tem gives

hD = Go+ (D —1)G, ,

with

82 g2 2g2 M2+r2 r2 82
2Go= 2+ 2+ 2 +

~u r1M Q"1 ~Q

u2 + 2 1

r,u 8r, &u

and

(12a)

(12b)

1 ~ 1 ~ 2 1 1—2G =— + + + +r, Q , r, A", u Bu r, r, (12c)

In this form the explicit D dependence of hD is ob-
tained, and (12a) may be used to define a general-
ization of the Hamiltonian to nonintegral values of
D, although only integer values of D have repre-
sentations in Cartesian coordinates.

We may also choose to expand A. D about a fixed
dimensionality D„and one obtains immediately
from (12a) the relation for D, & I:

where indices 1 and 2 label the electrons and A„
= IR, —R2I Our units are such that the coupling
parameter X=& ' is continuous, with the discrete
values A, =1, —,', 3, . . . representing the H, He,
Li', . . . isoelectronic sequence. It is convenient
at this point to introduce a new system of units
wi'. h the property that when A. =0 the ground-state
energy is constant with respect to D. In this man-
ner variations in the binding energy as a function of
D at A. ~0 can be attributed primarily to I/8». In
addition these units will allow us to consider the
ground state at D=1, which we see from Eq. (8)
is at negative infinity when A. =0. We therefore de-
fine a set of "dimensionality-scaled atomic units"
for the length and energy:

AD =AD +(D —D,)G, . ('3)
In this manner the energy eD can be expressed as a
zeroth-order energy ED plus a perturbation ex-

0
pansion in (D —D, ) at each value of lI. . Equation
(13) differs from the usual perturbation equation in
one important respect, namely, that the integra-
tion volume element in D dimensions is not equal
to the volume element in D, dimensions.

We do not use perturbation theory in the present
paper. Instead, we obtain upper bounds to the ex-
act ground-state energy &D for each trial function

y~ by means of the usual variation theory on

~D 4 T 1@D I 'PT)/&W T I V .) ~ ~D . (14)

(This inequality is only valid below the continuum
edge. )

In concluding this section, we note that the Cou-
lomb potential-energy terms in Eq. (12) are of the
form (D —1)/Ixl, where Ixl=r„r„ror» In .the
limit of D-1 these terms clearly vanish, except
when lx I

=0. Because the volume element contains
a factor lxl ', as D-1 we may replace the Cou-
lomb terms by limD, (D —1) lx I

'=25(x). Here
5(x) is the Dirac 5 function. Thus the Hamiltonian
at D=1 becomes

h- 1
2+

2 ~x2 ~y
—5(x) —5(y) +Ad(x —y),

DO (X q& ~(oo

III. VARIATIONAL CALCULATIONS

The HEC wave function defined in Eq. (1) leads
in a straightforward manner to an energy expres-
sion in terms of a scale factor o.'and q= p/o. ',

where x and y are the one-dimensional coordinates
of electrons 1 and 2.

At A. =0 the ground-state eigenfunction of (15) is
e '" ' . In dimensionality-scaled atomic units
the one-electron hydrogenic energy of Eq. (8) is
~[(D —I)/(2n+D —3)]', and thus as D-l only one
bound state exists, with n =1. This establishes the
fact that there is only one bound eigenfunction of
(15).

The one -elec tron 6 -function model for atoms
and molecules has been studied by Frost. " Ap-
plication of analytic perturbation theory to the
two-electron-model atom has been made by White
and Stillinger, "and exact energies for A. +0 were
recently reported by Rosenthal. ' Each of these
earlier investigations regarded the model as rep-
resenting only qualitatively the properties of the
three -dimensional Coulomb problem. We have
demonstrated that they are actually solutions of
the same Schrodinger equation differing only by
continuous scaling of the dimensionality.
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= n'[J, /J, ]+ n[ J-, +A. (J2/J2}],

with

2J.=2(1 +n')(I +n)" +(4n)"',

J, = (1+q),

(18)

(17)

(18)

1 —k 3 —D —k D (a+b)2
2 ' 2 '2' (b)'

k+D-& 2D+k —3 D

(28)

J, = r}(21+1)i!jfD (42}) '+ (I + 2})'

+

2 ' 2 ' I+2}

(19)

where

4y+ D-2
x

(a+b)' '2 ' ' (29)

(30)
2 "I'((D+1)/2)'I'(D+ —,')

r(D) r(D+1)r(-,')

J, =2(1+2})' +2(42})

& is the hypergeometric function"

(20)

(21)

and

(42j) 'I"(k+ D 1)I'((k-I)/2+ D 1)I'((D-—1)/2)'
2 I'(D —1)'I'((k+ D)/2)

ab x a(a+1)b(b+1) x'
F(a, b; c; x) =1+——+ + ~ 0 ~

c 1! c(c+1) 2!
(22)

In going from Eq. (28) to Eq. (29) we have used the
hypergeometric identity'

F(A, B; C;Z) = (1 —Z)c " eF(C —A, C —B; C;Z) .

and r(y) is Euler's gamma function. Since y(j)&. is
symmetric in n and P, we need consider only val-
ues of g +1 in the variation of &Dll~" .

Minimization with respect to the scaling param-
eter n leads to

Integrals of the type

)j (i, j, k)= f fded" "r', 'r( 'r, , '

(32)

(eD(('")„,,, „=-[J,J', —A J2]2/4J, J2. (23)
(33)

e-ar~ e-br'
G'(a, e)= d, f d,

V~

are evaluated as

(28)

GD(a, b) = lim
c 0

W22(a, b, c)
~C

(27)

Substitution of Eq. (24) into Eq. (25) leads after
considerable algebraic manipulation to the result

The minimization of (23) with respect to 2} was then
done numerically. The hypergeometric series is
convergent for g ~ 0, and when D is an odd integer
it truncates to a simple polynomial.

The energy expression for the Chandrasekhar
wave function is much more complicated than the
HEC result, and we present only the necessary in-
tegrals. Generalizing to arbitrar y dimensionality
the Fourier-transform method used by Bonham
and Kohl, "we write for dimensionality D

e
- ar r (+ + 2

) C
- i (( ' 2

2r(2)p))+2 (a2d k2)&+2/2 2 (24)

with 2 v = D —2. Defining

e-ar~ &-br2 e-cr32
ia (a, b, a)= f dr, f dr, , (22)y. y ~

integrals of the type

necessary for the evaluation of &„ can then be ob-C

tained by taking appropriate derivatives, namely,

8 1 8
KD(i, j, k) = —— ——G222(a, b) . (34)

In taking the derivatives with respect to a and b we
have found it most convenient to use Eq. (29) for
GD(a, b), and then to use the transformation in Eq.
(32) to obtain negative hypergeometric indices
whenever possible. When D=3 the hypergeometric
function in (28) is reducible to the algebraic func-
tion

G",(a, b) = (42j)'r(k+1)(a2 —b') '(b ' ' —a ' '),
(35)

which is identical to Eq. (3) of Bonham and Kohl
when their parameter n = 0.

In optimizing the Chandrasekhar energy, mini-
mization with respect to the scale parameter &

was performed exactly, and then 2}=p/n and Z

=c/n were varied by a numerical-pattern search"
for values of D &7. No systematic investigation of
the Chandrasekhar energy for»7 was made, "
since the A. dependence of cDl" and cD at D= 7 was
nearly identical, the variationally optimized ener-
gies differing at most by only 0.008 a.u in dimen-
sionality-scaled units .
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IV. HEC NUMERICAL RESULTS

A. General features
—0.495—

I ) I I
) I I I I I I I I I I I I I

The A, dependence of the HEC ground-state ener-
gy for D=1, 2, 3, 4, 7, ~ is illustrated in Fig. 1, and
an expanded version near X = 1 is provided in Fig.
2. These results show a marked decrease in the
binding energy for ~&0 as D increases. A detailed
analysis of the a=3 curve appears in a paper by
Stillinger and Stillinger. ' Figure 3 shows the cor-
responding dependence of q for 1 ~ g ~ 0. For each
finite D&1, p drops smoothly from unity as A. is
increased from zero until a point ~g is reached
where (Bq/&A) = -~. This corresponds to a branch
point singularity in eD" of order &. The portion
of the curve with (&q/&A, ) &0 corresponds to a max-
imum in the variational energy, and is of course
nonphysical. The point Ag* defined by (&q/&A. ) =+ ~
represents another singularity in the energy, and
a further decrease in g with increasing ~ indicates
the existence of a second minimum branch of the
HEC energy ending at & = 1 with p = 0. The value

p =0 indicates an infinitely extended outer orbital,
i.e. , the removal of one electron to infinity at &D

Comparison of Figs. 1—3 shows that in gen-
eral the HEC energy curves can be divided into the
following two classes.

Class I: Energy less than ——,
' at ~=1. In these

curves (for example, D=3 in Fig. 2) the HEC en-
ergy penetrates the continuum edge at &D= -2 with
a finite slope, and ends at the branch point X*. In
each case the second minimum in &DH"' does not
appear to have a physical interpretation, and has
not been illustrated.

Class II: Energy greater than —2 at 1=1. In
these curves (for example, &=7 in Fig. 2) the first
and second HEC minimum-energy branches inter-

~ -0.500

UJ
X
le -0.505

f CONT) NUUM

—0.510—

0.80 0.90 1.00 1.10 1.20

FIG. 2. Expanded version of HEC energies in Fig. 1
in the region A, = 1. The broken-line extension of the D
=4 curve represents a nonphysical energy minimum,
and is included for comparison with the D=2, 3 curves
in which that same energy branch does represent the
physical state.

sect at ~=A, &1. Thus in the interval 0 &A. &A, the
first minimum branch (larger q) of eo"' represents
the lowest HEC upper bound to the exact energy.
In the interval ~; -~ ~1, however, it is the second
minimum branch (smaller q) which represents the
lowest HEC upper bound to the exact &D.

The lowest-energy HEC state for these class-II
curves therefore has a discontinuous first deriva-
tive with respect to X, and a discontinuity in q at

This is of course an artifact of the HEC ap-
proximation, since it has been proven by Kato"
that an isolated energy eigenvalue is an analytic
function of X. The HEC energy for D= 7 on the re-
gion of +; is illustrated separately in Fig. 4, with
each portion of the curve explicitly labeled. The
qualitative features of each class-II curve near A,.

are identical to the a=7 result, except that the
triangular region moves entirely below & = ——, as
D increases.

-0.4

-0.5 CONTINUUM

D=4
o=5 0=2

1.0

—0.6
O

C9 -0.7
UJ
X
4J

-0.8

0.6

0.4

—0.9 0.2

—1.0
0 0.2 0.4 0.6 0.8 1.0 1.2

I

14 1.6
O.O

0 0.2 0.4 0,6 0.8 1.0 1.2 1,4 1.6

FIG. 1. A, dependence of HEC variational ground-state
energies for heliumlike ions of variable dimensionality
D. A, is the coupling parameter in Eq. (10).

FIG. 3. A. dependence of the optimized HEC parameter
g=P/& for variable dimensionality, where &, P are the
orbital exponents of Eq. (1).
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From our definitions of class-I and class-II en-
ergy curves it is clear in the HEC approximation
that a unique "critical binding dimensionality"
(D, ) exists such that at A. =1, eDH,

""= -2, but eDH'"

& —2 for all D&D, . The HEC value is D, =—3.99.
For»D, there is no binding at ~=1, and only
continuum states for ~ &1. The limiting case a=1
and D= ~ are particularly interesting because the
minimization of &D"-'- can be accomplished analyt-
ically, as we now show.

B. Results for D=~

From Eq. (6) we obtain in the limit D-~
-2e'„"'.c = [1+q —A.q(1+@') ' ']'(1+@') '. (36)

Minimization of &'„'~~ with respect to q gives rise to
only two energy minima on the interval 0 & g, ~ &1,
designated A. and B in what follows. The first (A)
is

q, = [X' —(u' —1)'~'](1 —X') ',
e'= -(Z'+1)'(8Z') '

(38a)

(38b)

and represents the energy minimum only for ~
~ 1/v 2. Thus at D= ~ the two HEC energy branch-
es are joined at A., =1/v 2 and it is easily seen that
eeHEc/8Aan. d q are continuous at A.; in contrast to
the discontinuities observed at lower finite D.

The most interesting feature of the D= state
is that exchange correlation, which is described in
the HEC function by a value of g&1, does not con-
tribute to stability of the ground state for A. &1/v 2.
For A. &1/v 2, q decreases rapidly to zero at A. =1,
Thus in the HEC approximation the electrons
move independently of each other when X &1/V2.
At A. = 1/v 2 a radial instability occurs which allows
the electrons to take advantage of radial correla-
tion. One electron becomes rapidly more diffuse
as ~ increases until at ~ =1 it becomes ionized.

e„"= —[1 —(X-,'v 2)]',

(37a)

(s7b)

C. HEC results for D =1

In this case minimization of &", '~ with respect to
g leads to the condition that

corresponding to a screened hydrogenic wave func-
tion. e"„ is a, minimum only when 0 &A. &1/v 2,
while for larger A. it becomes a maximum. The
second energy branch (&) is

(2A. —3)(1 + q') + (14K. —22)(q+ rP)

+ (38K —3)(rP + q') + (20K. + 76)q' = 0 . (39)

At g = 0 we see that ~ = 2, in contrast to D& 1,
where q=0 at A. =l. Equation (39) is transformed
into a cubic equation by the substitution z
= 2q(1 + q') ' to give

—0.500
CONTINUUM , B (2A. —3) + (7A. —11)z+ (8& —1)z'+(-A. +15)z'=0,

(40)

for which exact solutions are known. " The branch-
point singularity occurs at X*=1.50256869, with
c'«L' = -0.49998246, so that the energy has just
barely penetrated into the continuum. In terms of
z the energy is

[1+z][1+(S-~)z]'
2[1+sz][1+z+2z'] '

z =2@(1+q') '.
(41a)

(41b)
—0,510

0,90 0.91 0.92 0.95 0.94 0.95
X

0.96

FIG. 4. A, dependence of HKC and Chandrasekhar (C)
energies for dimensionality D= 7, illustrating the two
physical minimum-energy branches discussed in the
text. Segment BC represents an energy maximum,
while CA and AB represent nonphysical energy minima.
Point A (at p, &)

defines the intersection of the two mini-
mum branches. For A, & A, ; the second minimum branch
approaches the continuum edge tangentially at A, =1. The
intersection of the two Chandrasekhar minimum-energy
branches occurs at D'. For higher values of A, the Chan-
drasekhar and HEC energies are indistinguishable on
this graph.

The explicit form of the HEC energy minimum as
a function of ~ is complicated, and we omit detailed
discussion at present. In spite of the complexity,
however, it represents the simplest example of an
analytic variational energy for the Coulomb poten-
tial which penetrates into the continuum.

V. CHANDRASEKHAR NUMERICAL RESULTS

Qualitatively the Chandrasekhar energy curves
are similar to the HEC results, as shown in Fig.
5 for D= 1, 1.1, 2, 3, 4, 5, and 7. It is not sur-
prising that the inclusion of angular correlation in
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-0.4—

-0.5

U

~ —0.6
C9
K
LLj

hJ -0.7

FIG. 5. A, dependence of
Ch andrasekhar variational
energies for variable d'

mensionality D.

-0.8
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0,4

I

0.6
I

0.8 1.0
I

1.2
I

1.4
I

1.6
I I I

1.8 2.0 2.2

paK = VHEc(1 +Ke "»),

as indicated by the fact that It is
(= 0.1). The

a is generally small
e Chandrasekhar branch-point sin u-

larity occurs at X*=1.1504 in
X*=1.1.1517 for the BK function.

, in comparison with

Typical values of the Chandras kh

y and q are shown in Fi s, 6 d

n rase ar parameters
igs, and 7 for the mini-

(42)

thee Chandrasekhar wave f t'unc son leads to an in-
crease in stability with respect to the HEC results

a . wo important improvements over th HE C
are that (i) the critical b' din dim

ally above which th
nowat D=—4

w ic e A. =1 ion ceases to be bound is
,= 4.89 compared with the HEC

, an (u) at D=1 the increased stabilit h

pushed ~* out to 2.06.
a xzyhas

At D=3 the Chandrasekhar results
ilar to those re

resu s are very sim-
r o ose reported by Stillinger and Weber' for

the Bonham-Kohl (BK) function"

rapid rise of
mum-energy branches onl . Ny. ote the extremely
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VI. RATIONALE FOR EFFECT OF D ON BINDING

A. Importance of the volume element

It is evident from the results presented in Secs.
IV and V that there is a tendency for the ground-
state binding energy to decrease with increasing
dimensionality. At first sight this observation ap-
pears to be in direct contradiction with naive in-
tuition, which suggests that as the number of Car-
tesian coordinates (D) increases the electrons will
be able to a.void each other more easily than they
can in lower dimensionalities.

The key to understanding the binding trend at
higher D lies in the observation we made in Sec.
II, that ground states for»3 behave like doubly
excited states at'D=3. The reason for this was
that the volume element, which is proportional to
(r,r, ) ', keeps both electrons far from the nucle-
us. The electrons are thus screened from the nu-
cleus by an effective "dimensionality barrier. "
This results in a reduction of the nuclear attrac-
tion energy, and also an increase in the average
repulsion energy between the electrons.

The latter point is illustrated by the following
example. Consider the "radial limit" of the Cou-
lomb interaction, defined by

J d&, f d&2(I/~12)
fdQ, fdQ,

(43)

where the integrations are performed only over the
angular coordinates of electrons 1 and 2. Straight-
forward integration gives the general result as a
continuous function of D that

B. Comparison of variational results with
"exact" results for D=1, 3, 5

(PD IGi I go)
(&pa I PD)

(48)

We prove in Appendix A that the 1s''8 energy
and wave function at D= 5 are identical (to within
trivial factors) to those for the doubly excited
2p"P state at D=3. This remarkable result al-
lows us to use the accurate Pekeris'4 variational
energies and the perturbation series expansions of
Midtdal" and Aa, shamar" for the 1s' and 2P' states
as well as the accurate 5-function-model (D=1)
results of Rosenthal' for comparison with the HEC
and Chandrasekhar results. The corresponding
exact a=1, 3, and 5 energy curves appear in Fig.
8. All three curves are bound at A. =1 (class I).
The e, curve remains bound out to A. =2.66736, at
which point the energy is tangent to the continuum,
in contrast to &, and &„ which penetrate into the
continuum with positive slope.

The nature of the exact energy curves for D&5
is not known and, in particular, it is not clear
whether there exists a critical bonding dimension-
ality for the exact energy as indicated by both the
HEC and Chandrasekhar wave function. Figure 9
illustrates the dimensionality dependence of the
ionization potential (IP=0.5 —eD) at A. =1 for the
HEC, Chandrasekhar, and exact energies. The
HEC IP goes to zero with slope &(IP)/&D= -0.0102

Dg 3 9877 whj le the Chandrasekhar IP inter-
sects with a slope &(IP)/&D=0. 0089 at D, =4.891.
If the exact IP curve does have a finite D„ then its
slope at A. =1 is obtained from

)' =5/» )»)~l, 2, 2, (,—) I, (44)

where G, was defined in Eq. (12) and yD is the

—0,4—
I I I I

I
~ & I I ) I I I

with x, and x„respectively, the larger or smaller
values of x, and x„and & is the hypergeometric
function IEq. (22)]. If we fix the value of r, /x, and

increase D we see that V„actually decreases in
magnitude. For instance, V, = I/r „V,= (I/x, )
&& II ——,'(r, /r, )'], and V„= (x,' r +)'2' The vo.lume
element increases much more rapidly with D, how-
ever, and using the A. =0 wave function y'= e "~ "2

the average repulsion energy is found to be

—0.5

—0.8

CONT I NUUM

6736-

(y'
I r,,' I

y') I'((D+1)/2)I'(D+ —', )
(V'I V') I'(D+1) I'(D/2) (45)

which is of course equal to the first-order energy
(en ) in a X-series expansion of the exact ED.

Starting at D=1, ED equals —,', and then increases
slowly as D ascends until the limiting value &D'

= I/W2 is reached at D= ~.

-1.0
0 1.0 2.0

FIG. 8. A, dependence of exact ground-state energy for
dimensionality D=1, 3, 5 as described in text.
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exact wave function at A. =1. It is evident from the
slope of eD in Fig. 9 that seD/BD&0 over the range
D shown, and it is possible that the IP approaches
zero tangentially. Equation (46) would support this
presumption, if AD becomes infinitely extended as
the A. =1 IP declines to zero. The exact IP curve
in Fig. 9 represents a parabolic fit in D ' to the
IP's at D=1, 3, 5. Extrapolation of this curve to
IP=O gives D, =—5.18.

Figure 10 provides a compa, rison of magnitudes
of A. * for HEC, Chandrasekhar, and the exact
energy curves with increasing D. When 3 & D &5
the value of X* for the exact energy is bounded by
the Chandrasekhar and HEC results. For D&3
the exact curve actually rises above the Chandra-
sekhar curve at some point, reaching a value of
A. *=2.66736 at D=1. Note that in the region D=—3
both the HEC and Chandrasekhar wave functions
give a reasonable description of ~*. As one moves
to either higher or lower D, however, more subtle
correlation terms must be included in the wave
function.

The dependence of the branch-point critical ex-
ponent 0* upon D is illustrated in Fig. 11. For the
HEC and Chandrasekhar wave functions a constant
—,
' power is found. The exact results show that 8*
decreases at higher D. If there does exist a real,
finite critical binding dimensionality with D, + 5
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I—

O

r0
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lQ
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1.0
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I I I III
3 5 10

DIMENSIONALITY

FIG. 10. Dimensionality dependence of the ground-
state-energy branch point A* for HEC, Chandrasekhar
(C), and exact energies, as discussed in text. The exact
curve represents only a possible curve passing through
exact values of A,* known at D =1, 3, 5.

then it is possible that 6*= 1 at D„ indicating a re-
moval of the branch-point behavior. For D&3 Fig.
9 suggests that there may be a dimensionality at
which the exact 0*= 2, corresponding to the same
value obtained using finite parametrization in the
trial wave functions. Such a value of D would be a
logical point about which to perform a perturbation
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FIG. 9. Dimensionality dependence of the ground-state
ionization potential of the hydride ion for the HEC,
Chandrasekhar (C), and exact energies as discussed
in the text. The "exact" curve represents a parabolic
fit (IP= —0.039602+ 0.209676 D ~ -0.022849 D ~) to
the accurately known energies at D=1, 3, 5. Note that
dimensionality units have been scaled to 1/D.
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FIG. 11. Dimensionality dependence of the ground-
state-energy branch-point singularity order 19*, as dis-
cussed in text. The exact curve represents a possible
curve through the known exact values at D =1, 3, 5.
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expansion for 8*. Rosenthal concluded for 6-func-
tion model (D=1) that the energy has a pair of
branch points in the complex A, plane at ~A.

~

=—2.9 of
the type [(A. -z)(A. -z)L, where z and z are com-
plex conjugates and ~ =—1.1. However, we do not
feel that these singularities need to be identified
as the D-1 limit of our A. * (having hypothetically
fissioned into two branch points which move off the
real axis). Instead it seems more plausible in
terms of the present understanding of the continu-
um penetration phenomenon' that 6)* increases
smoothly to 2 as D decreases to 1, to leave the
simple parabolic tangency to the continuum edge
noted by Rosenthal. It is entirely possible that the
pair of singularities near ~A.

~
=2.9 exist for all D

&1; their effect on the corresponding perturbation
coefficients would be relatively small compared to
the effect of the real-axis singularity at A. * closer
to the origin.

While a knowledge of the exact X dependence of
&D at D = 1, 3, 5 has been useful for comparison with
the HEC and Chandrasekhar results, it would be
desirable to have accurate values of 6*, ea, and
~* over a continuous range of dimensionalities.
A natural set of functions for such calculations is

the D-dimensional generalization of the Hylleraas
coordinates. ' A brief description of these coordi-
nates and matrix elements is contained in Appendix
B.

C. Comparison of X-perturbation expansion coefficients

for D=1, 3, 5

In Table I we display the A. -perturbation energy
coefficients for 8= 1, 3, and 5 from Refs. 7 and
25. All energies have been converted to dimen-
sionality-scaled atomic units. The coefficients
are defined by

e (X) =g X'eD,
k=O

(47)

with &D being the 0th-order energy coefficient.
Through second order the coefficients show a

tendency to decrease binding as D increases. Com-
mencing with &D, however, the coefficients at
higher D in general lead to move stability, in con-
trast to our simple arguments of Sec. VIA. The
coefficients for D=1 show the oscillations in sign
resulting from the probable existence of a conju-
gate pair of branch points off the real A, axis.

We conclude this section by investigating further

TABLE I. Ground-state A, -perturbation energy coefficients eD in dimensionality-scaled
atomic units.

D=1 5c

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21

-1.0
0.5

-0.162 793409x 1p
0.139891477x 10 '
0,164276853x 10 '
0.170091337x10 4

—O.527475862x1P 4

—0.1329105Q7x 1p 4

-0.518 533 778x 10 6

0.669 790 439 x 10
0.216 734 991x 10

0.129695081x10 '
-0.125 061 648 x 10
-O.46O 944 210x 1O-'
—0.330178625x 10 9

0.287250960x1p 9

0.113288 498 x 10
0.861 026 942 x 10

—0.753861428x 10
-O.3O5298 953x 1O-"
—0.226895585x 10

-1.0
0.625

—0.157 666428x 100

0.869 902 gx 1Q

-0.888 705x 10
-0.1036374x 10 ~

-0.612932x 10 3

-0.372184x 10 3

-Q.242 874x 10 '
-0.165662x 10
-0.116179x 10

-0.833 02x 10
-0.608 81x 10 4

-0.452 32x 10 4

-0.340 8px 10 4

—0.259 93x 10

-0.200 34x 10 4

-0.15586x 10 4

—0.12226x10 '
—0.9661x10 '
-0.7686x 10 '

-0.6152x10 5

-1.0
0.656 25

—O. 1-57 578 718x 100

0.735 983 18x 10 ~

-0.136542 gpx10 '
—0.135 530 80 x 10 ~

—0.925 3372 x 10 3

—0.659 269 2 x 10 ~

—0.492 1362x 10
—0.378 761 4x 10 3

—0.298 5388x IO '

—0.2401628x10 '
-0.196 600 x 10
-0.163 364x 10
—0.137 494x 10-'
—0.117024x 10

—0.100 572 x 10 ~

-0.871 84x 10
-0.76144x10 4

—0.669 70x10 '
-0.592 46x 10

-0.527 30x 10 4

'From the 0 function model, Ref. 7.
Reference 25.
From 2P ~ P coefficients, Ref. 25.
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the relative stability of the higher-order D=5 per-
turbation coefficients with respect to those at D= 3.
Analysis of the extensive perturbation expansions
of Ref. 26 for the 1s''S and 2P''P states shows that
these higher-order effects can be attributed almost
entirely to the Coulomb repulsion opera. tor 1/r»
For instance at A. =0.5 the average repulsion en-
ergies are 0.236 a.u. at D=3 and 0.251 a.u. at D
=5. At A. =1, however, the relative magnitudes of
repulsion energies are reversed: 0.311 a.u. at
a=3 and 0.299 a.u. at a=5, indicating that the ob-
served decrease in binding energy in going from
D= 3 to D= 5 at ~ = 1 cannot be attributed to the
average value of 1/r». The most important factor
leading to the reduction in binding energy at higher
D values and large A. is the screening of the elec-
trons from the attractive nuclear charge by the in-
tegration-volume ele ment,

VII. CONCLUDING REMARKS

We have introduced dimensionality as a continu-
ous parameter in the description of ground-state
binding energies for the two-electron atom. Vari-
ational calculations with the HEC and Chandrasek-
har wave functions showed a decrease in binding
energy as dimensionality is increased. Each func-
tion leads to a prediction of a critical binding di-
mensionality D, above which no binding is observed
in the H negative ion. D, =3.99 for HEC while
angular correlation in the Chandrasekhar function
gives D, = 4.89. Exact D= 1, 3, 5 energies suggest
D, = 5.18.

Equivalence of the D=1 and D=5 ground states
to those of the 5-function model and the 2P''P
doubly excited state at a=3, respectively, was
shown. Accurate binding energies as a continuous
function of Dare needed either to establish or dis-
prove the existence of a finite critical binding di-
mensionality at D& 5.

Until now the 2p''P state (D=2), the 1s' 'S ground
state (D=B), and the 6-function model have been
regarded as separate problems. By following a
ground-state energy "trajectory" as a function of
D, it is evident that these "physical" problems oc-
cur at the integer values D = 5, 3, and 1. Similar
trajectories for the branch point A. * and the critical
exponent 6* will be invaluable for locating and

classifying singularities. Just as the energy ap-
pears to be described by complex A. branch points
at D=-1, we do not find it unlikely that complex
dimensionalities may eventually prove to be im-
portant in this problem. "

The notion that wave functions and energies of
the D=3 ground state may eventually be obtained
from an expansion about D=1 is very appealing.
If this proves to be possible then similar use of

the 5-function model for many-electron atoms and
molecules may well be justified.

R12+R2 R1

R2 12 2 12

»
8 1 8 2 8

+ (D —1) — + — +
R, 8R, R, 8R, R» 8R,2

(A1)

We define the function P X1Y2 +]X2 where X,
and 7,. are any two different Cartesian coordinates
for electron i. If X is a function dependent upon
only the coordinates R„R„and R„, then in D
dimensions

(& +6 ~)PX= P(6 +6 )+2 Y —X
8 8

1 2, 1 2 8X 281
1 1

8 s )
'BX '8 Y,)

8 2 8 4 8

R, 8R, R2 8R2 R12 8R,.
= P(&D.2X) (A2)

Since the potential energy commutes with P, we
have the result that if X is an eigenfunction of the
(D+ 2) -dimensional Ha, miltonia. n

1 1
R R R1 2 12

then Px is necessarily an eigenfunction of the
Hamiltonian in D dimensions. In particular, if X

is the exact ground-state wave function in five di-
mensions, then PX is an eigenfunction (of the same
energy) with one unit of a,ngular momentum in three
dimensions. This must be the 2P"P state since y
is nodeless. Identical correspondences also exist
for the excited bound and continuous states as well.

It can be shown in addition that the average en-
ergy of any D= 5 trial wave function of the type
y(R„R,) is equal to that of the tria. l wave function
Py(R„R,) when D=3. For instance our HEC re-
sults for a=5 are identical to those reported by
Stillinger and Stillinger' for the D=3 2P''P state.

APPENDIX B: D-DIMENSIONAL HYLLERAAS
COORDINATES

In direct analogy to the Hylleraas coordinates
for D= 3, we define

APPENDIX A: EQUIVALENCE OF THE D =S
GROUND STATE AND THE D =3 2p P STATE

In terms of the unscaled coordinates R„R„R»,
the D-dimensional Laplacian 4, + 4, becomes

82 82 282 R2 +R2 R2 82
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u =x„) s=r, +x, , t =x, -x, . (B1) dT =u(s' —t') [(s' u-')(u' —t')]t "~'ds du dt,
The ground-state wave function can be expanded
in terms of the functions e ~' 's'M t", where k may
be regarded as a scale factor. The volume element
in this space is (to within a constant which can be
ignored)

(a2)

and thus all energy matrix elements for the
ground-state energy can be expressed in terms of
the integral

s Q

du dt e "s~u't"[(s' —u')(u' —t')]'
0

B (k, Pq, y|,= I ds
0 0

I'(a) q+r+ D —1 D —1 r+1 D —1, B (I34)

where a =p+q+r+2D —3 and B(m, n) =I'(m)I'(n)/ I'(m+n) is the beta function.
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