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We discuss the phenomenon of symmetry breaking observed in minimum-energy structures for water 
dimers. Based on two explicit representations of the intermolecular pair potential, the ST2 and PKC 
forms, lowest energy dimers are evaluated as a function of oxygen-oxygen separation, and it is 
concluded that a critical distance R, exists which separates mechanically stable dimers of differing 
symmetries. For small distances, the familiar linear hydrogen bond is manifested, while for large 
distances dipole--dipole forces promote alignment of the molecular axes. At R c' eight equivalent 
small-distance minima of low symmetry and four large-distance high-symmetry configurations undergo 
confluence. Thorough investigation of constrained minima illustrates how this transition occurs and 
invites comparison with the theory of critical phenomena. The second-order phase transition of the 
Ising ferromagnet provides a useful analogy to the structural symmetry breaking of the water dimer. 
Finally, we consider the relation of the present case to the larger issue of interactions in condensed 
phases, and to the interaction of more complex molecular pairs; one thereby discovers analogs for (a) 
Ising models in external fields, (b) upper and lower consolute points in liquid mixtures, and (c) 
first-order phase transitions. 

I. INTRODUCTION 

Substantial research effort has recently been expended 
in attempting to understand the interactions between 
water molecules. This activity has comprised both di­
rect quantum-mechanical studies, 1-8 as well as semi­
empirical approaches to determine closed form approxi­
mations to the potential. 9-12 At present, a consensus 
seems to have been reached concerning at least the 
qualitative character of water molecule interactions: 
At small distances, linear hydrogen bonds tend to form 
between neighbors, while at large distances the inter­
action between permanent molecular dipole moments 
dominates. 

This paper focuses attention on one special aspect of 
the water-molecule pair potential which seems to have 
received little attention thus far. Eight equivalent lin­
ear hydrogen bond structures exist for a molecular pair 
at small separation, with the optimal geometry exhibit­
ing only a single symmetry plane. On the other hand, 
dominant dipole-dipOle forces at large separation would 
cause alignment of molecular symmetry axes, so that 
only four equivalent optimal pair structures arise, each 
with two symmetry planes. The manner in which the 
former transforms into the latter as intermolecular 
distance increases is not obvious. We illustrate that 
transformation by citing concrete numerical results 
for two published water-molecule potential functions. 
For both, we conclude that upon bringing two molecules 
together from infinite distance, a critical distance is 
reached at which a spontaneous change in symmetry 
occurs for the minimum-energy structure. 

The first pair potential examined (Sec. II) is the "ST2" 
potential, which was devised for use in the simulation 
of liquid water by molecular dynamics. l1,IS-15 This po­
tential is to be interpreted as an "effective pair poten­
tial,,18 whose form incorporates the principal structural 
effects of potential nonadditivity. 

The second pair potential used in the present study 
(Sec. m) was suggested by Popkie, Kistenmacher, and 
Clementi. 8 It represents an analytical fit to their ac-

curate and extensive Hartree-Fock calculations for the 
ground-state energy hypersurface for two (rigid) water 
molecules. Although this "PKC" potential differs from 
"ST2" in several quantitative details, calculations pre­
sented in the next two sections show that both lead to 
the same type of singular but continuous symmetry 
breaking at finite intermolecular distance. This agree­
ment probably indicates that the exact water-molecule 
pair potential shares identical behavior. 

Section IV stresses the analogy between spontaneous 
symmetry breaking in the present context, and that 
encountered in the statistical mechanics of phase transi­
tions. At the very least, this analogy provides an ele­
mentary mechanical model in terms of which critical 
phenomena and phase transitions may be partially under­
stood. 

The basic mechanism for occurrence of spontaneously 
broken symmetry is already present with hypothetical 
point molecules possessing permanent dipole and axial 
quadrupole moments. Details are provided in the Ap­
pendix. However, this level of simplicity is not ap­
propriate for description of water molecules. 

II. ST2 INTERACTION 

The ST2 interaction is based upon a rigid four-point­
charge model for each water molecule. Figure 1 (a) 
shows the relevant geometrical structure. The point 
charges are located along four directions emanating 
from the oxygen nucleus, each pair of which occurs 
at the ideal tetrahedral angle 109.47°. Two of the point 
charges are positive (+q) and can be identified as pro­
tons; they are placed 1 A from the oxygen nucleus. The 
two negative charges (- q) are present for charge neu­
trality; they reside 0.8 A from the oxygen nucleus. 

The ST2 potential consists of two principal parts; 

V(2) (ST2) = V LJ (R I2>+ S (R I2 ) Vel (1, 2). (2.1) 

The first, VLJ, is a Lennard-Jones 12-6 potential act­
ing between the oxygen nuclei, whose separation has 
been denoted by R 12 • The second part contains the total 
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FIG.!. Geometric arrangement of point charges used to de­
fine water-molecule pair interactions; (a) ST2 effective pair 
potential, (b) analytical fit to Hartree-Fock calculations con­
structed by Popkie, Kistenmacher, and Clementi. 

electrostatic interaction v.I, sixteen terms in all, for 
point charges on the two different molecules. This elec­
trostatic contribution is modulated by a cubic spline 
function of the oxygen-oxygen distance R 1Z : 

S(R 1Z ) =0, 

_ (R 1Z - RL)2 (3Ru- RL - 2R 12 ) 

- (R u -RL )3 

= 1 (Ru ::S Rt2)' (2.2) 

Including the Lennard-Jones parameters E: and (J, the 
ST2 potential utilizes the following quantities: 

q=O. 2357 e, 

E: = 7.5750 X lO-z kcal/mole, 

(J=3.1000 A, 
RL = 2. 0160 A, 
Ru =3.1287 A. 

(2.3) 

In order to specify the relative configuration for two 
rigid water molecules, six coordinates are required. 
These can be chosen to be the distance R 12, and five 
angles describing the relative orientation of the mole­
cules. The ST2 interaction provides an approximate 
value for the intermolecular interaction for any given 
set of the six relative coordinates. 

Figure 2 shows schematically the structure of the 
minimum-energy dimer implied by the ST2 function. 
The single hydrogen bond is obvious (proton Hz donated 
to acceptor oxygen Ca). This dimer possesses a re-

0 1 O2 8 
H2 

H4 

. H3 

FIG. 2. Minimum-energy dimer structure. The plane con­
taining the proton donor molecule (Hl01H2) serves as a reflec­
tion symmetry plane. 
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FIG. 3. Values of angles 9 and qJ (see Fig. 2) which provide 
constrained energy minima for the ST2 potential. 

flection symmetry in the plane containing the proton 
donor molecule and the symmetry axis of the acceptor 
molecule. The dimer is prevented from twisting out 
of this reflection-symmetric arrangement in part by 
proton-proton repulsions. 

Direct calculationll shows that the dimer energy mini­
mum exhibits the following geometric parameters (see 
Fig. 2): 

R12 = 2. 852 A, 
9=51.8°, 

rp = 53. 6° . 

(2.4) 

The ST2 energy at this minimum is - 6.839 kcal/mole. 

Equivalent minima may be generated by any combina­
tion of the following operations: 

(a) rotate the acceptor molecule 180° about its sym­
metry axis; 

(b) rotate the donor molecule 1800 about its sym­
metry axis; 

(c) exchange roles of donor and acceptor molecules. 
In all, eight distinct structures arise from these inde­
pendent operations. 

The molecular arrangement shown in Fig. 2 is also 
qualitatively correct for constrained energy minima, 
in which R 12 has a preassigned value not necessarily 
equal to that shown in Eq. (2.4) for a global minimum. 
Of course, the angles 9 and qJ would then exhibit dis­
placed values. 

Figure 3 shows computed values of 9 (R 12 ) and rp (R 1g ), 

the angles which provide constrained minima, versus 
R 12• As R 1a increases from the distance 2.852 A cor­
responding to the global minimum, these minimizing 
angles decline monotonically and continuously to zero. 
As a result of these declines, the molecular symmetry 
axes become more and more nearly aligned with the 
oxygen-oxygen axis. Suddenly, at the critical distance 
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Re (ST2) =4.964 A, (2.5) 

the alignment becomes complete. When R 1Z exceeds 
this value, no further change in the angles () and rp is 
required; the molecular symmetry axes remain rigor­
ously aligned. 

It is clear from Fig. 3 that the rates of change of 
() (R1Z ) and rp (R 1Z ) become infinitely rapid as R 1Z ap­
proaches R e from below. 

The values for - () (R 1Z ) and - rp (R 1Z ), indicated as 
broken curves in Fig. 3, correspond to donation of pro­
ton H1 to oxygen Oz in Fig. 2. This is one of the other 
equivalent dimer minima. Evidently this pair of minima 
suffers confluence at Re. For larger R 1Z the eight mini­
ma therefore reduce to four, each of which has () = rp = O. 
In these aligned dimers, the molecular planes remain 
perpendicular to each other, and both serve as reflection 
symmetry planes. 

III. HARTREE-FOCK INTERACTION 

Popkie, Kistenmacher, and Clementi based their 
analytical fit to Hartree-Fock dimer energies on the 
four-center model shown in Fig. 1 (b); note that this 
model uses OR bond length 0.957 A and ROR bond angle 
105°. Three of the centers are located at the hydrogen 
and oxygen nucleus positions. The fourth center (M) 
lies in the molecular plane, 0.2307 A ahead of the 
oxygen nucleus along the molecular symmetry axis. 
Electrostatic charges 

q' =0.6704 e (3.1) 

are assigned to each of the hydrogens. The oxygen 
force center is regarded as uncharged, while center M 
carries charge - 2 q' • 

The analytical fit function, VIZ) (PKC), consists of 
the electrostatic interaction for the nine charge pairs 
in the two different molecules under consideration, 
augmented by exponential repulsion terms acting between 
the pairs of nuclei (a, (3 =0, R): 
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FIG. 4. Angles () and q> describing the constrained energy 
minimum for the water dimer, subject to V(2) (PKC). Notice 
the differing energy scales for ST2 (left) and PKC (right). 

6 
6 

4 

4 

2 
~ 

"0 
E 

0 "-

] 
-2 N 

I-
~ 

-4 § 
> 

-6 
-6 

-8 
-8~~---L ____ ~ __ -L ____ ~ __ -L ____ L-__ -U 

8 9 2 3 4 5
0

6 7 
RI2 (A) 

FIG. 5. Minimum dimer energies achieved at each distance 
R12' The arrows locate the respective critical points Reo 

(3.2) 

The six parameters used in these exponential repulsions 
were assigned the following values: 

aoo = 3. 65501 X 105 kcal/mole, 

aoH = 3. 43368 X 103 kcal/mole, 

aHH = 90.2576 kcal/mole, 

boo = 4. 76328 A-I, 
bOH = 3. 65973 A-t, 

bHH = 2. 30881 A-1. 

(3.3) 

The generic dimer configuration illustrated in Fig. 2 
is relevant to the global energy minimum for VIZ) (PKC). 
The computed geometric parameters are found to be 

R 1Z = 3. 000 A, 
(}=48.2°, (3.4) 

rp=57.6°. 

The corresponding energy is -4.598 kcal/mole. Con­
sistent with the previous ST2 case, the structure im­
plied by (3.4) involves a single nearly linear hydrogen 
bond. Once again there are eight equivalent minima in 
the full six-dimensional relative configuration space. 

For different R12 choices, constrained energy minima 
for VIZ) (PKC) were determined numerically. The re­
sults are plotted in Fig. 4. The pattern is similar to 
that shown earlier for ST2 (Fig. 3), with () (R lZ) and 
rp(R 1Z ) declining toward zero as R 1z increases. Once 
again a critical distance Re is reached beyond which 
molecular symmetry axes rigorously align, but this dis­
tance is substantially larger than before: 

Re (PKC) = 7.73 A. (3.5) 

The characterization of this critical distance as the 
point of confluence for pairs of energy minima continues 
to hold true. 

Figure 5 shows the energies of the constrained dimer 
minima, versus R 1Z , for both the ST2 and PKC interac-
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FIG. 6. Doubly-constrained energy minimum curves for the 
ST2 potential. Angle f) (see Fig. 2) is adjusted to minimize 
the interaction for each R12, rp choice. 

tions. The fact that the ST2 curve falls well below the 
PKC curve in the neighborhood of R 12 ~ 3 'A stems in 
part from the neglect of electron correlation effects in 
the Hartree-Fock approximation, and in part from the 
inclusion of nonadditive contributions in ST2 whose net 
effect should be increased binding. 16

,
l? Since it can be 

argued that the correlation error in V(2)(PKC) affects 
this function's angle variations relatively little, 18 we 
believe that the type of behavior shown in Fig. 4 is rath­
er accurately indicative of the exact water dimer poten­
tial. 

IV. RELATION TO CRITICAL PHENOMENA 

The reduction in symmetry that spontaneously occurs 
for the constrained dimer as Ria decreases through Re 
is analogous to the spontaneous symmetry breaking ex­
perience by an ISing ferromagnet cooled through its 
critical temperature Te. The sudden but continuous 
change from zero of angle qJ (or e) in the former at Re, 
is matched by a sudden but continuous change from zero 
of magnetization m in the latter at Te. 

This analogy can be pursued by examining de,tailed 
energy curves for the water dimer. In particular, Fig. 
6 shows angle variation curves for the ST2 potential 
(PKC is qualitatively similar) at three distances, Re 
- 1. 0 'A, Re, and Re + 1. 0 A. These curves are plotted 
versus angle qJ, and for each qJ the acceptor angle 9 
has been adjusted so as to minimize the DOW doubly­
constrained VIZ) (ST2). At the smallest of the three 
distances, the energy curve clearly displays a pair of 
minima at nonzero angle, separated by a maximum at 
zero angle. Increasing the distance to R e, however, 
causes the three extrema to flow together. Consequent­
ly, the Re curve in Fig. 6 is very flat around zero angle, 

having in fact vanishing curvature there. For distances 
exceeding Re, a well-developed single minimum persists 
at zero angle, with positive curvature. 

The family of energy curves versus qJ in Fig. 6 pro­
vides the intermolecular force analog of the set of 
Ising model free energy curves versus magnetization.10 

Thermal equilibrium requires that free energy be mini­
mized at every temperature, so the Ising model seeks 
out the lowest minimum (T~ Tc) or minima (T< Te). 

strictly speaking, the Ising ferromagnet free energy 
curves to which we refer are those arising in approxi­
mate treatments such as the mean-field (Bragg-Williams) 
or quasichemical (Bethe-Peierls) approaches. 20 The 
common element in them is that near the critical point, 
the free energy F may be represented as a simple 
polynomial in magnetization m: 

F(m, T)=F(O, T)+A.6.Tm 2 +Bmt, 
(4.1) 

I:J.T=' T- Te, A, B>O, 

where for present purposes it suffices to neglect terms 
of order m 8 or higher. The potential energy analog to 
this equation would obviously be the following: 

V(qJ, R 12 ) = V(O, R 12>+ C I:J.R qJ2 + DqJ\ 
(4.2) 

C, D>O. 

Above Te, the minimum free energy in Eq. (4.1) is 
just the function F (0, T), while below Te one recognizes 
that minima occur at 

(4.3) 

so that the form of the low-temperature free energy is 

F(O, T) - [A2(I:J.T)2j4B]. (4.4) 

Thus the equilibrium free energy in this class of ap­
prOximations suffers a discontinuous second tempera­
ture derivative at Te. The dimer potential energy ana­
log gives V(O, R 12) when R12 ~ Re, but owing to minima 
at 

qJ =± (- CI:J.R/2D)1/2 

when R12 <Re, the small-distance potential is 

V(O, R 12) - CZ(I:J.R)2 / 4D. 

(4.5) 

(4.6) 

The implied second R1z-derivative discontinuity at Rc 
is present in the curves of Fig. 5, though barely dis­
cernible to the eye. 

V. POTENTIAL OF MEAN FORCE 

In a condensed phase, the potential of mean force for 
a pair of molecules, W<2I, describes the distribution 
of relative configurations in thermal equilibrium. Spe­
cifically, the molecular pair correlation function 

g(Z)(1, 2) = exp( - W{2)(1, 2)/kT] (5.1) 

is proportional to that distribution. 10 By convention, 
WZ) vanishes at infinite separation so that glZ) reduces 
to unity in that limit. 

The function Wtz) contains both the direct interaction 
V

(2
) for the pair of molecules COnsidered, as well as 

an averaged contribution owing to molecules in the sur-
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rounding medium. That medium might consist of the 
same species as those forming the pair, but it need 
not. In any case, W(2) would sensitively reflect the na­
ture of feasible modes of packing molecules around the 
given pair. Zl 

It is obvious that if the density p of the medium tends 
to zero, only the direct interaction remains in W(Z): 

lim W(Z)(I, 2)= V (2
)(I, 2). (5.2) 

p-o 

While p is small (i. e., dilute vapor medium), W(Z) will 
differ little from VIZ) for any relative configuration. 
With respect to the symmetry breaking investigated in 
the previous Sections, but now for W(2) instead of V(2), 

we would expect at best a small shift in Re, with Sign 
dependent on details of interactions between members 
of the pair and the dilute surroundings. Presumably 
both types of Re shift are possible, depending on the 
chemical structure and properties of the medium mole­
cules. 

By contrast, the difference between W(Z) and V(2) 

would be very large if the medium were liquid. Re 
could undergo major shifts, and in particular, might 
collapse to zero to cause disappearance of the sym­
metry-breaking phenomenon. This last possibility nev­
ertheless seems remote for a pair of water molecules. 

We wish to point out one speculative but particularly 
interesting type of W(2) behavior, which seems to us 
not to be unreasonable in liquid media. Specifically, it 
may happen that the brOken-symmetry dimer structures 
which minimize W (2

) are partially confined to an iso­
lated interval of positive distances, 

(5.3) 

By reducing R12 below the lower critical distance Ric, 
the optimal dimer arrangements would revert to the 
dipole-aligned higher-symmetry arrangement charac­
teristic of large R12 • The confinement of spontaneous 
symmetry breaking to one or more distinct intervals is 
suggested partially by the layering of concentric neigh­
bor shells usually observed in pair correlation func­
tions. 22 

Upper and lower critical distances Rue and Ric are 
analogous to upper and lower critical temperatures that 
occur in a few binary liquid solutions. The nicotine­
water system offers a classiC example. 2s Therefore 
we suggest that W(2) for water dimers in suitable liquid 
media may offer a mechanical analogy to this delicately 
balanced solution behavior. 

VI. DISCUSSION 

(a) Having raised the issue of a spontaneous sym-' 
metry -breaking phenomenon in the interaction between 
water molecules, it is natural to inquire about rele­
vance to other substances. The structure of the hydro­
gen fluoride dimer has been determined experimentally 
by Dyke, Howard, and Klemperer. 24 A single linear 
hydrogen bond is involved, but the proton acceptor 
molecule appears to be rotated 60 0 _70 0 off the 
F-H···· Faxis. Since the molecular dipole moments 

necessarily lie along the covalent bond axes, this mini­
mum-energy dimer configuration possesses lower sym­
metry than the aligned structure to be expected at large 
intermolecular distance. Evidently, a critical distance 
Re exists at which spontaneous reduction in symmetry 
arises. 

(b) The C2t> symmetry of the isolated water molecule 
can be reduced by chemically substituting one of the 
hydrogen atoms with another type of atom or functional 
group. In this way, one attains other nonlinear mole­
cules with permanent dipole moments, such as hypo­
fluorous acid (HOF), methanol (HOCH3), and lithium 
hydrOxide (HOLi). The respective V<2"s will be domi­
nated by dipole-dipole interactions at large distance, 
and will probably manifest nearly linear hydrogen bonds 
at small distance, just as does the water dimer. How­
ever these less symmetrical molecules would not be 
expected to exhibit a critical distance Re at which singu­
lar change in constrained energy minimum structure oc­
curs. Instead, continuous deformation of the aligned­
dipole structure to the hydrogen-bond structure is pos­
sible as distance decreases from infinity, owing to the 
inherent bias introduced by chemical substitution. For 
this reason the chemical substitution plays a role anal­
ogous to an external magnetic field in the ISing model, 
which is known to remove the phase transition. 

(c) In contrast to the analog of second-order phase 
change provided by the water dimer, the interaction of 
two ammonia molecules has the character of a first­
order transition. This difference arises from the c3v 

symmetry of each ammonia molecule that places the 
nuclei at vertices of a triangular pyramid. 25 The NHs 
molecules in this geometry possess permanent dipole 
moments parallel to the threefold rotational axis. At 
large intermolecular distance these dipoles would be 
expected to align along the direction connecting the ni­
trogens, with a staggered arrangement of hydrogens 
when viewed along that mutual axis. There will be six 
equivalent constrained V (2

) minima in this large-diS­
tance regime. 

At small distance the preferred mode of interaction 
involves a single linear hydrogen bond between one of 
the molecules acting as proton donor, the other acting 
as proton acceptor. 28 The dimer arrangement is illus­
trated in Fig. 7. In all, 18 such equivalent hydrogen­
bonded structures can be formed. If a continuous con­
nection were to be identified between these structures 
and the more symmetric ones which obtain at large 
separation, triplets would have to merge at some criti­
cal distance Rc to collapse the eighteen equivalent struc-

HI't(2 

<I> 
RI2 N2 -- --------------

NI H 
3 

FIG. 7. Hydrogen-bonded ammonia dimer. 
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tures to six. 

It follows from general group-theoretical arguments27 

that a continuous transition is not possible with change 
in symmetry elements by a factor of three. However, 
such a change would be required if the eighteen small­
distance structures were to deform continuously into 
six. Instead, a discontinuous shift must occur at Re, 

in which positive values of 6{R12) and <,0 (R12) (see Fig. 
7) suddenly jump to zero. 

Such discontinuous jumps are characteristic of order 
parameters in first-order phase changes. A statisti­
cal-mechanical model, with threefold symmetry break­
ing, that exhibits exactly this type of behavior is the 
cubic lattice mOdel for isotropic-nematic ordering of 
rigid linear molecules. 28 

APP~NDIX 

Consider a pair of interacting point particles, each 
endowed with dipole moment Jl and axial quadrupole 
moment e. Their interaction at distance R may be ex­
pressed as follows: 

(2)_ Jl2 Jle 
V -R,3 Fcr,(61, 62,<'o12)+RT F,,,{6h 62,<,012) 

(AI) 

Angle 6, measures the deflection of the dipole direc­
tion for particle i from the direction toward the other 
particle. Angle <,012 represents the rotation along the 
interparticle axis required to bring the dipoles into 
coplanarity (and parallelism if 61 + 8a = IT). The angle 
functions in (AI) have the following specifiC forms29 : 

F .... = 2 cos 61 cos 62 + sin 81 sin 82 cos<,o 12, 

F,,,= H COSB1 (3 cos282 -1) + cos 82 (3 cos2Bt -1) 

+ 2 sin 81 sin82 (cos 81 + cos 82) COS<'o12], 

F",,= HI - 5 cos26i - 5 cos262 + 17 cos261 cos282 

+ 2 sin261 sin262 cos2<,O 12 

+ 16 sin 9t cos 61 sin 8a cos 62 cos<,o 12] • 

(A2) 

For large R, it suffices to restrict attention to small 
deviations from 61 = 0, 62 = IT, one of the two dipole­
aligned configurations. Therefore set 

(A3) 

ThrOUgh quadratic order in x and y, the interaction has 
the following form: 

V(2) ~ (Jl2IR3) [_ 2 + 6r -12r2+ (X2+y2+xy COS<'o12) 

- 6r(x2 + yZ) + ~2(1lx2 + 6y2 -16X)' COS<'o12)], (A4) 

where 

(A5) 

In the event that r is very small, as will be the case 
if R - 00, the resulting quadratic form in x and y, 

(A6) 

is positive-definite, so the dipole-aligned structure 

(x=y=O) is mechanically stable. However, as r in­
creases (R decreasing), the full quadratic form shown 
in Eq. (A4) can cease to be positive-definite by develop­
ing a direction with vanishing restoring force. Pro­
vided that 

O:s 12rZ < 1, (A7) 

this will happen first for <,0 12 = 1T, which we now require. 
Consequently, it is necessary to examine the quad­

ratiC form: 

Q(x,y) =X2 +y2 -xy - 6r(x2+y2) 

+ t r2(l1x2+ 6y2 + 16xy). (A8) 

Introduce polar coordinates r, a in the x, y plane: 

x=rcosa, y=rsina, (A9) 

so that 

Q=r2[I- 6r+:ij-r2 - hin2a+ tr2(t cos2a 

+ 8 sin2a)]. (AlO) 

Angle a must be determined by minimizing this ex­
pression. By setting the appropriate first derivative 
equal to zero, one finds 

sin2a = (-48r2+4)/(2529r4 _ 384r2+ 16)1/2, 

cos2a = -15r2/(2529r4 - 384r2+ 16)1/2. 
(All) 

By substituting these results into Eq. (AI0), we find 
the minimum possible value of Q for given r, r: 

Qmll1= r2{1 - 6r +:ij-r2 - i(2529r4 - 384r2+ 16)1/2]. (AI2) 

When r is small, the coefficient of r in Eq. (AI2) 
is certainly positive, but it decreases as r increases. 
One calculates that this coefficient function vanishes 
when 

r=0.1067475; (AI3) 

the corresponding value of a, from Eqs.(Al1), is 

a=46.4169°. (AI4) 

At this point the quadratic restOring force on the rotat­
able point particles vanishes, indicating mechanical 
instability. For r larger than (AI3), small deviations 
from dipole alignment reduce V(2), and preCise location 
of the stable configuration reqUires extending the V(2) 

expression (A4) to include quartic terms in x and y. 
But evidently result (AI3) locates the critical distance 
Rc to be 

Re = 9.367901 €II jJ.. (A15) 

For the water molecule, USing its oxygen nucleus as 
origin, the following moments are applicable30: 

Jl = 1. 855 X lO-18 esu cm, 

e=0.1l6x lO-26esucm2. 

The resulting critical radius is found to be 

Rc =0.5B6 A. 

(AI6) 

(AI7) 

Since this is roughly an order of magnitude smaller than 
the distances predicted for ST2 and PKC, it is obvious 
that major effects must arise from higher multipole 
moments. 
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