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We propose a new class of Hamiltonian models of liquid water based on resolution of the 
monomeric unit into three effective point charges. Interacting through central forces only, the three 
charges automatically assume the molecular structure. Two important effects are built into this model 
which have been neglected in similar attempts: intramolecular modes of vibration and the capacity 
for self-dissociation in the liquid phase. In addition, a large number of microsopic properties of water 
Can be expressed in very simple terms for this representation: The pressure and internal energy, 
second virial coefficient, high-frequency elastic moduli, and dielectric function are discussed in explicit 
terms. A convenient algorithm for computing low-order quantum corrections (proportional to h') to 
thermodynamic properties is given as well. To illustrate the general class of central-force models, we 
provide a concrete realization which has been determined by fitting phenomenological potentials to a 
nearly linear hydrogen bond of proper energy and dimer configuration. In order to elucidate the 
microscopic consequences of assuming central-force interactions in water, we have investigated the 
energy variation of small polymers (dimers and trimers) and the solvated proton near their minimum 
energy configurations. On a qualitative level, the results of these initial computations provide 
considerable encouragement for the view that water molecule interactions can be realistically 
approximated by linear combinations of central forces. 

I. INTRODUCTION 

Scientific investigators have long recognized that the 
physical and chemical properties of liquid water play an 
essential role in chemical and biological processes of 
great importance. It is not difficult to comprehend, 
therefore, the motivation that explains the great amount 
of effort that theoretical and experimental workers have 
expended in their attempts to understand the unusual and 
highly Significant behavior displayed by H20. 

In spite of this historical abundance of research into 
interactions in aqueous media, it is only recently (rough­
ly within the last ten years) that the technological capac­
ity has been available, in the form of large and fast com­
putational systems, which has enabled chemists and 
physiCists to explore the detailed consequences of sever­
al microscopic models of water subject to experimentally 
relevant temperatures and pressures. 1 The techniques 
of molecular dynamics2 and Monte Carl03 computer sim­
ulation have proved invaluable aids in helping to achieve 
a basic understanding of the complex intermolecular in­
teractions that occur in real water. Molecular dynam­
ics, 4,5 in particular, has provided unique insights into 
the microscopic nature of equilibrium structure and 
transport processes in water through a detailed analysis 
of two specific representations of the molecular pair po­
tential, the BNS6 and ST2 7 models. In a number of in­
stances these simulations have enabled the theoretician 
to observe phenomena that have thus far eluded experi­
mental measurement. 

In spite of successes with computer Simulation, the 
field has not yielded easily to statistical mechanical the­
ories more analytic in nature. By "analytic," in this 
context, we do not restrict attention to exactly solvable 
models; rather, we employ the term to describe those 
theoretical developments which, within a well-defined 
scheme of approximations, focus upon the relatively 
small set of prope.rties that determine the predominant 
local order and short-range interactions in the liquid. 
Theoretical treatments of this nature provide attractive 
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alternatives to brute force computation because of their 
inherently greater efficiency. But in spite of rather 
sophisticated attempts on several highly idealized mod­
els, the class of analytic theories remains relatively 
small. Among them we may cite the lattice models of 
Fleming and Gibbs 8 and of Bell, 9 the cell model proposed 
by Weres and Rice, 10 and Ben-Naim's solution of the 
Percus-Yevick equation for a two-dimensional fluid of 
"waterlike" particles. 11 

We do not believe this state of affairs to be desirable 
or immutable; it is, rather, a consequence of the rela­
tively complex nature of those microscopic models that 
have proved useful and most realistic so far. In the 
spirit of attempting to overcome this barrier to theo­
retical progress in aqueous media, the present paper 
introduces a new class of phenomenological models for 
water. The preeminent feature of this set of models is 
the fact that interactions in the liquid are represented 
by linear combinations of central potential functions for 
the separate atomic species. The interaction is thus de­
pendent explicitly only on distances, not on relative ori­
entation, in contrast to the molecular effective potentials 
that have been most thoroughly investigated to date. 

In order to achieve this convenient representation of 
the liquid-state interactions, it is necessary to displace 
attention from rigid molecular units to the atoms acting 
as effective point charges. In the limit of low densities, 
the set of point charges, interacting through Coulombic 
and non-Coulombic central forces, can be made to re­
produce faithfully a number of fundamental physical prop­
erties of the basic monomeric unit. The isolated molec­
ular geometry, dipole moment, and vibrational frequen­
cies are among those properties that can be readily fitted 
for an interacting triplet of two hydrogen charges and one 
oxygen charge. The central-force model should thereby 
provide a simple representation of the effective intra-
and intermolecular potential energy over a wide range of 
densities, from zero to the liquid density. 

In addition to the intrinsic Simplicity which a central-
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force representation possesses, the division of the mono­
mer into a minimal number of effective point charges 
enables one to take account of three additional effects 
which have remained thus far untreated in existing Ham­
iltonian models. 

1. Each molecule in the liquid phase retains three 
intramolecular degrees of freedom, vibrating about a 
temperature and density-dependent internal equilibrium 
configuration that should be close to the equilibrium of 
the isolated molecule. 

2. The molecular units in water undergo a small, but 
not insignificant, degree of dissociation into ionic com­
ponents (H+ and OH-) which are subsequently hydrated 
by other H20 molecules. 

3. Quantum corrections to the semiclassical limiting 
expressions for statistical thermodynamic quantities may 
be nontrivial, owing in part to the light mass of the hy­
drogen atom in water. 

All of these effects should be included in some manner 
in a quantitatively Significant approach to the theory of 
water. While conventional wisdom holds that intramo­
lecular vibrations can be neglected for most tempera­
tures of interest, since nWi» kT (where Wi is the angular 
frequency of the ith normal mode of vibration), the in­
fluence of zero-point motions and the possibility of static 
distortions must still be reckoned with. The effect of 
mOlecular nonrigidity should certainly prove important 
in regions of high temperature or pressure. But even 
under more moderate conditions it should assert itself, 
through the nature and magnitude of the hydrogen bond 
distortions that occur in the liquid from the nearly ideal 
tetrahedral networks of ices Ie and Ih • 

With respect to diSSOCiation, one expects the influence 
on equilibrium structure to be relatively small, as only 
one molecule in 107 dissociates under ordinary circum­
stances. However, the ability of the molecules to dis­
sociate must certainly play an essential role in important 
nonequilibrium processes such as electrical conduction. 
Furthermore, the dissociation process in pure water be­
comes enormously enhanced at elevated temperature and 
pressure. Finally, we point out that fundamental under­
standing of PH and the kinetics of rapid chemical reac­
tions involving proton transfer-for which quantum effects 
must certainly be important-can best be understood on 
the basis of a definite model such as that advocated here. 

In Sec. IT we describe in a systematic fashion the cri­
teria to be satisfied by a set of phenomenological central 
potentials for water, and display a specific triad of func­
tions-not necessarily the optimum set-which has been 
fitted to a small number of characteristics of the mono­
mer and dimer. For the sake of completeness we in­
clude Sec. ill, which comprises a theoretical framework 
relating chemical and physical properties of " central­
force water" to a multicomponent formulation of the sta­
tistical mechanics of simple fluids. Because of the 
seemingly drastic approximations entailed in limiting 
water molecule interactions in the way we have, the min­
imum-energy structures and energy variation of water 
dimers, trimers, and solvated ions have been considered. 
These excursions in the appropriate configuration spaces 

are analyzed in Secs. IV-VI. Finally, the conclusions 
and speculations which emerge from the present study, 
as well as prospects for future investigation, are sum­
marized in Sec. VII. 

II. DESCRIPTION OF THE MODEL 

Since the proposal of a three-charge model by Bernal 
and Fowler12 some forty years ago, the representation 
of water molecule interactions by point-charge attrac­
tions and repulsions has provided one of the most endur­
ing and flexible frameworks for theoretical treatment of 
water. Among the other point-charge models which have 
figured prominently in the development of a statistical 
mechanical theory of water, we may mention those of 
Verwey, 13 Rawlinson, 14 and Bjerrum15

; there have been 
a host of other papers as well. Most of these theoretical 
efforts represented attempts to extend agreement with 
experimentally observed quantities beyond those touched 
upon by Bernal and Fowler. In the process, new com­
plications were introduced, either by shifting the posi­
tions of the original point charges or by inserting addi­
tionalones. The latter course of development is exem­
plified by a recent paper of Shipman and Scheraga, 16 pro­
posing a resolution of the molecule into seven point 
charges, with the intent of formulating an accurate em­
pirical intermolecular potential. 

While we acknowledge the value of a quantitatively ac­
curate potential function, the practical utility of a model 
with a large number of interacting centers in each mole­
cule is severely limited from the standpoint of statistical 
mechanical computations. Even the tetrahedral four­
charge BNS formulation, 6 similar in spirit to the Bjerr­
urn treatment, has been thoroughly investigated only by 
time-consuming calculations. 4,10 

Our objective in this paper is to recapture the sim­
pliCity that is necessary for reasonably detailed calcula­
tions on a point- charge molecular model of water. Thus 
we propose a three-charge microscopic picture of water 
somewhat similar to the one suggested by Bernal and 
Fowler. We postUlate a general class of potential func­
tions to describe the point-charge-point-charge inter­
actions, encompassing Coulombic and non-Coulombic 
contributions, and discuss the specific constraints that 
should be imposed upon these potential functions to pro­
duce the proper intramolecular and mtermolecular bond­
ing. As an illustration, a concrete realization of the set 
of potential functions is provided which has been deter­
mined by a fit to structural and dynamical properties of 
the monomer and dimer. 

In order to ensure that our model incorporates intra­
molecular degrees of freedom and a capacity for disso­
ciation, yet remain conceptually and computationally 
simple, we require that the centers of mass concentra­
tion and the centers of charge concentration in the water 
molecule coincide. The natural resolution of the mole­
cule into point charges satisfying this criterion is as fol­
lows: Each molecule is comprised of two effective 
charges +q located at the equilibrium positions of the 
H's, and one effective charge - 2q located at the equi­
librium position of the O. The arrangement of charges 
in the monomer is shown in Fig. 1. 
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+q +q 

-2q 

FIG. 1. Point-charge representation of the water molecule 
which corresponds to the central-force model. A value of 
O. 32983e for the effective charge of yields a dipole moment in 
agreement with experiment, for the measured parameters rOH 
=0.9584 'A, 9HOH =104.45°. 

The ratio of charges on the" hydrogen ions" and " oxy­
gen ions" assures electroneutrality of individual H20 
molecules. Since the assignment of effective charges is 
intended to represent the dominant electrostatic interac­
tions within and among molecules, it is logical to deter­
mine the magnitude of q by a fit to the experimentally 
observed dipole moment /J., which has been measured as 
1. 86 D. 17 Using this value and the isolated molecule 
structural parameters reported by Kern and Karplus, 18 

r OH = 0.9584 A and eHOH = 104. 45°, we therefore find 

q = /J. 1 =0. 32983e . 
2r oHCOS2" eHOH 

(2.1) 

The fractional charge reflects the extent of shielding of 
the full protonic charge by the ten electrons in each 
molecule. 

To produce an O-H molecular bond at small OH dis­
tances, the potential function describing oxygen-hydrogen 
interactions should have a deep attractive well with ab­
solute minimum at r OH = 0.9584 A; for r OH < O. 9584 A, 
the potential should rise sharply to large positive values. 
We generate such functional behavior with a linear com­
bination of two inverse powers, one of which represents 
the attractive interaction between a hydrogen ion of 
charge +q and an oxygen ion of charge - 2q. The re­
maining inverse power term must subsume the necessary 
repulsive interactions; it is characterized by an expo­
nent n» 1 that remains to be determined. Thus, we de­
fine a family of central potentials vOH(r) of general form 

VOH(r)=!!:[~C~H y _ r~H]. (2.2) 

Further requirements (on the equilibrium structure of 
small H20 polymers, for example) may make it desirable 
to append additional terms to (2.1), but this form is suf­
ficient to create molecular binding between hydrogen and 
oxygen "effective ions." 

We proceed next to the determination of a hydrogen­
hydrogen effective pair potential, vHH(r). Once again we 
expect a Coulombic contribution, in this case, repul­
sive. A short-range repulsive interaction which grows 
more rapidly than 1/r2 is expected as well. Because 
H20 is a nonlinear triatomic molecule, these cannot be 
the only contributions. Indeed, in order to reproduce 
this geometry with central-force interactions alone, 
vHH(r) must have a local minimum at the single-molecule 
HH distance of r HH = 1. 5151 A. A general form for vHH(r) 
may thus be written as 

vHH(r) = q 2/r + !(r), (2.3) 

the undetermined function!(r) including the appropriate 
attractions and repulsions described above. One further 
physical requirement on vHH(r) is that linearization of 
the molecule (Le., opening of eHOH to 180°) be thermally 
unfavorable. At the stable OH separation, this amounts 
to the constraint 

(2.4) 

The unknown exponent n of (2.2), as well as the curva­
ture of the function!(r) at 1. 5151 A, are determined by 
requiring that the point-charge water molecule of Fig. 1 
have normal modes of vibration in accord with those ex­
perimentally observed. 19 In general, the nonlinear tri­
atomic H20 has four harmonic force constants on account 
of its C 2v symmetry, but within the central-force ap­
prOXimation, only two of these are independent. The 
asymmetric stretch depends only on the OH curvature 
at its minimum, so we fix n by fitting to it20

: 

v~H(roH)=7.9699x105 dyn/cm, 

n = 14. 9797. 
(2.5) 

As a result, we have 

() 
2.66366 72.269 

V OH r = r 14.9797 --r-' (2.6) 

with distance measured in A and energy in kcal/mole. 

The two symmetric modes of vibration cannot be fitted 
simultaneously with the single remaining force constant, 
v;:H(rHH ). However, we can equalize the discrepancies 
in the resulting normal mode frequencies (at 14.4%) by 
chOOSing v~(rHH) = 1. 7865 X 105 dyn/cm. 2o This in turn 
implies that!"(rHH)=1.6421x105 dyn/cm. One combina­
tion of simple functions which has been found to satisfy 
all of the above requirements on vHH(r) is 

36.1345 30. 
vHH(r) r + 1 +exp[21. 9722(r - 2. 125)] 

- 26. 51983 exp[- 4. 728281(r-1. 4511)2]. 

(2.7) 
The two potential functions (2.6) and (2.7) are employed 
throughout this paper in our assessment of the feasibility 
of a central-force model for water. 

Having determined vHH(r) and vOH(r), we must now 
specify a third potential, voo(r), in order to completely 
establish the model. This third function should give rise 
to purely repulsive forces between two oxygen ions, for 
it must prevent the formation of an OH bond of molecular 
strength between a hydrogen on one molecule and the 
oxygen ion of a nearest neighbor. On the other hand, the 
forces entailed by voo(r) should promote hydrogen bond­
ing between neighboring molecules of the proper strength 
and range. 

One contribution to the oxygen-oxygen interactions 
will be the normal repulsion of two Similarly charged 
ions. The remaining portion we determine by fitting the 
interaction energy of two rigid molecules in a hydrogen­
bonded configuration to a representative energy, - 6. 5 
kcal/mole. The configuration selected for this procedure 
was the optimal hydrogen bond of the recent ST2 model 
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\/ 2\-+ 2 ~-------4,- --------~h,-
I RI2 ,\8 I RI2 '\" 

ST2- SE DIMER CF -SE DIMER 

(0) (b) 

FIG. 2. (a) Most stable dimer of the ST2 potential, a symme­
tric eclipsed configuration, with RI2 = 2.852 A, (J = 51. 8°, <p 

=53.6°. (b) Most stable dimer for central force potentials 
(2.6)-(2.8), allowing for unconstrained bond lengths and angles. 
The optimized parameter values for this symmetric eclipsed 
arrangement are RI2 = 2. 865 A, (J = 60.7°, O! = 0.96°. Bond 
angles are (J = 102. 2°, 62 = 105. 0°; bond lengths (from left to 
right) are 0.9602 A. 0.9714 A, 0.9602 A, 0.9602 A. 

[depicted in Fig. 2(a)], with an 00 separation of 2.85 A 
and donor and acceptor angles of 51. 8° and 53.6°, re­
spectively. A Lennard-Jones combination of inverse 
powers was employed as the specific functional form for 
the non-Coulombic part of voo(r), with the final result 

() 144.538 1. 69712 x 106 4. 03939x 103 (2.8) 
voo r = r + r12 - r6 

The set of functions (2.6)-(2.8) is one of an infinity of 
such sets which satisfy the criteria outlined above. In 
addition, the molecules are stable with respect to the 
disproportionation reaction 

(2.9) 

which is energetically unfavorable by VHH(l. 5151 A) per 
mole of H30+. The variation of the central potentials 
(2.5)-(2.7) with distance is illustrated in Fig. 3. Al­
though we anticipate later revisions, we believe that this 
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set is sufficiently representative of true water molecule 
interactions to proceed with further analysis. 

III. GENERAL PROPERTIES OF THE CENTRAL-FORCE 
MODEL 

A. Pressure and internal energy 

It is appropriate to begin a theoretical discussion by 
defining ion-ion pair correlation functions for the mod­
el. In a system of N oxygen and 2N hydrogen ions, the 
potential energy V N,2N is a superposition of the three 
pairwise-additive central potentials VOH ' VHH ' and voo: 

(3.1) 

Here, and throughout this paper, we assume particles 
1, 2, ... ,N are oxygens, while N + 1, N + 2, ... , 3N are 
hydrogens. 

The pair correlation functions in a canonical ensemble 
can be defined by (p=N/V, (3=1/kBT) 

( )
_N(N-1) Jdr3···dr3Nexp(-{3VN.2N) 

goo r 12 - 2 Z ' 
P N,2N 

2N'N 
gOH(r1,N+l)= 2p'p 

(3.2a) 

x J dr2 •• .drNdrN+2·· .dr3N exp(- (3VN,2N) 

2N(2N - 1) 
(2p? 

(3.2b) 

J dr l " ·dr~rN+3·· . dr3N exp(- (3VN,2N) x , 
ZN2N 

, (3.2c) 

where the configurational partition function Z N,2N is just 

4.0 5.0 

FIG. 3. Interaction po­
tentials between effective 
oxygen and hydrogen ions, 
Eqs. (2.6)-(2.8), for the 
present central-force 
model of water. 
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(3.3) 

The pair correlation functions, as defined, are normal­
ized to unity at large distance in the thermodynamic lim­
itN-ro, V-ro, p=N/V=constant. From Eq. (3.2), it 
is easy to show in this limit that the prevailing electro­
neutrality can be expressed in either of the alternative 
forms 

(3.4a) 

or 

2p J [goH(r) -gHH(r)]dr= 1. (3.4b) 

Somewhat more difficult to prove, but nevertheless an 
exact result, is the corresponding second-moment con­
dition21 

a consequence of the collective correlations that persist 
at large distances in a fluid with long-range Coulomb in­
teractions. 

The pressure exerted by the system is found from the 
volume derivative of the Helmholtz free energy. By 
using Green's coordinate-scaling technique, one finds 

f3P = 3p - t f3p2 { J dr r • [goo(r)Vvoo(r) 

+ 4g0H (r)VvOH (r) + 4gHH(r)VVHH(r)]}. (3.6) 

In the limit of low densities, it can be shown that molec­
ular binding of HOH triplet reduces (3.6) to the expected 
relation f5P = p. 

In a similar manner, the system thermodynamic ener­
gy can be related to integrals over the correlation func­
tions. We have an average potential energy 

= __ 1_ BZN • 2N 

Z N.2N Bf3 
(3.7) 

Substitution of (3.1) in this expression and integration 
over all coordinates, save one, in each term of the sum 
gives the multicomponent form of a well-known formula 
for internal energy (E): 

(E)/N=!kBT+tp J drvoo(r)goo(r) 

+2p J drvHH(r)gHH(r)+2p J drvOH(r)goH(r). 

(3.8) 

B. Virial series 

Standard formulas are available for virial coefficients 
B(T), C(T), ••• , for the vapor phase equation of state, 22 

p/pkT= 1 +B(T)p +C(T)p2 +D(T)p3 + ... , (3.9) 

in terms of integrals involving intermolecular interac­
tions. These integrals (and the vi rial series itself at 
small p) converge provided the constituent molecules 
are uncharged. Under ordinary temperature and pres­
sure conditions this is adequately satisfied for water, for 
even in the liquid only one molecule in 107 is dissociated. 
But since dissociation is possible in our central-force 
model for water, and since the model will eventUally be 
applied under extreme temperature and pressure condi­
tions where dissociation becomes frequent, special con­
sideration should be given to the virial expansion. 

Because the central-force model treats water as an 
unsymmetrical fused electrolyte, theories of electrolytes 
are in principal relevant. But since water is normally 
so weakly ionized, it is meaningful to introduce the dis­
sociation constant Kl for the first ionization reaction: 

(3.10) 

If x represents the fraction of molecules which are dis­
sociated, 

K 1 =px 2/(1-x), 

x""'- (Kl/P)l/2. 

(3.11) 

(3.12) 

Obviously x will be very small in the vapor, unless the 
temperature is very high. For completeness, we note 
that the infrequent ions at concentration px will in prin­
ciple cause appearance of a Debye-Hiickel term in the 
small-p pressure equation: 

p 1 (21rpxq2 )3/2 -- =1-- -- +B(T)p2+ ••• , 
kBT 37T kBT 

(3.13) 

where we have disregarded x in the standard second 
virial coefficient term. Under ordinary circumstances, 
the Debye-Ifuckel term has no numerical significance. 

To agree with the failure of virtually all molecules to 
dissociate, suitable integration limits must be appended 
to the virial coefficient integrals. For the present pur­
poses, we can simply require that the OH bond lengths 
not exceed an upper limit L. Any bond stretched beyond 
length L therefore would be considered "broken, " that 
is, the molecule would be regarded as dissociated. A 
reasonable chOice for L would be 

L=1.5A, (3.14) 

conSidering that the equilibrium bond length is just under 
1 A, and that rms vibrational amplitudes are only about 
0.05-0.10 A. 

By following the standard derivation of cluster series 
for the partition function, with suitable minor modifica­
tions for present application, one finds 

(3.15) 
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where 

Q1 =~ 1 dS1exp[-I'lV<H(Sl)]' 
(L) 

(3.16) 

The vectors Sl and S2 comprise the configurational coor­
dinates for the respective molecules. V(1) stands for the 
three intramolecular central-force interactions and V(2) 

C. High-frequency elastic moduli 

Zwanzig and Mountain23 have provided an integrated 
formulation of the frequency-dependent elastic and vis­
cous responses of a simple monatomic fluid. For the 
special case of central-force interactions, it is found 
that the high-frequency limits of the shear and bulk mod­
uli are particularly easily expressed in terms of the pair 

collects all fifteen central-force interactions for two 
molecules. The integration constraint denoted by (L) 
enforces the bond length condition advocated above. 

Similar, but more complicated, expressions can be 
derived for higher-order virial coefficients. The specif­
ic form adopted by the third virial coefficient is 

(3.17) 

(3.18) 

correlation function. It is a compelling theoretical moti­
vation for investigating central-force models of poly­
atomic fluids that these same high-frequency transport 
coefficients are readily expressed through mUlticompo­
nent generalization of this simple theory. 

By a mathematical analysis similar to Zwanzig and 
Mountain, we find 

G~=3pkBT+ 2;~21~dr{goo(r)d~ [r4v~(r)]+4goH(r)d~ [r4v~H(r)]+4gHH(r)d! [r4V~H(r)]}, 

K~=2pkBT+p+ 2,:2l~drr3{gOo(r)d! [rvbo(r)]+4goH(r)d![rV~H(r)]+4gHH(r):r [rV~H(r)]}, 

(3.19) 

(3.20) 

for the shear and bulk moduli of water, respectively. 
Combining these expressions with Eq. (3.8) for the virial 
pressure, it is seen that 

(3.21) 

is the appropriate generalization of Cauchy's identity re­
lating the shear and bulk responses. 

Some comment is in order on the meaning of the high­
frequency limit just discussed. It is clear from the der­
ivations of Zwanzig and Mountain that the frequency is 
to be regarded as much greater than any of the "natural 
frequencies" of the system of particles. For our assem­
bly of oxygen and hydrogen ions the highest of these 
natural frequencies are the intramolecular modes of vi­
bration. Thus, the high-frequency limit for central 
force water is elevated considerably above the frequency 
range where Kw and Gw reach plateau values for simple 
fluids ("" 1010 HZ). As a consequence, the quantities K~ 
and G ~ defined above may not be susceptible to determi­
nation by standard ultrasonic methods. 

D. Equal-time quantum corrections 

We now develop leading-order quantum corrections to 
the canonical weighting function exp( - f3E) for the class 
of central-force models described in the present paper. 
In this manner, a general method is obtained for evaluat-

ing quantum corrections to any thermodynamic property 
of water. 

The quantum Hamiltonian determining the wavefunc­
tions 'I' ,,(r 3N) of the system of N oxygen anions and 2N 
hydrogen cations is 

3N . 
:iC = L _1f2 v~ + V(r 3N). (3.22) 

j=l 2mJ 

The normalized denSity operator may thus be expressed 
as 

~ 1 -ax 
P3N = Q3N(I'l) e (3.23) 

in the canonical ensemble, with partition function 

Q3N(1'l) = Tr(e-8X) = L J dr 3N'l1!(r3N)e- 8 X 'I' ,,(r3N
) • (3.24) 

" 
Nuclear exchange effects will be neglected, an assump­
tion which should be valid in the temperature range of 
interest. 

In developing a quantum expansion for the density ma­
trix it will be assumed that the various pair potentials 
vJk(rjk ) are sufficiently well behaved that the Wigner­
Kirkwood24 expansion can be employed. Choosing a basis 
set of free-particle eigenfunctions, we find the following 
expansion for the diagonal density matrix elements: 

(3.25) 
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where Z3N({3) is the configurational partition function. 
For the sake of consistency, it should be evaluated to 
O(1Z2). Equation (3.25) may be expressed in a more en­
lightening way as 

(3.26) 

with 

W(r3N
) = V(r3Nh1Z2 L....!.. [i\v~,sV -n(VJ,sV)2], 

J m J 

(3.27) 

and 

(3.28) 

Even if V(r3N ) is pairwise additive, the quantum-cor­
rected potential contains effective three-body interac­
tions because of the presence of the gradient-squared 
terms. This fact makes the evaluation of quantum cor­
rections to static properties in general a nontrivial task. 
For calculating low-order corrections to thermodynamic 
properties, however, one may use integration by parts 
to simplify (3.28) considerably. In this case, if V(r3N

) 

is equivalent to a sum of central potential functions, then 
so is W(r3N

), with component potentials 

(3.29) 

when used to calculate the Helmholtz free energy. The 
parameter m Ols is a reduced mass for the a,s pair. 

Thus, to second-order in IZ, thermodynamiC quantum 
effects may be understood in classical terms with a tem­
perature-dependent "apparent potential" W that depends 
not only on the true classical energy, but also on its 
curvature. The additional term has the following physi­
cally relevant effect on the shape of the quantum t. ap­
parent potential. " 

Regions of positive curvature (as in the vicinity of min­
ima) are· raised, while regions of negative curvature 
(such as maxima) are lowered, producing diminished 
variation. The net effect of this modification at a given 
temperature is that the potential energy will be less ef­
fective in localizing particles relative to one another. 
Consequently the peaks of the pair correlation functions 
should be somewhat broader than if V(r3N

) alone were 
used. 

In contrast to the simple prescription explained above, 
the evaluation of terms of the Wigner-l{irkwood series 
for molecular models with noncentral interactions is an 
extremely complex problem. For models based on rigid 
monomeric units the issue is one of generating quantum 
corrections for the asymmetric top; this question has 
not yet been quantitatively resolved. 

E. Dielectric response 

A convenient expression for the wavelength and fre­
quency-dependent dielectric constant E(k, w) of "central­
force water" may be derived by considering the effect 

that an applied electric potential 

<pap(r, t)=<Poexp[i(k'r+wt)] (3.30) 

has on an assembly of N oxygen and 2N hydrogen ions. 
Since the dielectric constant measures the linear re­
sponse of the system, the potential (3.30) should be 
turned on adiabatically, starting at some point in the 
distant past. In order to accomplish this we imagine w 
to have a small negative imaginary part, w = wr - iE, and 
take the limit E - 0 at the end of the calculation. 

The applied field arising from (3.30) creates external 
forces 

F 0, ap(r, t) = 2iq<P ok exp[i(k . r + wt)] , 

FH,ap(r, t) = - iq<pokexp[i(k' r+wt)], 
(3.31 ) 

on the oxygen and hydrogen ions, respectively. Thus, 
the Liouville equation for the time-dependent phase den­
sity f 3N'(rl' .. " P3N, t) in the presence of the field can 
be written as 

aa
t 
f 3N)(r1, •• " P3N, t) = i.c(t)f3N

)(rl' •• " P3N, t) , 

(3.32) 
with Liouville operator 

(3.33) 

The force FJ(t) is the sum of interparticle and external 
forces, with explicit time dependence resulting entirely 
from the latter contribution. 

The dielectric constant E(k, w) may be defined phenom­
enologically by the relation 

41TP(r, t)=( 1- E(k~ W))Eap(r, t) (3.34) 

between the polarization P(r, t) and the applied electric 
fieW, ~ 

Eap(r, t) = - V<Pap(r, t) = - i<Pok exp[i(k' r + wf)], (3.35) 

while the induced charge density is determined in usual 
fashion by the divergence of the polarization, 

Plnd(r, t) = - V • P(r, t) 

<Pk2( 1) =-~ 1- E(k, w) exp[i(k·r+wf)]. (3.36) 

By familiar techniques of linear response theory, we 
can evaluate the induced charge on a microscopiC level, 
provided that the external field is small enough in mag­
nitude. The Liouville operator is first expressed as 

(3.37) 

where .co governs the system evolution in the absence of 
external forces, and .c1(t) includes the perturbing field. 
A corresponding resolution into perturbed and unper­
turbed contribution is made for the phase density f 3N

), 

whereupon elementary algebraic manipulations yield the 
following relation for the perturbed density, to first 
order: 
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This equation is understood in the limit as T- 00. 

Since the dielectric constant at wavevector k is most 
naturally related to the corresponding Fourier compo­
nent of the charge density, we define 

1 3N 

a(k) = -IN L:qJexp[z"k.rJ ]. (3.39) 
j=1 

It follows that the ensemble average of a(k', t) at time t 
is 

(a(k', t»", f d{r} f d{p}&(k', t)f3N )(r1, '.o,PSN' t) 

",-(3<1>o-lNexp(iwt) 1: dsexp[-iw(t-s)] 

x(u(k', t)u(k, s».q. (3.40) 

In contrast to the initial computation, the final average 
under the integral sign is evaluated over an equilibrium 
ensemble. After a change of integration variables, 
(3.40) yields 

(a(k', t) = - (3<1>0 -IN exp(iwt) 

o 
x L"dSexp(iws)(a(k', -s)a(k, O»eq (3.41) 

for the Fourier transform of the current density. 

At this point we must introduce a connection between 
the microscopic and phenomenological pictures in order 
to derive a microscopic representation of the dielectric 
function. Since the averaged quantities (a(k', t» deviate 
from zero solely because of the external field, we equate 
these averages with spatial Fourier transforms of the 
macroscopiC induced charge density, 

(a(k', t» = ~ Iv dr Plnd(r, t)exp(ik' • r), (3.42) 

where the integral spans the system volume V. 

Equations (3.36), (3.41), and (3.42) may be combined 
to give the desired formula for E(k, w). It is found that 

1 -41fi(3N 10 
• )(. ).) 

1 - E(k, w) witv _00 ds exp(zws a( - k, - s a(k, 0) e4 • 

(3.43) 
With the aid of Eq. (3.43) we can effect the traditional 

separation of the conductive and dielectric screening re­
sponses of the system of ions. To obtain the dc conduc­
tivity, we combine a local version of Ohm's law, J(r, w) 
= a(w)E(r, w), with the macroscopic equation of continuity, 

Plnd(r, t) = - V ·J(r, t), (3.44) 

in the limit of a perturbing field of long wavelength 
(k- 0). In view of the relation between the total and ap­
plied fields, we discover that 

a(w) = (iw/4n) lim [E(k, w) - 1] . (3.45) 
k·O 

At zero frequency the conduction current will be in phase 
with the perturbation, so the imaginary part of a(w) 

(3.38) 

should vanish. One therefore concludes that25 

1 N(3 r l' ~41f)210 ()('( .) a(o) = V 1m 1m k . ds cos ws a - k, - s)a(k, 0) eq . 
W.O k.O W -00 

(3.46) 
Through similar reaSOning, one derives an expression 

for the dielectric screening in the limit of zero frequency: 
1 41f(3p 

E(k, 0) = 1 - k2 (a( - k, O)a(k, O»eqo (3.47) 

Because water is a conducting flUid, it will be able to 
completely shield fields of very long wavelength. It 
must therefore be true that 

lim [1/E(k, 0)]=0, (3.48) 
k·O 

and insertion of the electroneutrality and second-moment 
conditions into (3.47) assures us that this is so. Because 
of inherent physical limitations, the short wavelength 
limit of 1/E(k, 0) must be unity. In between the two ex­
tremes, for Ik I greater than the inverse of Debye's 
screening length, E(k, 0) will take on the value commonly 
associated with water, '" 80 at room temperature. 

IV. DIMER CONFIGURATIONS 

As explained in Sec. n, the set of central potentials 
(2.6)-(2.8) has been determined by a fit of simple func­
tional forms to important structural and energetic prop­
erties of the isolated HaO monomer, and, in addition, 
to a dimer hydrogen bond energy which matches the ST2 
value for a symmetric eclipsed (SE) configuration (see 
Fig. 2(a)]. We believe that a similar triad of central 
potentials can be found which will reproduce the physical 
properties of water at high density in computer simula­
tion, and will also be amenable to more direct theoreti­
cal treatment, such as the integral equatiOlf6 or mode 
expansionz7 techniques which have been widely exploited 
in recent years for simple fluids. 

It is our eventual goal to subject the central-force 
model of water to a thorough analysis under condensed 
phase conditions, in an attempt to determine the exact 
parameter values which will lead to a realistic model 
fluid. However, the novelty of the central-force approx­
imation for a polyatomic fluid as complex as water sug­
gests a less direct initial approach. Accordingly, we 
have performed first a set of configurational studies of 
small polymers and solvated ions of water. The purpose 
here was to thoroughly explore the multidimensional po­
tential surfaces characterizing two- or three-molecule 
interactions. This section reports the results of these 
configurational studies for the water dimer. 

At the very least, we believe, such a characterization 
of the potential surfaces should be useful in uncovering 
stable polymers of unreasonable structure. We empha­
Size, in this regard, the unusual nonmonotonic behavior 
of the hydrogen-hydrogen interaction (2.7). The well­
developed local minimum in V HH could conceivably give 

J. Chern. Phys., Vol. 62, No.5, 1 March 1975 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Sat, 18 Jan 2014 03:35:18



H. L. Lemberg and F. H. Stillinger: Central-force model for liquid water 1685 

rise to globally stable bifurcated dimers or metastable 
"trapped" arrangements in the liquid. As important as 
the question of mechanical stability, however, is the 
possibility of correlating small polymer potential sur­
faces with the pair distribution functi9ns evaluated in 
simulation runs, a process which should enable us to 
overcome the macroscopic deficiencies of the initial set 
of potentials suggested here. Through iterative fine 
tuning in this manner, an accurate set of effective pair 
potentials for water should finally emerge. 

We begin the present dimer studies by looking for the 
minimum-energy configuration corresponding to the set 
of potentials (2.6)-(2. 8). In order for the fitting oper­
ation described above to be regarded as valid, the best 
dimer structure of this configuration space search 
should be close to the ST2-SE arrangement. That this 
has, in fact, been found lends qualitative support both 
to the details of the fitting procedure and the central­
force model in general. The investigation of dimer 
structures was carried out by means of a multidimen­
sional pattern-searching subroutine. 28 Application of a 
variational principle to the problem of energy minimiza­
tion is possible, of course, but fully unconstrained di­
mers possess many degrees of freedom, so this option 
is probably less attractive from a computational stand­
point. 

The nature of the pattern-searching algorithm which 
we employed determined the most efficient course of 
computation: starting from a reasonable guess at the 
minimum-energy structure with relatively few degrees 
of freedom, the optimal dimer is evaluated in a highly 
restricted subspace of the full configuration space of the 
six independent ions. The constraints are then relaxed 
in a stepwise manner, with the final, lowest-energy 
structure of each calculation providing a new set of ini­
tial conditions for a dimer in a somewhat enlarged sub­
space. Throughout the computations, we impose a sym­
metry constraint which requires the C2 axis of the ac­
ceptor molecule to lie in the molecular plane of the do­
nor. By relaxing the internal molecular constraints in 
an intelligent manner, this procedure not only generates 
a sequence of restricted minimum-energy dimers, but 
also elucidates the energetic contributions of different 
types of intramolecular deformations to the dimer. As 

stressed in the Introduction, an analysis of such static 
distortions, and of the time-averaged (possibly anhar­
monic) vibrations that occur in dimers and larger water 
polymers should be important in refining the statistical 
mechanical theory of water. 

Results of the dimer calculations are summarized in 
Table I; the relevant angles and distances are defined 
as in Fig. 2. As a point of reference, the energy of 
two noninteracting, undistorted molecules is given, as 
is the energy of two undistorted molecules in the ST2-SE 
arrangement. Upon searching the entire undistorted­
molecule pair configuration space, the energy is low­
ered by about 0.1 kcal/mole when the molecules sepa­
rate to an 00 distance of 2.870 A, the acceptor flaps 
downward to an angle of 63.1 0, and the donor molecule 
rotates upward very slightly. 

We now remove the constraints that limit each mole­
cule to the equilibrium geometry of an isolated H20 
monomer. Allowing internal bond angles to relax first, 
we find a small increase in stabilization, '" 0.02 kcal/ 
mole, accompanied by small changes in the other pa­
rameters of interest. Both intramolecular angles de­
crease somwhat. Finally, relaxing the OH bond-length 
constraint, the dimer of absolute minimum energy 
[shown in Fig. 2(b)] is determined in the full eight-di­
mensional symmetry-restricted configuration space. 
The resulting structure is characterized by a hydrogen 
bond energy of 6.691 kcal/mole; variation of the bond 
lengths has stabilized the dimer by almost 0.1 kcal/ 
mole. As anticipated, the optimal dimer geometry is 
only slightly perturbed from the ST2-SE structure. 

It is instructive to consider the nature of the differ­
ences between the stable dimer structure of the central­
force model and the undistorted ST2-SE dimer. The 
hydrogen bond shown in Fig. 2(b) displays a small de­
parture from linearity, '" 1 0, comparable to the ST2-SE 
form, and occurs at the somewhat larger 00 distance of 
2.865 A. From Table I we observe that the acceptor 
molecule is flapped down at a larger angle, "'61°%, an 
effect that undoubtedly results from the increased hydro­
gen bond length. 

On an intramolecular level, the distortions from 
equilibrium geometry are in qualitative agreement with 

TABLE 1. Parameters characterizing minimum-energy dimers of the central force model, subject to various con-
straints. Angles and distances defined in Fig. 2. Computations performed by pattern searching. 

Dimer EMIN RJ2 O! 8 81 82 Bond Lengths 
system (kcal/mole) (A) (deg) (deg) (deg) (deg) <1\) 
Noninteracting, 
undistorted molecules -225.8103 104.45 104.45 0.9584 
Undistorted molecules, 
ST2-SE hydrogen bond -232.3103 2.852 1. 335 51. 8 104.45 104.45 0.9584 
Undistorted molecules -232.3971 2.870 1. 56 63.1 104.45 104.45 0.9584 
Bond-length constrained 
molecules -232.4167 2.869 1.37 62.9 103.30 104.06 0.9584 
Unconstrained 
molecules -232.5012 2.865 0.96 60.7 102.18 105.01 0.9602, O. 9714a 

0.9602,0.9602 

"oR bond length along the hydrogen bond. 
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what is expected on the basis of a simple picture of the 
hydrogen bond as a bond between a weak Bronsted acid 
(the donor) and a weak Bronsted base (the acceptor). 
The unconstrained values of 81> 82 , and the bond lengths 
also support the view that nonadditivity should contribute 
to the formation of sequences of hydrogen bonds in liquid 
water. By means of these geometry changes molecule 
1, the donor, becomes a better acceptor for subsequent 
hydrogen bonds, and molecule 2, a better donor. Final­
ly, we note that monomer distortion enhances the dipole 
moment of the dimer about 9% above the vector sum for 
two rigid molecules. These findings are in accord with 
a number of Hartree-Fock SCF-MO calculations. 29,30 

To provide some additional justification for the cen­
tral potentials, let us compare at this point the mini­
mum-energy dimer of Fig. 2(b) with the most favorable 
structures that have been calculated quantum mechani­
cally and with those that are entailed by other phenom­
enological potentials that have been suggested. The 
large basis set calculations of Popkie, Kistenmacher, 
and Clementi (referred to as PKC),31 presumably near 
the Hartree-Fock limit, predict a linear hydrogen bond 
of length 3.00 A and magnitude 4.60 kcal/mole, with ac­
ceptor molecule hydrogens pendant at an angle of 30 ° . 
These HF computations neglect correlated fluctuations 
of the electron distributions in each molecule. Such 
correlated electronic motion, which gives rise to Lon­
don dispersion interactions, can be included in the quan­
tum pair potential in a simple empirical fashion32 based 
on a scaling argument of Slater and Kirkwood33 for the 
polarizability of closed-shell atomic systems. When 
the coefficient of the inverse sixth power attractive dis­
persion forces is incorporated in the PKC functional fit 
to the HF pair potential, the dimer of minimum energy 
exhibits a compression of the linear hydrogen bond to 
2.855 A, with stabilization energy raised to 6.123 kcal/ 
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FIG. 4. Central-force model energy of interaction between 
two (rigid) water molecules 0 2), as a function of oxygen-oxygen 
separation Roo. Acceptor and donor angles defined in Fig. 
2 (a). 
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FIG. 5. Central-force model energy of interaction between 
two (rigid) water molecules, 0 2), as a function of donor angle cp. 

mole. These values compare favorably with correspond­
ing parameters in the central-force model. 

As a rule, the phenomenological models which have 
been used to study water molecule interactions produce 
somewhat shorter hydrogen bonds and larger stabiliza­
tion energies than the quantum mechanical calculations 
indicate. This is true of the minimum-energy dimer 
resulting from the ST2 potential (which was described 
in Sec. II) , and also holds for the BNS and Rowlinson 
interactions. The most stable BNS dimer has Roo 
= 2.76 A, 8 = 54. 7°, cp = 54. 7°, with stabilization energy 
of 6.887 kcal/mole. For the older Rowlinson model, we 
have corresponding values Roo = 2.69 A, 8 = 51. 0°, 
cp = 51. 9 0, and 5.404 kcal/mole stabilization. 

In addition to the pair configurations of minimum en­
ergy-those which exhibit mechanical stability-it is 
also relevant to examine the energy variation near the 
minimum as a function of the intermolecular coordi­
nates. Recognizing that the qualitative features of the 
energy variation are of primary interest, we can ex­
plore this topic most productively by evaluating 
V(2) (R12, 8, cp), the molecular "pair potential, " for two 
molecules frozen in the stable monomer geometry. 
With angles fixed at 8 = 63.1 0, cp = 53. 8 0

, the dependence 
of V(2) on 00 separation is depicted in Fig. 4. The 
minimum at 2. 870 A is bracketted by sharply repulsive 
interactions at short range and an attractive tail for 
R12 > 2.870 A which, as expected, is asymptotic to the 
dipole-dipole potential for two monomers at fixed rela­
tive orientation. The potential rises through zero at a 
distance of RI2 = 2.70 A. 

Figure 5 exhibits the dependence of V(2) on cp, the 
donor angle, assuming the optimal values for R 12 and 8 
given in Table I. The curve displays asymmetric 
local minima, with an intervening local maximum 
at cp = 0°, when the oxygen of the acceptor molecule is 
equidistant from both hydrogens of the donor. The bar­
rier to donor rotation, if measured from the higher of 
the two minima, is:::: 1. 1 kcal/mole; the degree of asym­
metry of the wells, which reflects the differing in­
teractions of nonbonded hydrogens, is 1. 2 kcal/moie. 

The behavior of the energy variation curves for the 
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FIG. 6. Central-force model energy of interaction between 
two (rigid) water molecules, 0 2), as a function of acceptor 
angle 9. Prominent peaks near ± 110° are discussed in the text. 

central-force model is thus far quite similar, qualita­
tively, to that manifested by the other phenomenological 
models we have mentioned. We note a number of dif­
ferences, however, upon examining the functional de­
pendence of V(2) on 8, shown in Fig. 6. The appearance 
of two rather prominent maxima centered at ± 110° would 
seem, at first glance, to be an unrealistic feature of the 
intermolecular interactions. These peaks, and the sharp 
declines in V(2) for 181 > 110°, represent the effect of 
nonmonotonicity in the hydrogen-hydrogen interactions. 
With R 12 and cp fixed at the indicated values, the protons 
on the two molecules approach each other most closely 
when 8'" 175°, where the curve V(2)(8) has a local mini­
mum. 

His not difficult to see that, at ordinary temperatures, 
the unusual behavior of V(2)(8) near ± 180° should have 
little effect on the equilibrium configurations or ther­
mally activated vibrations of small polymers of H20, 
because the local minimum occurs some 15 kcal/mole 
higher than the absolute minimum at 8 = 61 0. By sim­
ilar reasoning one deduces that this anomaly in the po­
tential V(2)(8) will have ne!!"ligible effect on an ensemble 
of H20 molecules at liquid densities, not only because 
of the thermally unfavorable Boltzmann factor, but also 
because effective hard core repulsions in the liquid 
should screen out this region of V(2)(8). We therefore 
regard the local minimum in V(2)(8) as physically ir­
relevant for either small clusters or condensed phases­
a supposition which has been validated, a posteriori, 
by explicit calculations. 

Let us proceed now to examine the energy variation 
in the central region bounded by 181.:s 70°. A compari­
son of Fig. 6 with similar graphs for the ST2 and BNS 
potentials reveals the absence of a double minimum in 
this angular range for our model. In the ST2 and BNS 
potentials such structure in V(2)(8) exists as a conse­
quence of the explicit inclusion of tetrahedral coordina­
tion in the monomer geometry by means of negative 
charges emerging from the back of each molecule. 

These charges are supposed to represent nearly Sp3_ 

hybrid lone pair orbitals. But although the BNS and ST2 
models offer reasonable ways to approximate the effec­
tive molecular pair potentials, 34 it should be observed 
that ab initio quantum calculations imply that the role 
of Sp3 hybridization has been overestimated in hydrogen 
bond formation in water. 29 In the calculations of Popkie, 
Kistenmacher, and Clementi, for example, the dimer 
energy in a restricted acceptor angle subspace mani­
fests no central double minimum. In fact, in the range 
of angles 8 which are probably important for liquid 
water, from 8 = - 60° to 8 = + 60°, the PKC energy varies 
by 1.1 kcal/mole, which compares favorably with the 
corresponding value, 1. 3 kcal/mole, for the present 
model. 

The set of dimer calculations summarized in the pres­
ent section appears to be a promising sign for the repre­
sentability of water molecule pair interactions by a set 
of central potentials acting between atomic species. 
Both the optimum dimer structure and the nature of the 
energy variation.near the minimum seem to be repro­
duced relatively well by the set of simple functions 
(2. 6)- (2. 8). While the energy variation departs for 
some orientations from the behavior of other model po­
tentials, the departures resemble quantum mechanical 
results. In any case, such configurations should not 
be important for the real liquid. 

V. TRIMER CONFIGURATIONS 

In order to characterize more fully the structural 
implications of the triad of central potentials, the pat­
tern search was utilized to determine the most favorable 
configuration of the water trimer, (HP h . As for the 
dimer, the most productive strategy was to start with 
a small number of educated guesses for the trimer 
structure of lowest energy, and to perform searches in 
a sequential manner in configuration subspaces of in­
creaSing dimensionality. In order to extract physically 
meaningful observations from these searches without 
inordinate computational effort, each molecule was as­
sumed in the equilibrium geometry initially, and sub­
sequently the bond angles were allowed to vary. 

The general configurations employed as initial guesses 
in the minimization were the canonical arrangements 
that are usually termed the double donor, double accep­
tor, and serial trimers (see Fig. 7). The first two, as 
the nomenclature implies, include central molecules 
which either donate or accept two protons, respective­
ly. In the serial trimer, by contrast, the central Hp 
is a donor in one hydrogen bond and an acceptor molecule 
in a second. The starting configurations selected were 
generally symmetrical, and the energy minimization was 
initially attempted with all three molecules restricted to 
a single plane. 

The putcome of these planar searches is illustrated 
in Fig. 8; the geometric and energetic parameters 
characterizing the trimers are summarized in the up­
per portion of Table II. The lack of congruence among 
the three resulting structures indicates a planar trimer 
potential surface which is extremely flat in certain re-
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FIG. 7. Schematic planar projection of the three fundamental 
water trimers: (a) double donor, (b) double acceptor, (c) 
serial. 

gions, where the pattern search becomes relatively in­
efficient. It also implies that the pattern search, like 
other minimization algorithms, is prone to becoming 
"trapped" near regions of local minima. We attempted 
to overcome the latter difficulty by conducting several 
searches near the apparent "minimum" with widely dif­
fering initial step sizes. Most of the time this approach 
was successful in dealing with local wells on the poten­
tial surface. We are confident that the single lowest­
energy structure which has been found by this procedure 
does correspond to the global minimum (in the appro­
priate restricted subspace), since that minimum has 
been approached from several low-energy directions. 

In a manner similar to that described in Sec. IV, the 
constraint requiring all hydrogens to lie in the plane of 
the three oxygen ions was relaxed, and the pattern 
search was next applied to an investigation of nonplanar 
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FIG. 8. Outcome of planar trimer pattern searches, starting 
from (a) double donor, (b) double acceptor, (c) serial configura­
tions. The serial planar arrangement is energetically most 
favorable. 
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FIG. 9. Optimum nonplanar trimer found. As an indication 
of distance scale, one of the 00 separations is shown. The 
extent to which each hydrogen lies outside of the 000 plane is 
also given quantitatively, in A. Legend specifies the three in­
ternal bond angles and stabilization energy. 

three-molecule structures. The final planar configura­
tions were used as points of departure. Quantitative 
detail resulting from these searches is contained in the 
lower section of Table II. All calculations gave rise to 
a minimum-energy trim~r with three oxygen ions ar­
ranged in a nearly equilateral triangle. This array pos­
sesses three highly strained hydrogen bonds, with hy­
drogen ions situated above and below the 000 plane in 
such a way as to minimize the unfavorable HH inter­
actions. Of course, since the cyclic trimer forms an 
odd-numbered polygon, the H's on neighboring mole­
cules cannot be entirely staggered. 

It is interesting to note that all of the planar initial 
configurations lead to the compact, nearly equilateral 
trimer, and it is this consistent result which encourages 
us to believe that the lowest-energy nonplanar form 
(see Fig. 9), which is produced by the serial starting 
configuration, is in fact very near the global minimum 
on the relevant trimer potential surface. This idea was 
confirmed by a direct calculation which started from a 
triangular trimer with pronounced nonplanar geometry. 

TABLE II. Geometric and energetic parameters for planar and 
nonplanar configurations. 

stabilization Internal Bond 
Initial Energya Angles III> 112, 113 
Configuration (kcaI/mole) (deg) 

Planar 

Double Donor 12.060 104.18, 102.31, 104.20 
Double Acceptor 11.866 104.30, 103.36, 105.44 

Serial 13.868 102.73, 102.89, 103.56 

Nonplanar 

Double Donor 16.493 103.68, 102.12, 103.73 

Double Acceptor 16.710 102.23, 103.76, 103.34 

Serial 18.062 103.11, 103.16, 103.16 

astabilization with respect to three noninteracting H20 molecules. 

J. Chem. Phys., Vol. 62, No.5, 1 March 1975 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Sat, 18 Jan 2014 03:35:18



H. l. Lemberg and F. H. Stillinger: Central·force model for liquid water 1689 

The trimer calculations on central-force water are 
a reassuring indication that the hydrogen bond built into 
potentials (2.6)-(2.8) for the water dimer produces no 
unreasonable results for the trimer. The most stable 
structure of these particular interactions resembles the 
cyclic trimer found most favorable in small basis set 
quantum mechanical computations,35 although the 00 
distances are here somewhat larger ('" 2. 95 A) and more 
representative of real water. While more extensive 
Hartree- Fock calculations29 suggest that the serial con­
figuration is competitive because of decreased ring 
strain, the relatively compact cyclic arrangement might 
be intuitively expected for a classical point-charge model. 

(Note added in proof: Kistenmacker et al. [J. Chem. 
Phys. 61, 546 (1974)J have recently evaluated minimum 
energy structures for small clusters of water molecules, 
employing an analytic fit to the Hartree-Fock intermo­
lecular potential. 31 For the trimer, the resulting struc­
ture is in good agreement with Fig. 9.) 

VI. I-1YDRONIUM ION 

With the aid of potentials VOH, VHH, and voo one may 
evaluate a number of structural and energetic features 
of hydrated protons or hydroxyl ions. Such species are 
extremely important in charge-transfer processes in 
pure H20, and also playa role in determining the chemi­
cal and physical properties of various hydrated salts. 
Here we treat the singly hydrated proton H:P+. (In 
writing out this species we neglect the fact that the ex­
cess proton bears only a partial charge.) 

The mechanically stable hydronium ion is pyramidal, 
with three equivalent OH bonds of length rOH, the mono­
mer bond length. The axial angle between each OH 
bond and the pyramid altitude is 66°. These parame­
ters are only slightly smaller than values reported for 
real H30+. 36 Figure 10 displays the dependence of H:P+ 
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binding energy on the axial angle CPo, assuming the OH 
distance is optimized for each CPo. The double-welled 
curve which results effectively gives the energy bar­
rier to H:P+ inversion, 4.9 kcal/mole. This value com­
pares reasonably well with values computed by self­
consistent field methods. 37 

VII. DISCUSSION 

We have outlined above a number of properties which 
should be amenable to calculation with a central-force 
model of water, once the pair correlation functions of 
the liquid have been evaluated. While molecular dy­
namics is always available as one means of computing 
them, it is our eventual goal to apply integral equation 
methods to this problem. Extensions of the convoluted 
hypernetted-chain equations (CHNC) seem promising on 
this front, as these techniques have been recently ap­
plied to the study of electrolytes in aqueous solution with 
some success. 38 At the present level of theoretical de­
velopment, it is probably impossible to solve these 
equations for liquids with strongly noncentral interac­
tions. 

Preliminary tests of the specific set of potentials 
(2.6)- (2.8) in short-duration molecular dynamics runs 
indicate that these interactions are not entirely satis­
factory. Examination of the 00 pair correlation func­
tion from such a run reveals the difficulty with these 
particular functions: the oxygen cores exhibit too great 
a tendency towards close packing. It appears that the 
hydrogen bonds implied by these potentials are prevented 
from producing an open tetrahedral network by strong 
indirect contributions to the intermolecular potential of 
mean force, and as a result the liquid collapses partial­
ly toward a system of close-packed molecules. Minor 
modifications of (2.6)-(2.8) seem to correct this de­
ficiency, however, leading to the nearly tetrahedral or­
der that is characteristic of water. Molecular dynamics 

140" 

FIG. 10. Hydronium ion 
inversion barrier: de­
pendence of Hs<t binding 
energy on axial angle qio. 
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for this improved set of potentials, as well as numerical 
solution of the lINe equations, will be reported at a 
later date. 

The simplicity and computational efficiency promoted 
by a central-force model of water should make pos­
sible several theoretical investigations in addition to 
those suggested in Sec. ill. A significant number of 
nonequilibrium properties previously inaccessible to 
molecular models might be evaluated: infrared and Ra­
man bandshapes for intramolecular modes, the kinetics 
of proton-transfer reactions, and the rate and extent of 
self-dissociation of water at high temperatures and 
pressures39 are among those of great interest. From 
the point of view of solution chemistry, simple elabora­
tions of the present model should facilitate the study of 
solute-solvent interactions on a truly microscopiC 
scale. It would be particularly interesting to examine 
the alteration of solvent structure and transport prop­
erties in the tightly bound solvation shell centered on 
spherically symmetric ions in strong electrolytes. The 
study of "bound water" interactions is also of great 
importance for nonpolar solutes, as the hydrophobic ef­
fect is essential in modulating the characteristics of 
lipid bilayer membranes. 40 

While the present paper has limited attention to liqUid 
water, there is in principle no barrier to applying a 
central-force model to other polyatomic fluids. Since 
internal molecular degrees of freedom must be incor­
porated in a highly restricted configuration subspace, 
"simple" polyatomic liquids are undoubtedly best suited 
to such a treatment. Two other hydrogen bonded sub­
stances, HF and NH3 , would seem good candidates for 
central-force models. 
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