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We offer a method for determining the stability of dinegative ions for isoelectronic series exhibiting a 
bound singly charged anion. Nonlinear variational ground state energies obtained with bound, 
multiconfigurational wavefunctions are followed above the first ionization threshold as the nuclear 
charge (1/1.) is decreased. Resonance energies and widths for physical states are constructed by 
analytically continuing the energy around a singularity at a nonphysical A = 1.*. Results for the Ne 
isoelectronic series predict an 0 2

- resonance state at 5.38 eV (width = 1.3 eV) above the 0-
+ e - continuum threshold. The marked 0 2

- instability suggests that estimates of the 0- electron 
affinity, arising from thermochemical Born-Haber cycles, may require quantum corrections. We also 
discuss several chemical systems for which the method will be useful and which may lead to 
predictions of bound states existing in the continuum. 

I. INTRODUCTION 

Recent investigations1-
3 of the helium isoelectronic 

series have supported the original contention, 4 based on 
analysis of the Z-1 ('= A) perturbation series, that the 
ground state energy E(A) penetrates into the first ioniza­
tion continuum as A is increased above I.e = 1. 0975. 
While it remains possible that E(X) has a weak singularity 
at Xc, the behavior of the energy in the region X> Xc ap­
pears to be most strongly influenced by a Singularity at 
X* = 1.1184. 4,5 The exact nature of this latter singularity 
is not known, but its leading term is most likely4 a 
branch point of order ~~. Variational estimates2 of E(X) 
obtained with sufficiently accurate wavefunctions of finite 
parametrization in general penetrate into the continuum 
and end at a branch point singularity of leading order t, 
thus indicating that branch point behavior in the exact 
energy may well be a justified presumption. 

The apparent stability of the two-electron 1S ground 
state energy in the region xc< X<x* suggests the exis­
tance of an exact bound stationary state (i. e., with in­
finite lifetime) solution to the nonrelativistic Schrodinger 
equation embedded in the Singly ionized continuum of the 
same symmetry. While the absence of mixing between 
this proposed bound state and the adjacent continuum 
seems contrary to the usual formulation of scattering 
resonances, it has been knownB for some time that cer­
tain bounded local potentials can support stationary 
states above the ionization threshold. 7 The phenomenon 
of a bound state crossing over into a continuum as a 
single parameter in the potential is varied has been 
described in mathematical detail for several model prob­
lems by the present authors. B 

Explicit inclusion of the interaction of a variationally 
determined wavefunction with the (1s ks) 1S continuum, 
or alternatively the determination of a scattering reso­
nance by techniques such as the close-coupling approxi­
mation9 or the stabilization method10 would necessarily 
predict a finite lifetime for the state. The existance of 
a true bound state in the continuum, however, would be 
manifest by the vanishing of a calculated resonance 
width as successively higher degrees of accuracy were 
employed. 
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A rigorous proof that the two-electron ground state 
does remain stable in the continuum for Xc< X<X* would 
not have direct physical consequences since measurable 
species do not exist for X> 1. In systems with n > 2 elec­
trons, however, the possible existence of a continuum 
bound state has considerable importance in the predic­
tion of stability for ground states of doubly-charged 
negative ions in isoelectronic series having bound singly 
charged anions. If X* for an n-electron system occurred 
at a value larger than that of the dinegative ion [X = (n 
- 2r1] then we would expect this ion to be long-lived, 
with eventual decay resulting from either coupling to the 
radiation field or a spin-orbit induced autoionization, 
We also acknowledge the possibility that the dinegative 
ion might be stable below the ionization threshold. 

If instead x* were smaller than (n - 2)-1 (X for the di­
negative ion), evidence that continuum bound states exist 
for nonphysical (n - 1 r 1 < X < (n - 2,-1 could be identified by 
comparing the observed scattering width of the doubly­
charged compound state with that obtained from the imag­
inary part of the energy E(X) upon analytic continuation 
of this eigenvalue around the singularity at X*. Thus a 
knowledge of X* for series with bound singly-charged 
anions would be useful for establishing the stability of 
the corresponding dinegative ions. We exclude considera­
tion of series with unbound singly charged anions since 
their E(X) would be parabolically tangent to the continuum 
edge at this point [A = (n - 1 t1] owing to the long range 
Coulombic attraction in the cationic species. 

In Sec. II we report variational calculations of the 
ionization energy I(X) for the ten-electron atomic ground 
state, for which physical values of X represent Na+, Ne, 
F-, and (j-. This sytem, discussed qualitatively in Ref. 
2, was chosen because of the extra stability generally 
associated with a closed shell. The 0 2

- ion "ground 
state" is found to be unstable; we provide estimates of 
its energy and width. Our results indicate that recent 
determination of the 0- electron affinity by Cantorll from 
a Born-Haber cycle may require careful reinterpreta­
tion (Sec. III). In Sec. IV we discuss chemically relevant 
species for which stability of the dinegative ion ground 
state is most likely to be observed. 
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II. IONIZATION POTENTIAL CALCULATIONS FOR 
THE 0 2 - SERIES 

A. Wavefunction and Method 

In order to calculate X* for a many-electron system 
we can invoke the nonlinear variational technique. 1-3 

The trail wavefunction <p(a) must be flexible enough to 
describe at once both the localized n-electron bound 
state and the singly ionized (n - l)-electron state by an 
appropriate continuous transformation of the variational 
parameters a. Then X* is identified by following the 
ground-state minimum of the variational energy 

(1) 

into the continuum as a function of X until the point of 
instability is reached. This instability is located by 
diverging rates of change with respect to X of the mini­
mizing parameter values: 

\~I=oo ax ' (2) 

where j labels components of the multidimensional pa­
rameter space. It is known2 that the parametric insta­
bility creates a branch-point singularity in the variation­
al energy with leading order t. For X > X* the stationary 
values of E(a, X) may in principle be followed off the real 
energy axis by allowing the parameters to become com­
plex. 

For penetration of the ten-electron ground state into 
the (ls22s22p5) 2p + e- continuum the simplest wavefunction 
which allows a description of both the bound and ionized 
state is of the type 

(3) 

where <I> is a single determinatal function representing 
the (ls22s22p6) 1S configuration, and X is the fixed linear 
combination of 2p - p' single excitation determinants 
giving the (ls22s22p5p ') 1S configuration. This two-con­
figuration function contains sufficient correlation to al­
Iowa single electron to be radially diffuse and eventually 
to ionize. Although higher order correlation effects are 
necessary for an accurate energy, the present function 
should suffice to give a reasonable estimate of X*. In 
particular, note that <p(a) does not introduce Singulari­
ties in the variational energy associated with the direct 
double ionization of the ten-electron system. 

The one-electron orbitals were taken to be products 
of radial orbitals times spherical harmonics and spin 
functions. Two simple linear combinations of Slater 
type orbitals were used for the radial basis. In set (A) 
we chose the functions 

U 1S = N 1s exp( - a 1r), 

~S=N2S[3 - (a 1 +(2)r]exp(- a2r ) , 

~J>=N2P r[exp(- a 3r) +a4 exp(- a3r/2)], 

(4) 

(5) 

(6) 

where the Nnl are normalization factors. The ratio of 
exponents in ~p was obtained from a partial optimiza­
tion for F-. Set (B) differed from (A) only by the use of 
a Hulthen type 2p radial function, 

~P=N2P [exp(- a3r) - exp(- a4r)]. (7) 

In both basis sets the one-electron radial correlation 
function up. was apprOXimated by the single term 

up.=r2exp(-a5r) (8) 

orthogonalized to ~p. Thus both calculations involved 
variation of six parameters. While the bases are ad­
mittedly crude, use of a limited set of parameters was 
advantageous since the calculations were repeated at 
many values of X >!. In addition, near X* the energy 
function is very flat with respect to parameter variation 
in the neighborhood of the optimal a values, and our 
basis assured a relatively fast and accurate convergence 
to the local energy minimum. 

For X > x* the calculations are characteriz~d by con­
vergence of the (real) outer orbital exponent a5 to zero, 
corresponding to the ionization of a single electron. For 
determination of the nine-electron ground state energy 
we therefore used a single determinantal wavefunction 
for the (ls22s22p 5) 2p configuration, with the parameters 
a J{j = 1 - 4) reoptimized at each value of X. The ioniza­
tion potential [=I(X)] was then taken as the difference be­
tween the nine- and ten-electron energies. 

B. Numerical Results 

The X dependence of the calculated ten-electron ground 
state energy appears in Fig. 1. Note that the energies 
are scaled by X2 and are presented relative to the cal-
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FIG .. 1. ;\-dependence of the ten-electron lSe ground state 
variational energy minimum, and the doubly-ionized eight­
electron 3p e ground state, relative to the singly-ionized nine­
electron 2pO ground state energy. A complete description of 
this figure is given in Sec. II-B. 
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culated first ionization threshold, so that the energies 
correspond to - X2 1(X). Curves A and E represent our 
variational calculations on the (f- series using basis 
sets A and E, respectively. For instance, curve A 
rises through point H (the F- anion at X =: ~) and intersects 
the 0- +e- isoelectronic ionization continuum edge at 
G(X = Xc), Beyond X*, the dashed line extension of A 
represents the real part of the complex energy (see Sec. 
II. C), with the location of the 0 2- ion denoted by K. The 
second ionization threshold of the isoelectronic series 
is labeled "0 + 2e- Continuum", and intersects curve A at 
point J. This threshold was obtained simply by fitting 
the known ionization potentials of 0- (point C), F, and 
Ne+ 12, 13 to a formula quadratic in X. Point E represents 
the 0- ground state energy, and D is the intersection of 
the first and second ionization thresholds at X ~ O. 127. 

The calculated values of X* are 

X* (A) = 0.11849 

X* (E) = 0.1167 , 

which lie approximately halfway between the F- (X = 0.11) 
and (f- (X = 0.125) anions. The intersection of the grou~d 
state with the first ionization continuum [i. e., I(Xc ) = 0] 
occurs at 

Xc(A) = 0.1144 

Xc(E) = 0.1137. 

The relative accuracies of the two calculations can be 
seen at F-, for which the ionization energies are 

lAm = 3.118 eV, 

IB(!) = 2. 523 eV. 

The observed ionization energy14 is 3.448 eV. The value 
from calculation A is surprisingly good considering the 
limited flexibility of the radial basis set, but the agree­
ment with experiment must be regarded as somewhat 
fortuitous. Nevertheless, the results suggest that esti­
mates of the 02- resonance energy made in the following 
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FIG. 2. A-dependence of the optimal ten-electron trial wave­
function parameters for basis set A [Eqs. (3)-(8»). The Is 
orbital exponent (equal to Oit) is not shown, but varies nearly 
linearly with A from 0.9670 (A = 0.11) to 0.9653 (A =A *). 

section with basis set A may be reasonable. Additional 
physical ionization energies were calculated with basis 
set A for Ne(l = 20. 60 eV) and Na+(I = 45.96 eV), differing 
by 1 V from the observed values12 21. 56 and 47.26 eV, 
respectively. 

No calculations were made with basis set B for X <!, 
as the sole intent of this calculation was to ascertain the 
dependence of X* upon the 2p radial function. The dif­
ference in X2[(X) between the two calculations as shown 
in Fig. 1 is nearly constant. Although calculation A 
gives a better ionization energy than B for F-. it does 
not necessarily follow that x* (A) is better than x* (B) 
since the instability at X* is more sensitive than is the 
energy to the diffuse properties of the radial functions. 

The X dependence of the variation parameters for basis 
set A appears in Fig. 2. Note that only Q'o and Q's show 
a marked instability at x* since they alone control the 
diffusivity of the outer orbital. The results for basis 
set B are qualitatively similar. 

C. Estimate of 0 2 - Energy and Lifetime 

The energy function E(X) has a branch cut along the 
positive X axis, beginning at X* and stretching toward 
plus infinity. The values of E(X) along the cut are com­
plex: 

where the width r is taken to be nonnegative. If the 
existing helium-sequence calculations are typical, 1-4 
then the imaginary part of the energy will be positive 

(9) 

just above the cut and negative just below the cut. The 
latter case corresponds to a decaying state, with radially 
diverging current. The quantity r leads directly to the 
lifetime of the unstable species: 

T= Ii/r . (10) 

It also provides the resonance width for the unstable 
species formed spontaneously in a scattering experiment. 

In a more complete numerical analysis than we have 
been able to undertake, the analytic function E(X) would 
be followed throughout the complex X plane by identifying 
it with stationary values of the quantity E(a, X) in Eq. 
(1). For arbitrary complex A, E(a, X) would have to be 
stationary with respect to variations of both real and 
imaginary parts of each parameter Q' J • 

We have in fact chosen to follow a simpler path. The 
existence of this path follows from the fact that E(a, X) 
can be expanded in a multiple Taylor series in the pa­
rameters a. The useful consequence, demonstrated by 
Stillinger and Weber, 2 is that near X* the stationary en­
ergy values have the form 

(11) 

In this expression a* is the parameter set that causes 
E(a, x*) to be stationary. If X is reasonably close to 
X", the two terms explicitly shown in Eq. (11) should 
alone provide an adequate apprOXimation. In particular 
we shall attribute the width r for (f- entirely to the % 
power term, with the value of k in Eq. (11) extracted 
from real energy calculations for X slightly less than 
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x*. The corresponding width for cr- is obtained from the 
imaginary part of Eq. (11) at A:·t the result being (in 
atomic units) 

(12) 

where 

(13) 

Using numerical results for basis set A, we find that 
n02

-) is 1. 3 e V. The corresponding lifetime of the un­
stable 02- state is short, 5. Ox 10-16 sec. It is possible 
that this broad resonance would be observed in e- +0-
elastic scattering, corresponding to temporary forma­
tion of cr-. The preceding estimated lifetime is too 
short to account for the reported cr- ion resulting from 
a Penning discharge, 15 which may therefore correspond 
to a different electronic state. 

The position of the Oz- resonance is controlled by the 
real part of I(X) evaluated at X'" t. By using the fitting 
formula 

XZI(X) =aO+a 1 (X* - X) +az (X* - X)3/2 +a3 (X* - X)2 (14) 

in a least-squares analYSis of A-basis calCUlations (to fix 
ao ••• as), we find that 

(15) 

This negative electron affinity should represent the in­
cident electron kinetic energy in eO + 0- scattering at the 
middle of the broad 0 2

- resonance. 

A variety of ionization potential formulas have been 
proposed, from which it is possible by extrapolation to 
infer values for at least singly charged anions. However 
these formulas do not account for development of widths, 
so their extension to dinegative anions involves consider­
able uncertainty, One example, for ten electrons, is 
Edlen's three-parameter formulal2; when applied to 02-
it predicts - 5.31 eV for Ir which agrees favorably with 
our own value. However, analogous formulas proposed 
by Kaufman, 16 using two and three parameters, give 
- 7.17 eV and - 6. 53 eV, respectively, for Ir(cr-). We 
also note in passing that a simple quadratic fit in X to 
experimental X2 I(X) values for F", Ne, Na+ implies that 
Ir (02

-) = - 7.09 eV. Since this class of Ir(X) formulas 
fails to account for a branch-point singularity, and in 
particular fails to include infinite negative curvature 
there, it is not surprising that implied results for Ir(d-) 
scatter widely. 

Our 0 2
- ionization energy is more positive than the 

value - 6. 04 eV calculated by Clementi and McLean17 

USing the Hartree-Fock approximation augmented by a 
rough correlation correction. Numerical convergence 
of their 02- ground state is doubtful, however, due to 
occurrence of a positive 2p orbital energy. No bound 
0 2

- state was found in the self-consistent-field calcula­
tions of Roothaan and Kelly. 18 

We emphasize that our estimates of the energy included 
only the leading-order Singularity at X*, with index %. 
FutUre investigations of cr- should employ extensive 
multiconfiguration calculations to determine X* more 

accurately and to characterize the Singularity in greater 
detail. Such calculations would also allow determination 
of the partial width for the two-electron detachment 

d--0+2e-, 

which is energetically allowed but not described by our 
present wavefunctions. 

III. COMPARISON WITH THERMODYNAMIC 
OXYGEN AFFINITY 

The Born-Haber cycle19 has often been used to esti­
mate anion electron affinities. In particular, Cantorll 
has recently used this approach to calculate 1(02

-) from 
thermodynamic dataon oxides of divalent metals. Stripped 
down to its essentials, the Born-Haber cycle applied to 
these oxides is illustrated in Fig. 3. In that diagram 
the following symbols have been used: 

I, I' are the ionization potentials of cr-, 0-, respective­
ly; A, A I are the electron affinities of M., M, respec­
tively; S is the sublimation energy of gaseous M to its 
crystalline form at 0 OK; D is the ground-state dissocia­
tion energy of O2; Q is the heat of reaction (at 0 ° K) of 
M(c) and 02(g) to form MO(c); U(R) is the lattice energy 
of MO(c) for the nearest-neighbor spacing R(Rc is the 
equilibrium crystal spacing). 

Traversing the entire cycle must lead to zero net change 
in energy, so one has 

1(02
-) '" U(oo) - U(Rc) +A - I' +A' - S +tD - Q. (16) 

The crystal energy U(R) is constructed from electro­
static Madelung energy, plus short range interactions 
estimated from elastic properties (usually) and the re­
quirement that U exhibit a minimum at Rc. Unlike the 
more favorable situation that obtains for alkali halides, 
precise definition of U(R) for oxide crystals is hampered 
by two conceptual difficulties. 

(1) As R increase from R c , it would become energeti­
cally favorable for electrons to tunnel from the 0 2-

anions to the ~+ cations to form 0- and~. This ap­
parently implies an aVOided crossing between the U(R) 
curve and its hypothetical analog for M+ +0-. 

(2) Our calculations show that 02- is not a stable 
species in isolation, as required in the upper right hand 
corner of Fig. 3. 

Without accounting for these conceptual difficulties, 
Cantor has calCulated that 

-Q M+ (ql + O-{ql 

!-II+AI 
M{c) + 1/2 02{q) .... ------ M{q) +O{q) 

-5+1/20 

FIG. 3. Born-Haber cycle for metal Oxides, as discussed in 
Sec. Ill. 
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1(02
-) == - 7. 93 to. 35 eV. (17) 

The error limits were assigned on the basis of apparent 
imprecision of the energies in the Born-Habor cycle as 
postulated. However (1) and (2) above clearly introduce 
extra uncertainties, so it is not clear that Cantor's re­
sult (17) seriously contradicts or discounts our own esti­
mate, - 5. 3S eV. 

A formal (though probably impractical) way to circum­
vent difficulties (1) and (2) would be to use an extra at­
tractive potential V(r) to stablize (j-. The nuclear 
potential at each oxygen, normally - Se2 /r, could in 
principle be modified to 

-Se2/Y+~V(r), (IS) 

where ~ is to be "turned on" adiabatically from zero to 
unity. V(r) could be a broad square well, for example; 
its role is simply to depress the energy of 0 2 - to prevent 
spontaneous electron loss and to prevent near curve 
crossing. 

The Born-Haber cycle would thereupon become some­
what more complex, as Fig. 4 shows. As ~ increases 
from 0 to 1 in the MO crystal, the energy changes by ~l' 
On account of the V's attached to each oxygen, the lattice 
energy versus separation R will be modified from the 
previous function U(R), to Uv(R), possibly with a shifted 
minimum position Rev. The ionization potential of 0 2

-

in the presence of V has been denoted by Iv. If ~ is re­
duced from 1 to 0 for the initially stabilized free (j-, a 
complex energy change ~2 arises since the end product 
has a finite lifetime; we require only its real part, as 
shown in Fig. 4. 

Combining terms from Fig. 4, we see that the formal 
ionization potential of free unstabilized (j- must be 

1(02
-) == Iv - Re(~2) 

== Uv(oo) - Uv(Rev) +A -I' +A' - S +tD- Q - Re(~2)' 

(19) 
In order for Eq. (16) to yield the correct result, it is 
necessary that 

(20) 

It seems to require an unlikely coincidence to have this 
identity fulfilled. 

FIG. 4. Modified Born- Haber cycle which allows for the 
instability of 0 2-. as discussed in Sec. III. 

We suggest that quantum-mechanical calculations alone 
should be given primary emphasis for estimating ener­
gies of unstable free anions. 

IV. APPLICATION TO OTHER DINEGATIVE IONS 

The method used in Sec. II for calculating the (j- en­
ergy and width may be applied equally well to the A 

variation energy of other first row isoelectronic series 
which include bound monovalent anions (e. g., C- and 0-), 
provided that the trail wavefunction is sufficiently flex­
ible. It is unlikely, however, for the ground state con­
figurations that the corresponding dinegative ions would 
be more stable than 0 2-. The situation may well be dif­
ferent for larger atomic systems, and a likely candidate 
for a relatively stable dinegative ground state would be 
the lS-electron anion S2-, which is isoelectronic with Ar. 
An estimate of A* for the S2- ground state energy follows 
upon noting that the 2-, 10-, and IS-electron systems 
in the region A ~ A* can be described be wavefunctions of 
a similar type, namely one radially diffuse electron ex­
cited from a closed shell [cf. Eq. (3)]. The effective 
charge seen asymptotically by the outer electron is 
(Z - N + 1), N being the total number of electrons. It is 
therefore plausible that the degree of stability of the 
binding energy near A* should be similar for different 
anions in which AN == A(N - 1) is the same. For instance 
in calculation (A) AIO == 1. 07, while for the 2-electron 
system a similar computation l gives A~ == 1. OS. A 
greater stability would then be expected for the S2- ion 
(A18 == 1. 0625) than for 0 2- (A1O == 1. 125), assuming that 
A'~8 ~ 1. 07. In fact this estimate suggests that there may 
be a much narrower resonance in the e- +S- scattering 
cross section than was predicted for the 0 2- resonance. 
Stability in the 82

- ion-either observed or computed­
would mean that the method of determining energies and 
widths used in the present paper could be usefully ex­
tended to even higher charged anions, as in the series 

Ar, cr, S2-, p 3-; 

Kr, Br-, Se2-, As3-; 

Xe, r, Te2 -, Sb3-. 

A knowledge of these energies would be important in 
understanding crystal lattice energies. 

The possibility that bound dinegative ions exist either 
below or above the continuum edge is more likely for 
molecules than for atoms owing to the relative sizes of 
the systems. While little is known generally about the 
stability of isolated dinegative molecular ions, there is 
evidence for their existence in the gas phase formation 
of a doubly charged benzo[cd]pyrene-6-one dimer. 20 

Computation of accurate energies as a function of A, 
and the concurrent determination of A* is not practical for 
large molecules. For small molecules, and in particu­
lar diatomic isoelectronic series such as •.. Nz, C~-, the 
A variation method would be useful for predicting dinega­
tive ion stabilities. An alternative to the full A varia­
tion, where A is the inverse of the total nuclear charge, 
would be to vary the charge at only a portion of the 
atomic centers. A case in point is the isoelectronic 
series C1O;, SO~~ PO:-.21 
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In addition to studying the effects of variable nuclear 
charge, it will also be revealing to determine the influ­
ence of nuclear geometry on anion stability. One of the 
simplest such investigations would involve the potential 
energy curve of H- +H- and would be to see at what dis­
tance (in comparison with the H + H- curve) one of the 
four electrons spontaneously autoionizes. An analogous 
case concerns the homologous sequence of dicarboxylic 
acid anions (n = 0, 1, 2 ... ): 

As n decreases, electrostatic repulsion should destabi­
lize the dianions. It would be valuable to learn the n 
range leading to auto ionization, and to know if any values 
of n lead to stable states in the ionization continuum. 

V. CONCLUSION 

We have demonstrated a method which allows direct 
calculation of energies and lifetimes of dinegative ion 
states which lie in the first ionization continuum. A key 
feature of the method is that nonlinear bound state vari­
ational energies are analytically continued around a 
branch pOint Singularity as liz is continuously scaled. 
Results were presented for the (j-- ion which may have 
important consequences for the determination of crystal 
lattice energies and for the measurement of 0- + e- scat­
tering cross sections. Several dinegative ions were 
mentioned as examples of bound states or narrow reso­
nances in a continuum of the same symmetry. The 
verification of (a) the accuracy of the present method and 
(b) the existence of a real (i. e., physical) continuum 

bound state awaits further theoretical and experimental 
investigation of the anions discussed. 
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