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I. INTRODUCTION 

A. Importance of Water 

Throughout all the natural sciences, no single other substance approaches 
water in prominence and indispensibility. This fact obviously derives from 
the large amount of water present at the earth’s surface as vapor, liquid, 
and solid. It has also meant that phenomena deemed worthy of scientific 
attention in chemistry, physics, geology, and meteorology have had a 
decidedly aqueous bias. 

Informed opinion holds that life can only arise in, and be supported by, 
a suitable aqueous medium.’ It is therefore fitting that high importance has 
been attached to the detection recently of water on Mars2 and in galactic 
 cloud^.^ Since it is likely that life exists at many scattered planetary sites 
throughout the known ~niverse ,~  molecular biology may therefore have to 
enlarge its scope to literally cosmic proportions, without at the same time 
foregoing its fundamentally aqueous character. 

In view of these matters, it is quite natural to lavish particular attention 
on water in the form of quantitative theories designed primarily to describe 
this substance alone. With the possible exception of liquid helium, no other 
substance deserves such concentrated scrutiny. Thus water historically 
has elicited frequent, wide-ranging, imaginative, and often mutually contra- 
dictory models or theories.’ Viewing these works in detail and in chrono- 
logical sequence may eventually provide historians of science with valuable 
insights into the social dynamics of scientific research. 

Only within the last few years (since 1960, roughly) has it become tech- 
nically feasible to produce quantitative and deductive theory for water 
without large elements of uncertainty. This period coincides with the general 
availability of rapid digital computers to the scientific community. These 
computers have provided essential numerical advances in both the quantum 
mechanical and statistical mechanical aspects of the fields that underlie 
present understanding. This should not be interpreted to mean that the 
future of water theory will remain heavily computational, rather than 
analytical, but the present era seems to be a natural evolutionary stage of 
development of the subject with no reasonable alternative. 

The scope of this article is neither historical nor comprehensive. The goal 
instead encompasses a small set of approaches to the subject, each member 
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of which bears a clearly definable relation to the fundamental principles of 
statistical mechanics. It is our belief that extensions of these approaches hold 
the greatest promise for future progress, and considerable attention has 
been devoted to the ways in which that progress can be realized. 

B. Characteristic Properties of Water 

Water displays a striking set of physical properties, some apparently 
unique, which serve to define its unusual "personality." Their existence adds 
extra zest to the task of developing a viable theory of water, which ultimately 
is charged with connecting these properties to molecular structure and 
interactions. We now list a few of the more important attributes. 

1. Contraction on melting. At 1 atm pressure, the molar volume decreases 
from 19.66 cm3 for ice at O"C, to 18.0182 cm3 for liquid water at the same 
temperature, a loss of 8.3 %. This property is relatively rare among all sub- 
stances but, even considering just the elements, it is shared by germanium 
and bismuth. 

2. Density maximum in the liquid. Subsequent to melting, the liquid at 
atmospheric pressure continues to contract on further heating until a 
density maximum is achieved at 3.98"C. The molar volume change for the 
liquid over this narrow temperature interval is only 0.013 %. 

No other liquid is known with a corresponding density maximum above 
its normal melting point. However, fused silica (SO,) can be supercooled 
below its melting point (1610°C) so as to pass through a density maximum.6 

By increasing the external pressure, the temperature of maximum water 
density shifts downward, reaching 0°C at 190 bars. 

Isotopic substitution exerts significant effects on the temperature of 
maximum density. For D,O (m.p. 3.8loC), the maximum occurs at 11.19"C, 
while for T,O (m.p. 4.48"C) it occurs at 13.40"C. 

3. Numerous ice polmorphs.' Hexagonal ice Ih is the familiar form that 
results from freezing the liquid at atmospheric pressure. Cubic ice Ic is a 
closely related modification, with virtually the same density, which forms 
by vapor-phase condensation at very low temperatures. Under elevated 
pressure, a series of dense ice polymorphs designated ices 11, 111, V, VI, 
VII, VJII, and IX has been observed. In addition, Bridgeman has reported 
ice IV with D,O, although this has not been subsequently confirmed and 
may correspond to a special metastable structure. 

None of the thermodynamically stable ice polymorphs displays a close- 
packed arrangement of molecules. It seems likely therefore that further 
ice polymorphs are yet to be discovered under extremely high pressures 
(i.e., the megabar range). 

The multiplicity of ice crystal structures alone suggests that water molecule 
interactions must be rather complicated. It is inconceivable that spherical 
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molecules interacting, say, through the Lennard-Jones 12-6 potential could 
exhibit anywhere near as many crystal structures. 
4. High melting, boiling, and critical temperatures. In contrast with other 

molecular substances having comparable molecular weight (nitrogen, 
carbon dioxide, methane, ammonia, hydrogen fluoride, hydrogen cyanide, 
etc.), these characteristic temperatures are anomalously high. Relatively 
speaking, water must consequently be a strongly binding many-body 
system. 

5. Compressibility minimum. Normally, liquids become more iso- 
thermally compressible as the temperature rises. However, under atmos- 
pheric pressure, the isothermal compressibility for water declines with 
increasing temperature from the melting point to 46°C. This phenomenon 
disappears at high pressure (above 3 kbars). 

6. Large dielectric constant. This results from a complex combination of 
mutual polarization between neighboring molecules in an external field 
and their tendency mutually to align their permanent moments. In attempting 
to understand the nature of water as a dielectric medium (particularly as a 
solvent for electrolytes), it is valuable to remember that other liquids can 
have similarly high dielectric constants but very different chemical structure. 
Some examples are formamide, ethylene carbonate, and N-metbylacetamide.8 

7. Negative pressure coefficient of viscosity. Among all liquids for which 
the relevant measurements are available, water is exceptional. Below 30°C 
the initial effect of compression is to increase fluidity. Clearly related is the 
observation that electrolyte conductances increase with pressure in water, 
unlike the behavior in other  solvent^.^ 

8. High molar heat capacity. 
9. Negative entropies of transfer for many hydrocarbons from nonpolar 

solvents into water." 
10. Curved Arrhenius plots for kinetic properties. For viscosity, dielectric 

relaxation time, and the self-diffusion constant, all in the liquid, the respective 
energies of activation increase as temperature declines. The effect is partic- 
ularly noticeable when results for supercooled water are included in the 
Arrhenius plots. 

C. Suitable Goals for the Theory 
Three rather distinct objectives can be posed for the development of a 

a. Reproduce as faithfully as possible all available experiments. 
b. Predict novel phenomena, and results of measurements within un- 

c. Generate results that aid human comprehension (of water), but which 

satisfactory theory of water. They are: 

charted territories, to motivate future experimentation. 

are attainable through no conceivable laboratory experiment. 
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Owing to the striking nature of the characteristic properties of water listed 
in Section B, objective a becomes indeed pressing. Certainly a theory of 
water that fails ultimately to reproduce most of those properties qualitatively 
must be branded a pragmatic failure. However, to insist at this present early 
stage of the subject that the sole legitimate end of theory lies in numerical 
precision must surely be an unbalanced view. 

Category b includes properties under extreme conditions of temperature 
and pressure, or behavior induced by extremely high electric fields. Theory 
can aid in sifting out expensive and arduous hypothetical experiments with 
little chance of adding fundamental knowledge, from those with high promise. 

In the long run item c is probably the most significant of the three objec- 
tives. It is possible in principle to calculate quantities such as face distribu- 
tions and volume distributions for Vorr Ji (nearest-neighbor) polyhedra, 
curvatures and torsions for diffusive paths, three-molecule distribution 
functions, and the statistical topology of random hydrogen bond networks. 
Precise data of these kinds have inestimable value in constructing a vivid 
picture of what water is like at the molecular level. Without a structurally 
and kinetically detailed description, one can hardly claim to understand 
water. Yet it is obvious that experiments alone, however precise, will not 
suffice to bring this elaborate picture into sharp focus. Theory must move to 
provide that clarification. 

Subsequent sections in this exposition reflect our conviction about the 
absolute importance of developing theory along proper deductive lines. One 
is first obliged to obtain a well-defined Hamiltonian for the water system, 
at some level of molecular detail; then one must proceed to apply known 
principles of statistical mechanics to predict the consequent ensemble 
behavior. To this end we begin with a description of individual water mole- 
cules, pass on to study of their molecular interactions, and then analyze 
several recent statistical mechanical formalisms based on the knowledge 
of those interactions. 

11. PROPERTIES OF THE WATER MOLECULE 

A. Equilibrium Structure 

The lowest vertical electronic excitation for the isolated water molecule 
lies quite high, at 7.49 eV. Consequently, it suffices for the purposes of the 
present exposition to consider only the ground electronic state. 

The ground state is nonlinear, with C,, symmetry. The three nuclei there- 
fore inhabit the vertices of an isosceles triangle, with the apex angle at the 
oxygen equal to 104.48' and OH bond lengths equal to 0.9576 A.11 The 
center of mass of the molecule is displaced from the oxygen along the bisector 
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of the HOH apex angle. In the event that the oxygen nucleus is l 6 0 ,  these 
displacement distances have the values : 

H,O 0.06563 8, 

T,O 0.16038, 

An important feature of the subsequent theoretical development hinges on 
the fact that the internal bond angle in the isolated water molecule is only 
slightly smaller than the ideal tetrahedral angle 8, : 

D,O 0.1179 8, (2.1) 

8, = C O S - ~  (-$) = 109.4712’ (2.2) 

This is the angle subtended by two vertices of a regular tetrahedron at that 
tetrahedron’s center. Equivalently, it is the angle of intersection between any 
two principal diagonals of a cube. The relevance of 8, for structural chemistry 
of course arises from sp3 hybridization of atomic orbitals for elements in the 
first row of the periodic system.” 

The Hellmann-Feynman theorem’ requires that the total electrostatic 
force on each nucleus, due both to other nuclei and to electron distribution, 
vanish identically. This places an important condition on the electron 
distribution in the molecule. This distribution cannot be a linear super- 
position of spherically symmetric components for the three atoms, while 
maintaining a mechanically stable nonlinear triatomic configuration. Instead, 
the charge distribution must build up along the OH bonds and within the 
interior of the isosceles triangle.14 

B. Electicaf Properties 

The measured value for the water molecule dipole moment is” 

p = 1.855 x lo-’* esu cm (2.3) 

Symmetry requires that the vector moment point along the HOH angle 
bisector; the oxygen end of the molecule is negative and the hydrogen end is 
positive. Given p and the nuclear geometry, it is a trivial exercise to compute 
the position of the centroid of the electronic charge distribution (total charge 
- 10e). This position lies along the symmetry axis 0.07866 8, from the oxygen 
nucleus. The result should be compared to the corresponding distance 
0.1173 8, that would have been implied by a linear superposition of atomic 
densities and consequently zero net dipole moment for the molecule. 

The traceless electrical quadrupole tensor is conventionally defined to 
have the elements: 

Oij = 4 (3x,xj - rz)pe(r)  dr (2.4) J 
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wherein p,(r) represents the molecular charge density, including both elec- 
tronic and nuclear contributions. In the case of water, 0 is diagonal in a 
Cartesian coordinate system whose axes xl ,  x2 ,  and x3 are respectively 
parallel to the symmetry axis (and along the angle bisector), in the molecular 
plane but perpendicular to the symmetry axis, and perpendicular to the 
symmetry plane. Figure 1 illustrates this coordinate system. 

Since water possesses a permanent dipole moment, the elements of 0 
depend on the origin chosen for the diagonalizing coordinate system. Suppose 
these tensor elements are known in one coordinate system, with values 
denoted by a!:). If an alternative parallel system with origin at xi, x;, x j  
is of interest, the transformed tensor elements become : 

Oij  = + [3(xi - xI)(x. J J  - x'.) - r2(x;, x;, xj)]p,(r) dr 

(2.5) 
J 

= O$' + plx; + p2x; + p3x; - ?(pix; + pjx:) 

In particular or:) might represent values relative to the oxygen nucleus; 
then, if the origin is moved forward along the x1 direction by distance 1 
(shown in Fig. l), we have 

oll(l) = oy: - 2p1 
022(1) = og + pl  
033(1) = og + pt  

(2.6) 

\ 
\ 

Fig. 1 Cartesian coordinate system for 
which the electric quadrupole tensor 8 is 
diagonal. The molecule lies in the xlxz 
plane. 
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The most accurate source of quadrupole moments is molecular beam 
Zeeman spectroscopy. The moments thus determined refer to an origin 
at the molecular center of mass. A recent application of the method for D,O 
has been carried out by Verhoeven and Dyrnanus,l6 who conclude 

0,,(0.1179) = -0.321 x 

0,,(0.1179) = -2.402 x 

esu cmz 

esu cm2 
0,,(0.1179) = 2.724 x esu cm2 (2.7) 

Equation (2.6) permits us to transfer these to the oxygen origin: 

0,,(0) = 0i0] = 0.116 x 

0,,(0) = 0i0d = -2.621 x 

esu cm2 

0,,(0) = 08 = 2.505 x esu cm2 (2.8) 
esu cmz 

Note that the axial quadrupole moment 0, 1(1) has changed sign as a result 
of this origin shift, passing through zero when 

1 = 0.0313 A (2.9) 
The water molecule can respond to electric fields at optical frequencies 

only by polarizing its electron distribution. The resulting linear response 
may be expressed as a polarizability tensor a which is also diagonal in the 
coordinate system illustrated in Fig. 1. Separate components of a have not 
been experimentally established for water, but the mean polarizability E 
can be determined from the Lorenz-Lorentz equation for the refractive 
index. By this means Moelwyn-Hughes’ concludes : 

= 3% + a22 + a331 

= 1.444 x 10-24cm3 (2.10) 

On the basis of accurate Hartree-Fock calculations, Liebmann and 
Moskowitz18 find that a manifests modest anisotropy. These investigators 
report : 

clll = 1.452 x 10-24cm3 

a,, = 1.226 x 10-24cm3 

The agreement between the mean of these values, 1.443 x loz4 cm3, and 
result (2.10) is certainly very good and perhaps somewhat fortuitous. It will 
be interesting ultimately to see how (2.1 1) compares with predictions from 
a more elaborate calculation which carefully accounts for electron cor- 
relation. 

u2, = 1.651 x 10-24cm3 (2.11) 

The dipole moment (2.3) is larger than the critical moment: 

pc = 1.63 x esu cm (2.12) 
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above which a molecule automatically binds an extra e1ectr0n.l~ Thus 
a stable anion H,O- in principle must exist, although doubtless with small 
ionization potential and a very extended electron cloud. However, there is at 
present no experimental evidence for this species. 

C. Normal Modes of Vibration 

Figure 2 illustrates the directions of nuclear motion in each of the three 
normal modes. Two of the modes preserve the molecular Czv symmetry, 
and since they act primarily to change bond angle and bond length, the names 
symmetric bend and symmetric stretch are appropriate. 

The third normal mode rigorously involves hydrogen motions along the 
OH bond directions, but out of phase. Whereas the oxygen moves parallel 
to the x1 axis in the two symmetric modes (see Fig. l), it moves parallel to the 
x, axis in the asymmetric mode. 

An increase in hydrogen isotope mass causes a decrease in all three 
vibrational frequencies. The nine specific frequencies for H,O, D,O, and 
T,O are shown in Fig. 2 as well, all referring to l60. Incomplete isotopic 

SYMMETRIC BEND 
(1594.59, 1178.33, 9 9 4  cm-1) 

SYMMETRIC STRETCH 
(3656.65, 2671.46, 2239 c m - I  1 

ASYMMETRIC STRETCH 
(3755 79, 2708.05. 2368 crn-1 1 

Fig. 2 Directions of nuclear motion for vibrational normal modes. The respective frequencies 
for H,O, D,O, and T,O (with l6O) are shown in parentheses. 
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substitution, to form HDO for instance, destroys the symmetry character 
of each of the modes. 

The intramolecular potential energy surface (in the Born-Oppenheimer 
approximation) that gives rise to the vibrations can be expressed as a function 
of the changes in bond angle (A@) and bond lengths (Arl and At-,). In the 
vicinity of the mechanical equilibrium point (Afl, Arl, Ar, all zero), this 
potential energy U may be developed as a multiple Taylor series in the 
displacements : 

U(Arl, Ar2, A@ = U(0, 0, 0) + SKJAr,)’ + (Ar,)2] 
+ ~K,(r,AO)’ + K:Ar,Ar, 
+ K,,(r,AO)(Ar, + Ar,) + . . .  (2.13) 

where we have used re to denote the equilibrium bond length (0.9576 A). 
The four harmonic force constants have the values :20 

K ,  = 8.454 
K ,  = 0.761 
K: = -0.101 

K , ,  = 0.228 

(2.14) 

all in units lo5 dynes/cm, under the proviso that A0 is measured in radians. 
These numbers demonstrate that, by more than an order of magnitude, 
water molecules more strongly resist bond length changes than they do 
angular deformation. 

Owing to the small mass of the hydrogen isotopes, the quantum mechanical 
zero point motion is relatively large. The rms amplitudes for H,O and D,O 
are found to bez1 

H,O: 

D,O : 

((Arl)2)1/z = ((ArJ2)’/’ = 0.0677 
((AQ)’)’’’ = 8.72” 

((Ar1)2)1/2 = ((Ar2)2)1/2 = 0.0578 8, 
= 7.49” 

(2.15) 

Anharmonic terms in the Taylor expansion (2.13) for U therefore need 
explicitly to be taken into account in precise calculations involving vibrations. 

At 25°C thermal energy k ,  Tis the equivalent of 207 cm- in spectroscopic 
usage. Thus reference. to frequencies in Fig. 2 shows that water molecule 
vibrations remain virtually always in their ground states in the ordinary 
temperature range. By contrast, the free-molecule rotational level spacings 
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are on the order of 20 cm-’ for H,O and 10 cm-’ for D,O, hence free 
rotations are close to the classical limit at room temperature. 

In the asymmetric stretch mode, the molecular dipole moment magnitude 
should remain constant, although it rocks back and forth with the nuclear 
motion. If the total molecular moment comprises roughly two vector 
components directed along the OH bonds, the symmetric bend motion will 
modulate p ,  increasing it when the bond angle decreases. Symmetrically 
stretching the bonds similarly should increase p.  Unfortunately, the magni- 
tudes of these moment modulations are not known, and would be fitting 
objects for future careful quantum mechanical study. 

Formally, an arbitrarily distorted water molecule can be identified 
uniquely with a fixed and properly oriented molecule without distortion. 
The centers of mass and the molecular planes of the two will be coincident. 
The remanent three-dimensional configuration space is spanned by the 
three normal mode amplitudes; that is, these amplitudes provide an orthog- 
onal system of coordinates within the distortion subspace. 

111. WATER-MOLECULE INTERACTIONS 

A. Potential-Energy Resolution 

We now turn our attention to a collection of N water molecules arranged 
arbitrarily in space. For each a set of nine configurational coordinates is 
required to locate the precise positions of its three nuclei. These nine co- 
ordinates for any molecule i (1 I i I N) are simply denoted by Xi.  

If the N molecules are sufficiently well separated from one another to be 
properly regarded as isolated, the potential energy V, will consist of a sum 
of single-molecule energies V‘”: 

Except for a possible difference in choice of zero for energy dictated by 
convenience, V(’) is essentially the potential energy surface function U 
discussed above [see (2.1311 in connection with vibrational motion. For the 
present it is not necessary to fix that energy origin. 

When any or all of the N molecules form a compact collection, they 
interact, causing V, to deviate from the limit (3.1). We wish to resolve V, 
in the most general case uniquely into single-molecule, pair, triplet, quad- 
ruplet,. . . , N-tuplet components: 

N N 



12 F. H.  STILLINGER 

The component potentials V(") may be obtained by successive reversion of 
identity (3.2) for N = 1, 2, 3 , .  . . . 

The quantity V'") generally may be written as a remainder left after all 
possible component potentials of lower order have been subtracted from V,: 

n -  1 n 

V'"'(X, . . . X,) = V,(X, ' . . X,) - 1 1 V(j)(Xi, . . . XiJ) (3.4) 
j = l  i l <  . . .  < i J = l  

The utility of the potential-energy resolution (3.2) hinges on its rapidity 
of convergence with respect to n. Most of the statistical mechanics of con- 
densed phases has been developed for additive interactions, that is, vanishing 
V(") for n > 2. This additivity assumption is itself an excellent approximation 
for nonpolar molecular substances with low polarizability (helium, neon, 
argon, hydrogen, nitrogen, methane), and for such substances it makes sense 
to account for nonadditivity via perturbation theory, if at all. Polar substances 
and ionic materials can generally be expected to possess considerably larger 
nonadditivity, so special care must be exercised on their behalf. The worst case 
of all probably is presented by metals (both crystalline and liquid), since the 
formation of electronic energy bands and a Fermi surface is inevitably a 
many-nucleus effect. Furthermore, for metals it would not suffice just to 
consider the ground electronic state potential-energy function V.., , since 
electron excitation above the Fermi surface is an important phenomenon 
at any positive absolute temperature. 

As we shall see, water belongs to an important class of polar molecular 
substances that engage in hydrogen bonds. For each of these materials, 
a special type of nonadditivity connected with the partially covalent 
(chemical) nature of the hydrogen bond requires careful study. 

B. Identification of Molecules and Ions 

Thus far we have proceeded under the implicit assumption that N oxygen 
nuclei and 2N hydrogen nuclei are uniquely and completely partitioned into 
identifiable triads, comprising H,O molecules. The logical basis for this 
assumption needs careful scrutiny. In a close encounter between two water 
molecules, it is quite possible that ambiguity might arise over which two 
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hydrogens “belong” to each of the two oxygens. In addition, we know that 
water molecules occasionally dissociate into ions : 

H,O P H+ + OH- (3 .5)  

which drift apart, so that subsequent associations change partners. By draw- 
ing on a generalization of the formal theory of ion pairing,” we can 
completely remove the ambiguity. 

Consider a specific configuration for the 3N nuclei. There are exactly 
2 N 2  distinct OH pairs, whose distances will be denoted by I(i, j ) .  By conven- 
tion 1 I i I N will refer to the oxygens, and 1 I j I 2 N  to the hydrogens. 
Arrange the l(i, j )  in an ascending sequence: 

Since they bear zero measure over the full configuration space, accidental 
equalities in the ordered list may justifiably be disregarded. 

We now proceed to apply the following recursive bonding algorithm. 

1. Pair the two nuclei that provide the minimum distance in the list. 
This OH will henceforth be regarded as bonded. 

2. Remove from the list all distances that involve hydrogens previously 
bonded and/or involve oxygens bonded twice previously. This removal 
leaves a contracted, but still ascending, distance list. 

3. Return to step 1 if any distances remain in the list. 

The end result of this procedure is that every oxygen is bonded without 
uncertainty to exactly two hydrogens, and every hydrogen belongs to one 
and only one oxygen. Furthermore, the procedure is entirely general and 
can be applied to any initial set of nuclear positions. 

If we are to adhere consistently to the bonding algorithm, then it is 
important to realize that the nine-dimensional vectors Xi used in Section 
1II.B require constraints. These constraints are necessary to avoid the 
exchange of hydrogens between neighboring water molecules. This remark 
is not meant to imply that such exchanges cannot occur; physically, it is 
clear that they can and often do. Instead it means that certain limits on the 
Xi variables must be obeyed to be consistent with the given bonding scheme. 

Figure 3a and b illustrates a pair of water molecules in two relative con- 
figurations. In Fig. 3a, they are reasonably well separated, and the choice 
for associating hydrogens with oxygens is entirely clear. However, the 
molecules have moved closer together in Fig. 3b to an extent such that the 
bonding scheme present in Fig. 3a becomes invalid. The bonding algorithm 
does not permit one of the hydrogens of a neighboring molecule to penetrate 
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“I 
(a) VALID BONDING SCHEME 

( b )  INVALIDATING CLOSE ENCOUNTER 

Fig. 3 Necessity for modified association of nuclei into molecules on close encounter. The 
bonding algorithm that creates molecules (H,O,H,) and (H30,H4) in separated configuration 
(a) gives rise to hydrogen exchange and molecules (H,0,H3) and (H20,H4) in close encounter 
(b) . 

more closely to a given molecule’s oxygen than the minimum of the four OH 
bond lengths in both the molecule and its neighbor. Such penetration would 
automatically force a redrawing of bonds, as in fact Fig. 3b explicitly shows. 

Conversely, it is easy to see that a set of OH bonds which, for each pair 
of its H,O molecules, does not lead to a nonbonded oxygen-hydrogen 
separation smaller than the four OH bonds themselves is precisely the bond 
set that the algorithm would produce. Therefore, the configurational 
constraint demanded by a given set of molecules consists of the logical 
conjunction of constraints just for each of the N ( N  - 1)/2 pairs of molecules. 

There are precisely 

( 2 N ) !  a=-- 
2N (3.7) 
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distinct ways of bonding N distinguishable oxygens to 2N distinguishable 
hydrogens so as to form H,O molecules. The full configuration space for the 
3 N  nuclei therefore splits naturally into s2 equivalent, nonoverlapping, and 
exhaustive regions. It is the interior of such a region to which the collection 
of nine-vectors XI,  . . . , X, must be restricted. 

The reader will have noticed that, on its completion, the bonding algorithm 
will by convention have forced into a long-distance marriage pairs of hydroxyl 
and hydrogen ions produced by dissociation reaction (3.5). They are then 
simply interpreted as molecules with a very severely stretched bond. Now 
there is nothing logically to prevent the theory from proceeding on this 
basis ; especially at low temperature, the dissociation could be neglected 
anyway. But one of the chemically important aims of the theory ought to 
be a description of the dissociation reaction itself and of the solvated ions 
that result, so there should be a provision for rendering ions into distinguish- 
able species. 

To this end we now propose a natural modification of the bonding 
algorithm which is convenient for statistical mechanical study of water 
dissociation. The modification simply prevents the algorithm from going to 
completion by putting an upper limit L on the length of bonds. This can be 
implemented by replacing step 1 of the algorithm above by: 

1’. If the minimum distance in the ordered list is less than L, pair its two 
nuclei as a bond. If it is not, stop. 

The idea is that any 0-H bond stretched to length L by definition 
breaks at that critical distance. Application of the modified algorithm results 
in distinct chemical species H,O, OH-, H’, and occasionally 02-. 

If the theory were to be developed from this stage without subsequent 
approximation, predictions for all measurable quantities would have to be 
strictly independent of L. But to satisfy tradition, as well as chemical and 
physical intuition, a preferred range of L values deserves to be identified. 
We therefore suggest that half the distance between neighboring oxygen 
nuclei in ice (at 0°K and vanishing external pressure) 

L = 1.375 A 
is a reasonable choice which agrees with the usual notions of dissociation. 
Note that this choice entails a bond stretch of 0.417 A from the equilibrium 
length before breakage can occur. 

C. Dimer Interaction 

Superficially, the pair potential V(2’(X,, X,) defined in (3.3) depends on 18 
configurational coordinates. But since translational and rotational invariance 
applies to the complex of six nuclei, V(’) really requires an irreducible 
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minimum of 12 relative configuration coordinates. These 12 coordinates 
can, for example, be chosen to be 

1. The three vibrational normal mode amplitudes for each molecule. 
2. Polar coordinates specifying the displacement between fixed points 

in the two molecules (such as the oxygen nuclei, or the centers of mass). 
3. Euler angles describing the rigid-body rotation relating spatial orienta- 

tion of the undistorted molecules. 

In the case of the noble gases, V(’) depends only on the distance between 
the centers of the structureless, spherical particles. Consequently, it is 
possible to determine this function of one variable accurately through a 
combination of experiments on the second virial coefficient, gas-phase 
transport coefficients, and differential scattering cross sections. An analogous 
determination of V(’) for water, however, is not feasible; the 12-dimensional 
character of the water pair potential introduces insurmountable problems 
of interpretive nonuniqueness. Direct quantum mechanical calculation of 
V(2)(X,, X,) is really the only available technique that is comprehensive, 
reliable, and unambigous. The various experiments, such as those cited, 
that involve V”) at best can provide partial checks on the precision of the 
quantum mechanical results. 

At large separation between molecules 1 and 2, V(’) becomes dominated 
by the electrostatic interaction of the respective vector dipole moments : 

R,, is the vector connecting the centers of the molecules and, to the leading 
asymptotic order required in (3.9), it is irrelevant which location within the 
molecule serves as center (oxygen nucleus, center of mass, etc.).The moments 
p(Xi) are those appropriate for isolated molecules, with a mean value for the 
ground state given earlier by (2.3). 

The asymptotic formula (3.9) can formally be extended to higher orders 
to account for interactions between higher multipoles for the isolated 
molecules, and changes in those multipoles due to mutual polarization. A 
necessary and sufficient condition for convergence of multipole expansions 
is that the respective charge distributions be confined to the interiors of 
nonoverlapping spheres. However, this cannot be satisfied strictly for 
molecules, since their electron densities possess tails of infinite extension. 
Therefore, the infinite series of which (3.9) represents the leading term must 
either be divergent for all R,, < co, or else it must converge to a function 
that differs from V(’) more and more as R,, decreases. It is for this reason 
that higher-order terms in (3.9) have limited value. 



THEORY AND MOLECULAR MODELS FOR WATER 17 

The present state of development in computational quantum mechanics 
is such that high-quality Hartree-Fock calculations can be carried out for 
small sets of n interacting water molecules, certainly for n = 1, 2, 3, and 4. 
Thus far, extension to n = 5 and 6 has required compromises in basis set 
size with resulting errors which diminish the significance of results. 

To date, a large number of Hartree-Fock studies of the water dimer 
(n = 2) has been carried o ~ t , ~ ~ - ~ ~  and as a result a consensus has emerged 
about the principal characteristics of V2). Figure 4 displays the structure 
implied by these studies for the lowest-energy dimer configuration. Two 
major points become clear, namely, that the individual water molecules suffer 
little distortion as a result of the interaction, and that an essentially linear 
hydrogen bond is involved. 

Fig. 4 Lowest-energy dimer structure. The plane containing the proton donor molecule 
(H,O,HZ) is a plane of reflection symmetry for the dimer, and as such contains O,,  

Quantitative details vary somewhat from one Hartree-Fock calculation 
to another, but in all cases the lowest-energy dimer exhibits a phase of sym- 
metry. This plane contains a proton donor molecule (H,O,H, in Fig. 4) 
which points one of its OH bonds toward the oxygen atom of the proton 
acceptor molecule (H,O,H, in Fig. 4). The proton acceptor lies in a plane 
perpendicular to the dimer symmetry plane, with an orientation angle 8 > 0 
to minimize repulsions between pendant hydrogens. In all calculations the 
distance 1(O,H,) is sufficiently large that the bond reconstruction illustrated 
previously in Fig. 3 is not required-the molecules maintain their indi- 
viduality. 

The specific dimer arrangement shown in Fig. 4 is only one of eight 
equivalent arrangements leading to an energy minimum. The other seven 
can be obtained by 180" rotation of the proton acceptor molecule about its 
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symmetry axis and/or use of one of the other three protons in the linear 
hydrogen bond. 

Table I lists the important parameters for the most stable dimer structure 
as they have been predicted by the available ab initio (all-electron) Hartree- 
Fock calculations. The entries are arranged roughly in increasing order of 
precision. The first rows historically were earliest, and employed rather 
restrictive basis sets; those near the end are more recent, and utilized more 
nearly complete basis function sets. Proceeding down the list, the trend for 
the most part is toward smaller binding energy, and greater bond length 
(Roo is the distance between oxygens). It seems reasonable to suppose by 
extrapolation that the exact Hartree-Fock limit would produce a binding 
energy of about 4.50 kcal/mole for a linear hydrogen bond with length 
Roo = 3.00 A. 

Motions of the dimer that tend to change Roo from its optimal value, or to 
move the donated proton (H, in Fig. 4) substantially off the oxygen-oxygen 
axis, are costly in terms of stabilizing energy. However, rotation of the proton 
donor molecule about the linear O,H,O, axis is less costly, as is a change 
in acceptor rotation angle 8. 

The covalent chemical bonds holding the individual water molecules 
together are much stronger and stiffer than the hydrogen bond. Thus the 
molecules are only slightly perturbed in internal geometry when forming the 
optimized dimer, in comparison with isolated molecules. The primary 
change seems to be a small lengthening of the covalent OH bond forming the 
hydrogen bond, by an order of 0.005 8, (last column in Table I). At the same 
time, the stretching force constant for 'this bond decreases substantially 
when it forms a linear hydrogen bond, according to all the Hartree-Fock 
calculations for which this has been tested. An additional small effect of the 
hydrogen bond seems to be an opening up of the HOH angle in the acceptor 
molecule by about OS", thereby moving it closer to 8, [see (2.2)]." 

Popkie, Kistenmacher, and ClementiZ9 carried out an extensive set of 
dimer calculations densely spanning the space of relative configurations, 
especially in the neighborhood of the stable dimer minimum. The separate 
water molecules, however, were strictly frozen in their isolated-molecule 
geometries. These investigators carefully fitted their results to a closed-form 
expression which constitutes a convenient representation of the Hartree- 
Fock approximation to V(2)(X,, X,) within the undistorted molecule sub- 
space. The expression consists of a sum of Coulombic and exponential 
terms acting between force centers, four in each molecule. These force centers 
are the three nuclei (with O H  bond length 0.957 A and HOH bond angle 
loso), and a fourth center M located 0.2307 A ahead of the oxygen, along the 
symmetry axis. The positions and relative charges associated with these 
centers are shown in Fig. 5. 
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SYMMETRY 
A X I S  

I 
A 

I 
I 

(UNCHARGED) 

Fig. 5 Four-force-center model of the water molecule used by Popkie, Kistenmacher, and 
Clementi to fit the Hartree-Fock approximation to V2'. 

(3.10) 

q, a's and b's are constants, while the R's are the distances between pairs of force 
centers (one in each molecule). With distances in angstroms, and energy in 
kilocalories per mole, the parameters are found to be 

a,, = 3.65501 x lo5 kcal/mole 
uoH = 3.43368 x lo3 kcal/mole 
uHH = 90.2576 kcal/mole 
boo = 4.76328 A-'  
b,, = 3.65973 A- '  
b,, = 2.30881 A - '  

q = 3.21966 x lO-'Oesu 

(3.1 1) 

The variation in V& with respect to oxygen-oxygen distance Roo has been 
plotted in Fig. 6 for the symmetric linear hydrogen bond configuration shown 
previously in Fig. 4, with a = 0 and 8 = QJ2 = 54.7356". Figure 7 presents 
the Q variation at Roo = 3.00 8, for the same symmetric linear hydrogen 
bond configuration (a = 0). 



I I I I I I 1 I I 
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 

Roo ( 8 )  
Fig. 6 Distance variation of Vb& in the symmetric linear hydrogen bond configuration shown 
in Fig. 4 (a = 0, 0 = 0,/2). 

e (DEGREES) 

Fig. 7 Acceptor angle variation for V& at Roo = 3.00 A. The configuration is the one shown 
in Fig. 4, with c( = 0 (linear hydrogen bond). 

21 
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In the process of forming the linear hydrogen bond, the pair of water 
molecules experiences a shift in electron density relative to that for isolated 
molecules. The shift affects the net dipole moment for the interacting dimer, 
which is no longer the vector sum of the two monomer moments. Hankins, 
Moskowitz, and St i l l i r~ger~~ found that the dimer at its most stable conforma- 
tion exhibits an l l % enhancement in dipole moment magnitude compared 
to the magnitude of the isolated-molecule vector sum. 

Another measure of the distribution shift is provided by Mullikan atomic 
population changes relative to isolated monomers. Hankins, Moskowitz, 
and Stillinger27 also evaluated these changes for the most stable dimer con- 
formation. In terms of the atomic designations shown in Fig. 4, the changes 
found are 

A(H,) = 0.00963 
A ( 0 , )  = 0.03776 
A(H,) = -0.03604 (3.12) 
A(0,)  = 0.02212 
A(H3) = A(HJ = -0.01674 

These numbers represent “fractions of an electron,” so A > 0 implies more 
negative charge at the given atom on dimerization. Evidently, the pendant 
hydrogens on the proton acceptor (H, and H4) have become more positive, 
while the oxygen of the donor molecule (0,) has become more negative. 
These atoms can therefore be expected to act as more acidic, and more basic, 
respectively, in further hydrogen bond formation in larger water molecule 
aggregates. 

One of the errors inherent in the Hartree-Fock approximation applied 
to water is that the predicted dipole moment for the single molecule is too 
large. The dipole moment incorporated in V$&, arising from the charge 
distribution illustrated in Fig. 5,  is 

ppKC = 2.27 x esu cm (3.13) 

This is 22% larger than the experimental value [see (2.3)]. There is a cor- 
responding modification of V2’ at large separation, in accord with (3.9). 

Beside correcting the dipole moment, calculations sufficiently accurate 
to incorporate the electron correlation neglected by the Hartree-Fock 
approximation would also begin to account for London dispersion attraction. 
This attraction arises from correlation between fluctuations in electron 
distribution for the two molecules, and at large separation it provides for 
V(’)  a negative term proportional to R ;,”. Since such correlated-electron 
calculations are not yet available for the water dimer, it is worthwhile to make 
a rough estimate of the dispersion attraction. 
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The neon atom is isoelectronic with the water molecule-both have 
closed-shell, 10-electron singlet ground states. According to Slater and 
K i r k ~ o o d , ~ ~ , ~ ~  the respective dispersion attraction at a given distance 
should be proportional to the three-halves powers of the optical polar- 
izabilities. Using the mean value shown in (2.10) for water, and3' 

a(Ne) = 0.39 x lopz4 cm3 (3.14) 

is it possible to scale up the accepted neon dispersion i n t e r a ~ t i o n ~ ~  to 
water. The result is 

C 
AVE:, g - ~ 

C = 98.2 kcal A6/mole 

R L  
(3.15) 

At small separation, the inverse sixth power attractive term is augmented 
by others which vary as R;:, R;;', and so on. In order to incorporate their 
effect, we can appeal to the same scaling, but applied to the attractive term 
of an empirical Lennard-Jones 12-6 potential for neon. In particular we 
draw on Corner's version.34 At close range it is thereupon suggested that the 
constant C in (3.15) be empirically modified to 

C' = 1023 kcal A6/mole (3.16) 

The resulting quantity - C'/R:6 can be appended to VL& as a crude estimate 
of the correlation effect in the hydrogen bond distance range (with R,, 
identified as Roo). The net effect (for a = 0, 6' = 6',/2) is that the linear 
hydrogen bond compresses from 3.007 to 2.855 A, while its strength increases 
from -4.499 to -6.123 kcal/mole. 

D. Nonadditivity 

Since the linear hydrogen bond already arises at the water molecule 
pair interaction level, V(') suffices to explain the gross aspects of water 
molecule arrangements in aqueous crystals (and perhaps in the liquid as well). 
But quantitative understanding of water in its condensed phases clearly 
requires analysis of potential-energy nonadditivity. 

In order to hydrogen-bond as a donor to a neighbor, a water molecule 
uses only one of its OH groups. The other OH group is free to form its own 
linear hydrogen bond to the back of a second neighbor. Simultaneously, this 
doubly donating molecule can accommodate two further neighbors at its 
back (making four neighbors in all), which themselves donate protons in 
linear hydrogen bonds. Thus fourfold coordination via linear hydrogen 
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bonds is natural for water molecule aggregates. The most favorable spatial 
arrangement of these four hydrogen bonds places the five water molecule 
oxygens at the center and at the vertices of a regular tetrahedron. This pattern 
is shown in Fig. 8. 

The four neighbor molecules in Fig. 8 are available for further hydrogen 
bonding, so that they too participate in four linear hydrogen bonds emanating 
in the tetrahedral pattern. Thus a large aggregate of water molecules can 
form a space-filling network of hydrogen bonds. Since V2) at least permits 
relatively free reorientation of the neighbor molecules around the hydrogen 
bonds shown in Fig. 8, a wide topological variety of three-dimensional 
networks seems to be possible. 

4 

Fig. 8 Fourfold tetrahedral coordination of water molecules via linear hydrogen bonds. 

The periodic network structure for hexagonal ice Ih is shown schematically 
in Fig. 9. This crystal utilizes the tetrahedral hydrogen bonding scheme to 
form puckered hexagons, of both the chair and boat forms. That the hydrogen 
atoms do in fact reside along the bonds shown (consistent with the fact that 
molecular HOH angles are nearly 0,) has been established by neutron scatter- 
ing from D,O furthermore, these hydrogens are nearer one end of the 
bond than the other, since intact molecules are involved. 

Closely related to hexagonal ice is the cubic form which consists exclusively 
of chair form hexagons. This modification also exhibits ubiquitous fourfold 
coordination, with linear hydrogen bonds in a tetrahedral pattern about 
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Fig. 9 Hydrogen bond network for ice Ih. The vertices (solid circles) are the positions of the 
oxygen atoms. The hydrogens are located asymmetrically along the bonds, two near each 
vertex to form the water molecules. 

each oxygen vertex. Significantly, this theme persists with minor distortions 
throughout high-pressure ice p~lymorphs ,~  and can be seen clearly in the 
structure of gas hydrates (~ la th ra t e s ) .~~  

The three-molecule nonadditivity function V(3)(X,, X,, X,) in the strict 
sense depends irreducibly on 21 variables, so its full numerical character- 
ization would be a formidable task. The existence of the hydrogen bond 
networks just mentioned, however, suggests confining attention largely to 
those trimer configurations that appear in the networks. Furthermore, 
one would expect the greatest potential nonadditivity to arise when distances 
are all small, so additionally restricting attention to hydrogen-bonded 
trimers seems warranted. 

Three topologically distinct types of bonded network trimers exist, They 
are illustrated in Fig. 10. Each one has a central molecule with two hydrogen 
bonds, and two end molecules with only one hydrogen bond. In an extended 
hydrogen bond network such as that shown in Fig. 9 for ice Ih, each molecule 
acts as the center of six bonded trimers. In terms of the trimer categories 
defined by Fig. 10, the six consist always of one double donor, one double 
acceptor, and four sequential trimers. 

Hankins, Moskowitz, and StillingerZ7 calculated 1 / ( 3 )  for the three trimers 
shown in Fig. 10, using the Hartree-Fock approximation. For their study 
the individual molecules were maintained at the stable internal structure 
established by the one-molecule calculations, and the component bonded 
dimers in each trimer were of the type shown earlier in Fig. 4, with c( = 0 
and 6 = -8,/2. The results are plotted in Fig. 11 versus Roo, the common 
hydrogen bond length. 

On the basis of quite incomplete information, Hankins, Moskowitz, and 
StillingerZ7 suggested that, for each of the three types of bonded trimers, 
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Fig. 10 Topologically distinct hydrogen-bonded trimers. 
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involved are shown in Fig. 10. The weighted mean is 5 (sequential) + 
acceptor), appropriate for a four-coordinated network. 

Trimer nonadditivities for variable common bond length, Roo. The configurations 
(double donor + double 
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V 3 )  is quite insensitive to the rotation of molecules about the linear hydrogen 
bonds, more insensitive in fact than the separate P"')s involved. This hypo- 
thesis has been confirmed by Lentz and S ~ h e r a g a . ~ ~  It suggests that the 
V 3 )  curves shown in Fig. 11 are representative of all bonded trimers in an 
extended network. Because of the invariant ratios of the three types of trimers, 
it is therefore relevant to examine the weighted mean 

( V(3)),el = i[ V3)(double donor) + 1/"3)(double acceptor) 
+ 4V3)(sequential)] (3.17) 

The corresponding curve is presented in Fig. 11. It demonstrates that the 
net effect of V3) ,  at least for bonded trimers, is to confer extra energetic 
stability on an extended network. Furthermore, the decrease in ( V(3)) ,e ,  
with decreasing Roo constitutes a compressive effect which tends to reduce 
the hydrogen bond length in the network. 

The negative values found for P'(3) in the sequential trimer may be inter- 
preted as a strengthening of successive hydrogen bonds in a chain after the 
first is formed. The possibility of this "hydrogen bond cooperativity " 
was pointed out several years ago by Frank and Wen,38339 who observed 
that the hydrogen atoms of the acceptor molecule in a dimer (see Fig. 4) 
should become more positive as a result of the hydrogen bond and, con- 
sequently, as stronger Lewis acids, should form stronger successive hydrogen 
bonds. The Mulliken population shifts quoted earlier for the dimer [see 
(3.12)] document this idea quantitatively. 

Very little systematic study of V4) has thus far been undertaken. Lentz 
and S ~ h e r a g a ~ ~  employed the Hartree-Fock approximation for a cyclic 
tetramer. This tetramer has S ,  symmetry; the four pendant OH groups 
around the hydrogen bond square alternate above and below the plane 
of oxygens. The three bonded trimers included in the tetramer are all sequen- 
tial. The results show that about 10% of the tetramer binding energy (at 
the optimal bond length) is attributable to V(3),  but only about 1 % to F4) 
(it is negative for the cyclic tetramer). The broad implication seems to be that, 
although three-molecule nonadditivity is important for water, the general 
potential-energy resolution (3.2) is rapidly convergent with order IZ for 
physically relevant configurations of water molecule aggregates. 

Del Bene and Pople2, investigated a series of cyclic water polymers, up to 
and including the cyclic hexamer. Although they interpreted their results 
to mean that closure of hydrogen bond polygons entails a special cooperative 
stabilizing phenomenon, the systematic potential-energy resolution (3.2) 
was not invoked. It seems likely that their polygon stabilities owe their 
existence primarily to negative V(3)s  associated with sequential trimers, and 
not to anomalous V"% of higher order which come forth under topological 
closure. 
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The fractional contribution of potential-energy nonadditivity to the 
total binding energy of ice Ih is likely typical for all tetrahedrally coordinated 
networks. The available Hartree-Fock  calculation^^^,^^ imply that about 
13 % is attributable to nonadditivity. 

A clear need exists for further study of nonadditivity in water clusters, 
and for incorporation of electron correlation into the quantum mechanical 
computations. 

IV. SEMICLASSICAL LIMIT 

A. Canonical Partition Function 

The connection between the Hamiltonian operator &' for N water 
molecules (regarded as 2N hydrogen nuclei and N oxygen nuclei) and macro- 
scopic thermodynamics can be established through the canonical partition 
function 

Q = Tr exp (-fix) 
1 (4.1) p = -  

kBT 

where the basis over which the trace is computed includes spin and symmetry 
as appropriate for the isotopes of interest. The potential energy surface 
appearing in 2 is the quantity V,(X, . . . X,) whose resolution into singlet, 
pair, triplet, and so on, components has just been considered: 

? N  

j =  1 

The partition function Q yields the Helmholtz free energy F directly: 

Q = ~ X P  (-PF) (4.3) 

from which other thermodynamic functions may in turn be obtained by 
standard identities. 

For many aspects of the study of water, the full quantum mechanical 
representation (4.1) for Q is unnecessary. Although the internal normal modes 
of vibration for the most part remain in their quantum mechanical ground 
states, it is relevant to examine the rotational and translational degrees of 
freedom in their classical limits. This point of view is not meant to imply that 
water (at room temperature, say) achieves this classical limit to high precision. 
But the required quantum corrections to rotational and translational motion 
have sufficiently modest magnitudes (H,O and D,O differ relatively little) 
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that eventual calculation of leading quantum corrections to the classical 
limit makes good physical sense. We return to this matter in Section IX 
within the context of a model for which quantum corrections can be readily 
generated. 

For the present we therefore confine attention to a collection of classical 
rigid rotor molecules with quantized internal vibrations. The corresponding 
semiclassical version of the partition function has the appearance :40 

1 (2nk, T)3m3iZ(I ,I ,  13)1i2Qvib ' I (4:4) 
Q = - [  N !  h6 

x Jdxl . . . f dx, exp [ -b~,(x,  . . . xN)] 

In this expression m stands for the total molecular mass (mo + 2 4 ,  h 
is Planck's constant, and the principal moments of inertia are I , ,  I , ,  and I , ;  
the vibrational partition function is Qvib . The configuration coordinates for 
each molecule j have now been reduced to six, symbolized by xj; these are 
the Cartesian coordinates of a fixed point in the molecule, and three Euler 
angles c l j ,  P j ,  and y j  describing orientation about that fixed point. Unlike 
the preceding function V', the appropriate potential function VN for use 
in (4.4) employs only these configurational six-vectors xj as variables. 

Presuming that vibrations are truly harmonic, with angular frequencies 

We noted in Section 1II.A that molecular vibration force constants are 
affected by intermolecular interactions, specifically by the formation of 
hydrogen bonds. We elect to interpret shifts in vibrational energy levels 
that result from these force-constant changes as a valid part of the inter- 
actions V N .  The frequencies 0, in (4.5) thus are strictly isolated-molecule 
frequencies. 

The formal prescription for obtaining the rigid-rotor potential-energy 
functions VN from the more detailed quantities V, are now specified. First, 
split nine-vector Xj into a direct sum of rigid-body coordinates xi and a 
vibration amplitude part yj: 

xj = xj 0 yj (4.6) 

Then, for an arbitrary collection of n molecules constrained in their rigid 
body coordinates to xl,. . . , x,, the remaining amplitudes y l , .  . . , y, describe 
vibrations for the complex, which are now collectively determined normal 
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modes. These 3n new normal modes have frequencies shifted from the free- 
molecule o,, but in any event define an n-molecule vibrational partition 
function: 

3n 

v = l  1 - exp[-fltio,(x,.. .x,)] 
exp [ -$ho,(x, . . . x,)] 

Q$b(xl . . . xn) = C (4.7) 

In principle the resulting function Vn should depend on temperature. How- 
ever, under the regime for which normal modes are thermally unexcited, 
this temperature dependence vanishes. 

If the normal modes ol, 02, and o3 were all to shift substantially down- 
ward (beside splitting) when molecules came into interaction, the last factor 
Q$b/(QVib)” would be greater than unity. Consequently v,, would be lower 
than V,, indicating vibrational stabilization. 

A resolution of VN analogous to that shown in (3.2) for VN is possible. 
However, the construction definition (4.8) implies that vibrationally averaged 
pair potentials V(’) are the lowest-order components : 

- 
N N - 

VN(X1 ’ ‘ . XN) = C I/(n)(Xi, ’ ’ . xi,) (4.9) 
n = 2  i , c  . . .  < i , = 1  

The inverse relations are 

V‘2’(X1, x2) = V2(X1, x2) 
-‘3) v (xl, x2, x3) = V3(x,, x2 ,  x3) - V(2)(x1, x2) - P ( X I ,  x3)  - V ( 2 ) ( X 2 ,  x3)  

(4.10) 

with V‘”’ written in general as V, minus all possible component 8‘j) with 
j < n. 

We noted earlier that dispersion attraction is one of the important contri- 
butions to and that it arises from correlation of the electron distributions 
in the quantum mechanically fluctuating dipole moments. Now v(2) includes 
an extra dispersion attraction due to correlation in fluctuations of molecular 
dipole moments due to normal mode vibrations. 

Although the rigid-rotor potentials VN have been developed in the context 
of the semiclassical partition function Q ,  the detailed classical mechanics 
with’ vN is itself a valid object for attention. The coupled Newton-Euler 
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equations of motion provide the time evolution of the system from which 
linear transport coefficients (viscosity, self-diffusion constant, thermal 
conductivity, etc.) can be extracted in principle. 

B. Molecular Distribution Functions 

The Boltzmann factor integrand exp ( - PV,) for the semiclassical partition 
function represents the occurrence probability for any arbitrary configuration 
of all N molecules. It therefore contains all structural information about the 
system. But normally N is very large, and for mathematical purposes it is 
permitted to pass to infinity (with fixed system density-the so-called thermo- 
dynamical limit). A more compact way of describing equilibrium molecular 
arrangements is therefore warranted, one that conveys intensive structural 
information without suffering the divergences of extensive properties in the 
large-system limit. The generic molecular distribution functions fulfill 
this role. They also provide an efficient bridge between molecular con- 
figurational correlations and macroscopic thermodynamical properties. 

Within the canonical ensemble description of our semiclassical water 
model, the n-molecule distribution function p'"' is obtained through the 
definition (1 I n I N ) :  

N ( N  - 1) .  . . ( N  - n + 1)s dx,+ ,.. .I dx, exp (-@,,) 
s dx, . . . J dx, exp ( -pV,) Xn) = p'"'(xl . . . 

(4.11) 

where integrations cover orientation, and the volume V made available 
to each of the molecules by container walls (or mathematical boundary 
conditions). Considering a set of infinitesimal six-dimensional volume 
elements dx,, . . . , dx,, respectively, surrounding configuration points 
x l , .  . . , x,, the product 

P'"'(X~ . . . x") dx, . . . dx, (4.12) 

equals the probability that those volume elements simultaneously contain 
molecules. 

If the temperature and density conditions correspond thermodynamically 
to a single fluid phase, p(')(x1) will be independent of x1 : 

(4.13) 

except in a thin region near a boundary where forces between water molecules 
and the wall can induce inhomogeneity and orientational anisotropy. The 
ordinary number density N / V  comprises molecules of all orientations, and 
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so may be obtained by integrating the homogeneous fluid p") over Euler 
angles al ,  p,, and y, : 

(4.14) 

If the temperature and density correspond instead to the existence of 
one of the ice polymorphs everywhere throughout Y ,  the boundary con- 
ditions may serve to produce a single essentially fixed crystal. In that event 
p( ' ) (x , )  would possess the periodicity and symmetry of the unit cell involved. 

Regardless of which state of aggregation prevails (crystalline, liquid, 
or vapor), provided that just one phase is present, the distribution functions 
of order n > 1 exhibit an asymptotic factorization property. This occurs 
when the given set of molecular configuration coordinates xl, . . . , x, falls 
into two widely separated subsets, say, x,, . . . , x, and x,+ ,, . . . , x,. In this 
circumstance the molecular correlations operate only within the subsets, 
not between them. The resulting asymptotic behavior of p(")(xl, . . . , x,) is 
found to be 

( N  - m) . . . ( N  - n + l)] 
N . . . ( N  - n + m + 1) 

p'"'(xl ' . . x,)p("-m)(x,+ 1 . ' . x,) 

(4.15) 

p'"'(xl ... 

The leading numerical factor [. . .] arises from the normalization inherent 
in definition (4.11); with fixed n and m it approaches unity as N increases 
to infinity. By obvious extension, p(') reduces substantially to a product of 
lower-order functions for any partitioning of x,, . . . , x, into any number of 
widely separated subsets. In any event the rate of approach to factored 
form is at its slowest with respect to separation distance when the system 
is at its liquid-vapor critical point.41 

Apply the six-dimensional gradient operator V, (corresponding to 
vector xl) to both sides of (4.11). After rearrangement, and use of (4.11) 
itself, the result takes the form 

V,W,(l,. . . , n )  = V,V,(l,. . . , n) 

p(n+m)(l,, . . , n + rn) 
p'"'( 1,. . . , n) 

x [VIV(l+m)(il,. . . , i,, n + 1,. . . ,n+m)l  

(4.16) 
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where we have set 
N . . . ( N  - II + 1) p‘”’(1 . . . n) = exp [ -pW,( l . .  . n)] (4.17) 

(87.W)” 

Equation (4.16) is a generalized form of the Born-Green-Yvon integro- 
differential equation that has often been used for the calculation of .distri- 
bution functions for simple Its interpretation is straightforward. 
The first term in the right member of (4.16) is the negative of the generalized 
force acting on the molecule at x1 due to those held fixed at x2, . . . , x,; 
succeeding terms provide the corresponding effect of the average generalized 
force at x1 attributable to the material medium surrounding the fixed set of 
molecules at x,, . . . , x,. Thus - V, W, is the total mean force on the molecule 
at x l ,  given that n - 1 others are present at x2,. . . , x,. It is therefore appro- 
priate (and traditional) to call the W, “potentials of mean force.” 

The singlet potential of mean force W,(x,) vanishes in uniform isotropic 
fluids, but for crystals it does not vanish if boundary conditions or wall 
forces serve to clamp the crystal in place. In this case W,(x,) expresses the 
fact that long-range order in the crystal acts through intermolecular forces 
to confine and orient any molecule to fit properly into the prevailing lattice. 
In any event a stoichiometric condition applies to owing to the fact 
that the integral of p(’ )  over orientations, and inside a unit cell z, is fixed by 
structural parameters: 

d x ,  exp [-pW(”(x,)] = n, - nu + ni N 
(4.18) 

Here n, stands for the number of molecules per unit cell in the perfect crystal, 
while nu and ni, respectively, stand for the average number of vacancies and 
interstitials per unit cell at the ambient temperature and pressure. 

In the large-system limit ( N  -+a with N / V  held constant), the asymptotic 
factorization property (4.15) for p(,)  is obviously equivalent to an asymptotic 
subset additivity reduction for the Ws: 

(4.19) 

Unlike fluids, crystals are capable of supporting strain fields under the 
influence of suitable perturbations. For nearly all choices of configurations 
x,, . . . , x, to be inhabited by molecules, a strain field would be expected to 
arise which would radiate outward from the location of that subset as a 
slowly diminishing modulation of the normal crystallographic pattern. 
This strain field is surely capable of carrying correlation to the other subset, 
provided that the strain field still has a nonnegligible magnitude at its 
neighborhood. Thus the rate of attainment of the reduction (4.19) with 
respect to increasing subset separation is controlled by crystal elasticity. 

W,(XI ’ .  . x,) + W,(x,. ’ ’ x,) + Wn-m(x,+ ’ .  x,) 
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The implied range of correlation should exceed that applicable in fluids, 
except at the critical point for the latter. 

The pair distribution p(')(x,, x2) conveys useful information about the 
modes of packing of molecules in the liquid state. In particular it can be 
used to calculate the mean number of neighbors v(R) possessed by any 
given molecule 1, as a function of the radial distance R out to which neighbors 
are counted. Specifically, 

v(R) = ____ 8'zv i ~'~'(x,, x2) dx, 
R 1 2 < R  

(4.20) 

where for the second form we have supposed that N is very large. Although 
this expression is formally correct for any choice of center for all the mole- 
cules, it is most informative in our specific application to choose the oxygen 
nucleus to play this role. Consequently, the running coordination number 
v(R) counts oxygen nuclei lying within a sphere with radius R drawn about 
a specific oxygen (although the count excludes the central oxygen). 

We know from the generalized Born-Green-Yvon equation [see (4.16)] 
that an important component of W,(x,, x2) is the direct pair interaction 
V'2)(x,, x,). It is natural to inquire if this is the overwhelmingly predominant 
contributor to W, for near neighbors (those close enough to form an un- 
strained hydrogen bond), or if indirect contributions from the surrounding 
medium are important. 

Information is available to estimate v(R) with W, simplified to V(') in 
(4.20).40 An absurd conclusion follows from this simplification, namely, 
that in liquid water near its melting point every molecule has about 10' 
neighbors within 4 A. Such spontaneous crowding is obviously inconsistent 
with the strong repulsions operative between molecules closer than 2.5 A. 
The problem clearly has its origin in the fact that the pair Boltzmann factor 

(4.21) 

at low temperature takes on enormously large values when xi, x, lead to a 
maximally stabilizing hydrogen bond, and the corresponding approximate 
v(R) picks up a spuriously large contribution. 

Evidently, V(') must be largely counterbalanced by indirect medium 
contributions to W, . The physical necessity for such repulsive contributions 
to W2 is easy to understand. In order that a molecule at x, will be able to 
approach one held fixed at x1 so as to form the hydrogen bond described by 
I/. (xi, xz), it will almost certainly have to expel another molecule in its 
way. At a low temperature the other molecule is likely enjoying its own 

-12) 
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hydrogen bond. Thus one hydrogen bond will have to be broken to form the 
intended one. 

The close balance between direct and indirect interactions in W, is par- 
ticularly crucial in the case of low-temperature ice. As temperature T 
declines toward absolute zero, Boltzmann factor (4.21) diverges to infinity, 
although the coordination number remains four precisely, that is, v(R) is 

limv(R)=4 3 A S R S 4 A  (4.22) 

It is incumbent on any statistical theory of p(2) in water to pay particular 
attention to the competitive balance between W, contributions whether the 
liquid or the solid state is involved. 

T + O  

C. Distribution Function Formulas 

Within the regime of applicability of the semiclassical approximation, 
the average energy per particle 

consists of: 

(4.23) 

(4.24) 

[Here we have assumed that VN is temperature-independent, as will surely 
be the case at about room temperature. However, at high temperatures 
where vibrational excitations occur, the last term would have to be replaced 
by (d(fls7',)/dfl).] The vibrational energy may be computed from Qvib, 
[see (4.5)] : 

(4.25) 

At about room temperature exp ( - pho,) is negligible for all three normal 
modes. The kinetic energy E,, consists of classical rotational and trans- 
lational parts k ,  T/2 for each degree of freedom, so that 

E k ,  = 3kBT (4.26) 

The average intermolecular potential energy 

(4.27) 
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may be expressed in terms of molecular distribution functions by inserting 
relation (4.9) for VN into (4.27), followed by repeated use of the p(n) definition 
(4.11). The final energy formula is found to be 

- 
E 
N 
_ - _  

The 
bution 

thermodynamic pressure p can also be 
function form, starting from the identity 

P = -(g)p 
In order to carry out the volume derivative of In 

x,)~(")(x~ . . . xn) dx, . . . dx, 

(4.28) 

put into molecular distri- 

(4.29) 

Q required by this identity, 
it is convenient to use a position-coordinate scaling originally devised by 
Green.43 The volume is taken to have the shape of a cube. Then the positions 
R, of molecular centers are related to reduced positions sj by the trans- 
formation (1 I j I N) 

R j  = Y 1 I 3 s j  (4.30) 

The components of each s j  have limits 0 and 1, so in terms of these new 
variables the volume dependence of the configuration integral in Q becomes 
transferred to the arguments of V , .  After employing the VN expansion (4.9) 
once again, and carrying out the Y differentiation under the integrals, the 
"virial" pressure equation of state is obtained in the form 

Next consider a subvolume Y o  contained entirely within 9'". The average 
number of molecules N o  to be found with centers in Y o  can be calculated 
by integrating p ( l )  over all orientations, and over positions in this subvolume : 

(4.32) 

Analogously, the number of pairs of molecules iNo(No - 1) has an average 
given by a p(2) integral over the same region: 

($No(N0 - 1)) = 5 (4.33) 
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Hence 

( N o 2 )  - = ( N o )  + s dx, s dx2 [p(%,, x2) - ~ ( ~ ) ( x , ) p ( ~ ) ( x ~ ) I  

(4.34) 
T O  V O  

Although the last equation is formally exact for any volume Y and 
subvolume Y o ,  it is most informative in the Y +co limit, for then the 
surroundings of Y o  act as an infinite reservoir of particles whose intensive 
properties are not perturbed by fluctuations in N o .  Furthermore, Y o  may 
subsequently be presumed to have macroscopic dimensions, and the number 
fluctuation for Y o  shown in (4.34) must then be related in standard fashion 
to the isothermal compressibility ~ c ~ : ~ ~  

(4.35) 

Therefore (4.34) may be cast in the following alternative relation : 

(4.36) 

where we have written p for the macroscopic number density (No) /V"o.  
The most striking feature of this result in comparison with the energy and 
pressure equations (4.28) and (4.31) is that no distribution functions of 
order greater than two are required, regardless of the nature of &. 

In the event that an isotropic liquid or vapor phase inhabits the system, 
(4.36) may be simplified somewhat : 

Here we have assumed that p") is strictly the limit function for an infinite 
system size and, as a consequence, it has been possible to extend the position 
part of the x2 integration to infinity. 

Finally, we note that standard techniques are available to expand the 
molecular distribution functions in a density power series45 valid for descrip- 
tion of the vapor. To leading order p(") is of course proportional to p". The 
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specific density series for the infinite system pair distribution function 
begins with these terms: 

x [exp (-bV(3)(x1, x2,  x3)) - 11 + 0(p4)  (4.38) 

where the Mayer f function has been introduced following the normal 
convention: 

1 
f(xi, xj) = exp [-PV2)(xi, xj)] - 1 (4.39) 

By using the density expansion for p ( 2 )  in the compressibility relationship 
(4.37), it is possible to generate virial coefficients for the pressure: 

= 1 + B(T)p + C(T)p2 + . . . (4.40) 
P 

The second and third virial coefficients have the integral expressions 
i r  

(4.41) 

+ exp [-PV,(x,, x2,  x,)] - exp [-BV(')(x,, x2) 

- pv'2'(x,, x3) - PV(2) (X2 ,  x,)]} (4.42) 

V. EFFECTIVE PAIR POTENTIALS 

A. Variational Principle 

Both the conceptual and computational aspects of water theory would 
become significantly streamlined if the total interaction potential were 
additive, that is, vanishing trimer, tetramer, pentamer, and so on, component 
potentials. Of course we know this is not strictly the case, and nonadditive 
components evidently exert considerable influence on at least the thermo- 
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dynamic properties of water. Even so, it is a legitimate and interesting 
question to ask if there exists an “effective pair potential,” possibly differing 
substantially from the real molecular pair potential, which alone faithfully 
reproduces microscopic structure and thermodynamic properties for the 
true nonadditive water system. We outline a procedure that answers this 
question a f f i r m a t i ~ e l y . ~ ~ , ~ ~  

The following analysis can actually be carried out at any of several alterna- 
tive levels. In the most precise version, a full quantum mechanical description 
applies, for which the partition function Q has previously been displayed as 
the trace of a density operator. But for present purposes, it suffices in illus- 
trating the general strategy to work at the level of the semiclassical approxi- 
mation, with Q given by (4.4). 

Consider a pair of arbitrary real functions h,(x, . . . x,) and h,(x, . . . xN) 
of the N molecular six-vectors. We define their inner product to be 

{h, ,  h,} = (87~’V)-~ I dx, . . dx, h,(x, . . . xN)h,(x, . . . xN) (5.1) 

where the xj run between the same limits that apply to Q, namely, all orienta- 
tions and positions within volume V. Equation (5.1) is analogous to the 
ordinary inner product of two vectors, a sum of products of corresponding 
vector components, in that the integral sums over all differential elements 
dx, . . dx, the product of corresponding function components. In terms of 
our functional inner product, the semiclassical partition function (4.4) 
becomes 

.s  

Just as the distance between the end points oftwo vectors may be calculated 
in terms of the inner product of their difference with itself, we take the 
“distance” between the two functions h ,  and h,, D(h,, h,), to be 

D(h,, h,) = { h ,  - h,, h ,  - h2}1’* (5.3) 
The effective pair potential is denoted by u(xi, xj). Following the form of 

(5.2), the effective pair potential approximation to Q can be expressed as 

We postulate that the optimal choice for the function u is the one for which 

D(exp ( -+fiVN), exp [ -+ /Eu( i ,  j ) ] }  = minimum (5.5) 
In other words, we require that the Boltzmann function’s square root 
exp ( -$VN) literally be approached to the minimum possible distance 
by the corresponding effective pair potential version. 
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The variational criterion (5.5) forces the best possible fit over the entire 
configuration space for the N molecules. This is important, for beyond Q 
itself we want the molecular distribution functions p(") in the effective pair 
potential approximation: 

N . . . ( N  - n +  1 ) ~ d x n + , ~ ~ ~ ~ d x N e x p [ - ~ C u ( i , j ) ]  
p'"'(x, ' ' . x,ICu) = 

J dx, . . . dx, exp [ -/?Cu(i,j)] , 

( 5 4  

also to represent properly the detailed microscopic structure present in the 
system. 

By setting the first functional derivative of (5.5) with respect to u equal 
to zero, we derive an integral equation for the determination of u :  

I1 N s dx, . . . s dx, exp { -+/?[V,(x,. . . x,) + u(xi, xj) 
i < j = l  

N 

= s dx, . . . 1 dx, exp { - P 
i < j = l  

On account of the nonlinearity of this equation in the unknown function u, 
and because of the high-order multiple integrals, one cannot expect generally 
to extract the exact solution. However, it should be clear that the effective 
pair potential can vary somewhat with temperature and density. 

Integration of both sides of (5.7) over x 1  and x 2  leads to the relation 

Q(+V, + $ X U )  = Q(CU) 

F(*V, + 3Cu) = F(Cu) 

(5.8) 

(5.9) 

or what amounts to the same thing for the Helmholtz free energy : 

Thus the optimally chosen effective pair potential is such that its correspond- 
ing free energy is unchanged by the operation of averaging the effective addi- 
tive interaction with the true nonadditive interaction VN. Similar results apply 
to p"' and pi2), which follow directly from (5.7) after dividing by its integral 
over x 1  and x2: 

p'l'(x, l+V, + +xu, = p'l'(x, ICU) (5.10) 

p'2'(x1, x2 I+& + $ X U )  = p'2'(x,, x2 ICU) (5.11) 

However, these identities do not extend to higher-order p(") (although they 
would if the procedure were applied to the determination of n-molecule 
effective interactions u,, with n > 2). 

The Schwartz inequality4* implies that 

Q(T,"N)Q(Cu) 2 [Q(fb + +Cv)12 (5.12) 
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This, in concert with the earlier result (5.8), leads to 

Q(b) 2 Q(Cu) (5.13) 

In terms of free energies, the direction of the inequality is reversed: 

F(VN) F(Cu) (5.14) 

Thus the operation of forcing the system of molecules to conform to an 
effective pair potential never lowers the free energy. 

For pedagogical reasons we can write pN as its strictly additive part, 
plus a perturbation: 

N - 
V,(I . . . N )  = C V2)(i,j) + LVf(1 . . . N) (5.15) 

i < J = l  

where A is a formal perturbation parameter destined ultimately to be set 
equal to unity, and 

N N 

V + ( l  . . ' N )  = c c V(")(il'.  . in) (5.16) 

Imagining A to increase continuously from zero to unity, the free energy F 
as well as p ( l )  and pC2) will display first-order changes with A. However, 
(5.9) to (5.11) imply that v changes from V2) during this coupling process 
in just such a way that F(Cu), p")(x, ICv), and P(~)(X~, x21Cv) all manifest 
exactly the correct leading linear behavior in A. Although one can propose 
other effective pair potentials which selectively fit thermodynamical prop- 
e r t i e ~ ~ ~  or pair distribution  function^,^' it is only the variationally defined 
function u satisfying (5.7) that simultaneously eliminates first-order errors 
in F ,  p ( l ) ,  and p('). 

It is possible to develop v in a density power series. The manipulations 
required are tedious, and are not reproduced here. Instead, we state the 
result through first order in P:~' 

n = 3  i l < .  . . < i , = l  

x {exp [ -+/W3)(xl, x3, x4)l - 1> (5.19) 
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Only clusters of three or fewer molecules can contribute in this density order, 
so the only nonadditivity that can be involved is that for trimers. Since 

and v(3) drop to zero with increasing separation, so too will p,. However, 
p1 is independent of separation; although it is inversely proportional to -Y- 
and thus very small for a large system, its effect when summed over all 
N ( N  - 1)/2 pairs of molecules is thermodynamically significant. 

Using the effective pair potential, the analog of energy expression (4.28) is 

s ~ l B u ( x l ’  ”.”} p(’)(xl, x, \ X u )  dx, dx, +-  2N 
(5.20) 

aP N ,-v 

while the virial equation of state (4.31) is modified to 

- PP = 1 - 3 dx2{; R,, . V R , 2  u(xl, x,) - p (“4;; 
P P 

x p‘2’(X1. x2 IW (5.21) 

In both these expressions it is important to realize that u does not drop quite 
to zero with increasing separation R,,, but retains a constant value pro- 
portional to 9‘- ’. It is the presence of this “tail” on u of indefinite range that 
invalidates the compressibility theorem (4.36), except as a description of 
local fluctuations, although a complicated modification can be derived.46 

B. Physical Interpretation 

In our survey of water molecule interactions (Section 111), it was pointed 
out that the average effect of nonadditive components of the potential vN 
was to strengthen hydrogen bond networks, while reducing the length of the 
component hydrogen bonds somewhat. These influences must be felt by 
the effective pair potential u. It seems hard to escape the conclusion that the 
absolute minimum of u is lower than that of the bare pair potential v(2), 
and that this u minimum occurs at a smaller separation. 

Since nonadditivity contributes extra binding energy to an assembly of 
water molecules, a hypothetical water model in which the molecules interact 
only via the strict pair interactions V(’) would necessarily possess lower 
melting and boiling points. Evidently, the increased strength of u compared 
to v(’) would tend to bring these phase-transition temperatures back up 
again. 

The melting and boiling transitions are first order, with a discontinuous 
change in molar volume going from one homogeneous phase to the other. 
With fixed N ,  V may be chosen so that p lies between the values for coexisting 
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phases (say, liquid and vapor). In this case the system is macroscopically 
inhomogeneous, for surface tension will cause agglomeration of the phases 
into large crystals, droplets, or bubbles. The molecular distribution functions 
p@"' will be profoundly affected by this macroscopic inhomogeneity, display- 
ing slow variations with respect to positions over distances comparable to 
crystal droplet or bubble diameters. 

The effective pair potential is permitted full functional freedom within its 
defining variational principle (5.5). In particular, it can adopt forms with just 
the proper coupling strength to reproduce the correct phase transitions 
exhibited by V N .  Since the distance D involved is always to be minimized, 
and since it would be expected to be very large if P N  caused phase separation 
and Cv did not (or vice versa), it seems likely that the effective pair potential 
approximation should reproduce the given first-order phase changes. In 
fact, we postulate that in a large-system limit pN and Zv will have exactly 
the same phase diagrams in the 7; p plane. Furthermore, the corresponding 
crystalline phases should have the same symmetry properties. 

It is interesting to note that the liquid-vapor critical point for water 
(T = 374.15"C, p = 221.2 bars, p = 0.32 g/cm3) experimentally seems to 
share with other liquids the conventional set of nonclassical critical expo- 
n e n t ~ . ~  ' This universality of critical exponents implies insensitivity to most 
details of the underlying molecular interactions. Consequently, replacement 
of G;v by the proper Cv should involve no change in the critical-point temper- 
ature and density, and the required v itself should not entail singular 
temperature and density variations. 

The density expansion (5.17) to (5.19) illustrates the fact that generally 
v separates into two parts: 

(5.22) 

a short-range part v, which goes to zero with increasing separation, and a 
weak constant tail inversely proportional to n f  at constant T and p .  Clearly, 
this tail has no effect on molecular distribution functions, since it has the 
same value from one configuration to the next. However, the short-range 
function v,, which is necessary to give optimal p%, does not by itself give 
an optimal free energy. The long-range tail provides the necessary correction. 

In a dense liquid or crystalline phase, each molecule is surrounded by a 
rather closely packed multitude of neighbors. From a numerical viewpoint 
it would probably be feasible to simulate the free-energy effect of v , / V  by 
a spatially slowly decaying component of us instead. Because the neighbors 
are closely spaced, they would respond negligibly to this geometric com- 
pression of the truly long-range tail of u into v,. Thus, as a practical matter, 
explicit consideration of v l / V  may be quite unnecessary for condensed 
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phases. This possibility is especially clear for low-temperature crystals whose 
structure and vibrational properties would not be changed by constant shifts 
in u at each of the first few neighbor shell distances, although of course the 
free energy would be correspondingly affected. 

An invariant ratio of the different types of bonded trimers was mentioned 
earlier for all four-coordinated networks, leading to overall stabilization. 
Temperature rise causes bond breakage in these networks (most notably 
at the melting point), and at very high temperatures nearly all trimers are 
disrupted and no enhanced stability for hydrogen bonds applies. But during 
the course of temperature rise, the ratio of sequential, double-donor, and 
double-acceptor molecules need not remain fixed. Figure 12 shows how 
alternative choices for the scission of two hydrogen bonds impinging on a 
single network molecule can remove different ratios of trimers (although 
always 11 of all kinds). As a result, we would expect the destabilizing double- 
donor and double-acceptor trimers to disappear at a greater initial rate than 
the stabilizing sequential trimers. Just above the melting point, u can in this 

i ‘  

1’ \ 
’ +\, 

\ 

I d  a 
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Fig. 12 Trimers disrupted by breaking two hydrogen bonds emanating from the same network 
molecule. d.d., Double donor; d.a., double acceptor; seq., sequential trimer. In view of the 
signs of the trimer nonadditivities, it is energetically least costly to break the two bonds if one 
and only one incorporates a proton of the central molecule. 
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fashion maintain its greater hydrogen bond strength and shorter length 
relative to V2); the temperature variation in v may thus be negligible in 
this range. 

VI. LATTICE THEORIES 

A. General Formulation 

In approximating the definite integral 

I(a, b) = F( t )  d t  I 
by the rectangle rule, the interval a 5 t 5 b is divided into A4 equal intervals 
with midpoints 

(b - a)(2i - 1) 
2M 

, i = l , 2  ,..., M t i = a +  

and then I is represented by a suitably normalized sum of the integrand over 
these midpoints: 

The lattice gas partition function QI bears the same relationship to the semi- 
classical partition function Q [see (4.4)] that the rectangle rule approximation 
(6.3) does to the starting integral (6.1). To establish the relationship for the 
partition functions, the six-dimensional configuration space available to the 
rigid-rotor molecules must be divided into equivalent cells whose centers 
are analogs of the midpoints t i .  

First let the three-dimensional volume -tr be uniformly covered by a lattice 
of A’Z equivalent points. We shall always want 

A > N  (6.4) 

so that the number of discrete locations exceeds the number of molecules and, 
as a general matter, the limit of A’Z tending to infinity is ultimately of interest. 
For the moment we leave open the choice of specific lattice type (simple 
cubic, body-centered cubic, diamond, face-centered cubic, etc.), but for every 
lattice there exists a corresponding division of -Y- into nearest-neighbor 
polyhedra.52 These polyhedra are convex and congruent, contain single 
lattice points at their inversion centers, and are the loci of all positions closer 
to this central lattice point than to any other lattice point. On account of the 
last property, they are bounded by midplanes constructed on line segments 
connecting lattice points. 
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The volume of each nearest-neighbor polyhedron is denoted by 

“Y 
A 

7 = -  

By selecting a very anisotropic lattice, it is possible to produce polyhedra 
that are very long in one or two directions at the expense of the third. For 
present purposes we specifically avoid this situation, and suppose that the 
polyhedra are reasonably compact. This criterion will automatically be 
fulfilled if the basic lattice has cubic symmetry. Now, if A is sufficiently 
large, the distance between two molecules with centers confined to the same 
polyhedron is necessarily small, and 1/(21 will be positive and large. We 
proceed under the assumption that A is in a range in which these molecular 
repulsions prevent multiple occupancy of the polyhedra. 

In the same way the lattice affords A discrete locations with volume “Y, 
we must also divide the orientational space 8x2 into an integer number v 
of equal-weight regions. The lattice theory then provides for a coarse-grained 
description of any arrangement of the N water molecules in space by means 
of a set of occupation parameters f i  (1 I i I A’), one for each nearest- 
neighbor polyhedron. In particular, 

f i  = 0 (6.6) 

indicates that polyhedron i is empty, while 

t i =  1,2,  . . . ,  v (6.7) 

indicates that it contains the center of a molecule with orientation falling into 
region 1, 2, . . . , or v,  respectively, of the full 8x2 orientation space. Among 
the A occupation parameters precisely N can be nonzero, but even under this 
restraint there remain 

A ! V N  

N ! ( A  - N ) !  

distinct sets of values (5) describing distinguishable coarse-grained system 
configurations. 

The total molecular interaction relevant for the lattice approximation is 
denoted by VN{<}  for simplicity. It is equal to the vibrationally averaged 
function VN(x,.‘- xN) evaluated for molecules placed at the centers of the 
polyhedra and given orientations central to the rotational regions specified 
by the parameter set {<}. Figure 13 illustrates in elementary two-dimensional 
fashion the centered and discretely oriented water molecules, one to each 
cell, that might be required by ( 5 ) .  
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Fig. 13 Centered molecules, with a dis- 
crete set of orientations, used to define the 
lattice model interaction V N { t } .  This is a 
schematic two-dimensional version of the 
three-dimensional situation. 

After accounting for the N !  ways in which the water molecules can be 
distributed among the occupied lattice sites, the partition function Ql adopts 
the form 

where 
(271kg T)3rn3i2(1,12 Z3)1i2QVib 

h6 
(6.10) 

is a factor carried over without change from the semiclassical partition 
function (4.4). The sum runs over all distinct sets (5) consistent with the 
given number of molecules. As 4 and v approach infinity, Ql approaches 
Q to be sure, but the advantage of the lattice approximation lies in com- 
putational simplifications that obtain for certain finite choices of A and v. 

In the coarse-grained lattice representation, the molecular distribution 
functions p'") are replaced by probability functions P'"'(i, . . . in 1 5, . . . tn), 
giving the chance that simultaneously the lattice sites i,, . . . , in have the 
respective occupation parameter values tl ,  . . . , En. The defining relations 
may be written: 

A =  

(6.1 1) 
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The primed numerator summation includes only those sets (5) displaying the 
required parameter values at sites i,, . . . , in. By convention we set P(") = 0 
if any two i,s happen to be identical. 

Both the mean energy expression (4.28) and the compressibility relation 
(4.37) can be carried over into the lattice approximation, using the Pn) 
instead of p(n):  

(6.12) 

I 
p k B T K T  = f - 1 I [p '2 ' ( i1 ,  i Z 1 5 1 ,  5 2 )  - p'l)(il 151)p'1)(i2152)1 

Nil,i2=1 < 1 , < 2 = 1  

(6.13) 

However, there is no way that the virial equation of state (4.31) can be retained 
in the lattice description, so the pressure must be obtained from another 
source (such as I C ~ )  using suitable thermodynamic identities. 

Once again it is necessary to emphasize that the theory has been developed 
without the necessity for specifying a particular molecular center, and in 
principle any choice serves as well as any other. Nevertheless, a pragmatic 
element now intrudes for the first time. We have demanded single occupancy 
of the space-filling polyhedra. This automatically becomes valid as At' + co 
( N  and Y fixed), but the demand must also be met for finite At' > N as well. 
If the molecular center were taken eccentrically but by convention to be 
10 A from the oxygen nucleus along the symmetry axis, there would be no 
energetic prevention of double occupancy for any polyhedron, however 
small, since the molecular electron clouds and nuclei would be well outside 
the polyhedron. To avoid this difficulty, one is effectively required to embed 
the center inside the molecular electron distribution to take full advantage 
of overlap repulsion in avoiding multiple occupancy. The position of the 
oxygen nucleus qualifies satisfactorily on this count, as Fig. 13 implicitly 
acknowledges. 

The lattice model was originally advocated to study phase transitions for 
structureless spherical molecules, or for highly symmetric molecules for 
which free rotation produces an outward appearance of ~phe r i c i ty .~~  The 
occupation parameters required in that simpler version needed only two 
values : 

ti = 0 empty 
(6.14) 

= 1 singly occupied 
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It can easily be shown that this two-state lattice model has an inherent 
symmetry about the half-filled ( N  = A / 2 )  state that derives from an iso- 
morphism to the Ising model for magnetic-phase transitions. An important 
consequence of this “particle-hole’’ symmetry is that the chemical potential 
along the critical isochore ( N  = ,K/2) is an analytical function of temperature 
at the critical point. Unfortunately, no analogous symmetry can be identified 
for the lattice models of water, and it remains an open question whether 
temperature analyticity of the water chemical potential exists at its critical 
point, along a suitable symmetry line.s4 

B. Fleming - Gibbs Version 

The simplest practical version of the lattice approximation utilizes the 
body-centered cubic arrangement of sites, with a distance between nearest 
neighbors corresponding to an unstrained hydrogen bond between two water 
molecules. Figure 14 shows this lattice structure, for which each site has 
eight nearest neighbors in a cubical arrangement. The tetrahedral angle 
between successive hydrogen bonds is realized in a natural way, since four 
mutually noncontiguous near neighbors (out of the eight) for any given 
site form vertices of a regular tetrahedron surrounding that site. In fact 
the fully hydrogen-bonded cubic ice crystal (ice Ic) fits precisely on the 

Fig. 14 Body-centered cubic lattice model for water. Dotted lines indicate hydrogen bonds 
between nearest-neighbor molecules. The molecules shown form a portion of the cubic ice Ic 
crystal. 
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body-centered cubic lattice, using every other site. The water molecules 
shown in Fig. 14 constitute a portion of this ice Ic crystal. 

The obvious discrete set of orientations to use should be clear from Fig. 14. 
The two OH bonds of a given molecule should point toward a pair of nearest- 
neighbor cube vertices, which are located diagonally across a face of the 
cube from one another. There are 12 such nearest-neighbor pairs, and there- 
fore 24 discrete orientations for a water molecule with distinguishable 
hydrogens. Melting of the Ic crystal can occur if molecules frequently 
reorient from the directions shown in Fig. 14 for the crystal, while also 
moving at random onto the other sublattice of sites which is totally un- 
occupied by the crystal. 

Two interpenetrating cubic networks can coexist on the body-centered 
cubic lattice, filling it completely and forming the ice VII ~truc ture .~  
Each has fourfold hydrogen bond coordination at each site, but no hydrogen 
bonds connect the two networks. 

Fleming and Gibbs have proposed a way of simplifying the lattice-model 
interaction p,{ 5) to allow explicit statistical calculation to be carried out 
while retaining the essential features of directional bonding that seem to be 
characteristic of ~ a t e r . ~ ” ’ ~  Only pair interactions between nearest neighbors 
are permitted, and the value of the nearest-neighbor interaction depends on 
the relative orientation in such a way that only three distinct magnitudes are 
involved: 

- ( 2 )  I/‘ {tl, (,} = - E ,  if tl, t2 corresponds to a hydrogen bond 
- - - E ~  

- - - E 2  

if rotation of one molecule suffices to 
create a hydrogen bond 
if rotation of both molecules is necessary 
to create a hydrogen bond (6.15) 

These three energies are treated as adjustable parameters but, clearly, if this 
simplification is to have meaning, - E ,  must be the lowest of the three 
energies. There are 242 = 576 distinct orientations of a pair of neighboring 
molecules; of these, 72 lead to interaction - E , ,  360 to - E ~ ,  and 144 to 
-eZ. It is important to realize that not all pairs of neighboring molecules, 
one of which points on OH toward the other, are considered hydrogen- 
bonded in the Fleming-Gibbs scheme, for it is also necessary that the three 
pendant OH groups point to other sites of the same ice Ic sublattice (as shown 
in Fig. 14). In part, pairs with interaction - e l  correspond to linear but 
angularly severely strained hydrogen bonds. 

If the lattice is filled with molecules forming ice VII interpenetrating 
networks, nonbonded nearest neighbors (four of the eight) will always have 
energy - E ~ .  This crystal structure can be thermodynamically destabilized 
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at low pressure by causing - e2 to be the most positive of the three interaction 
energies, thus simulating the strong repulsions that exist between these 
unbonded neighbors in the real ice VII crystal.57 In any event use of the body- 
centered cubic lattice and nearest-neighbor interactions permits at most two 
distinct crystalline phases in the Fleming-Gibbs formulation, supplemented 
by liquid and vapor phases. 

The Fleming-Gibbs partition function can be written : 

The numbers of nearest-neighbor pairs of each interaction type have been 
denoted here by N , ,  N , ,  and N , .  

Fleming and Gibbs have confined their quantitative studies to the liquid 
and vapor phases. In order to evaluate the partition function and thermo- 
dynamical properties, they have separately used two statistical mechanical 
approximations, the mean field approximation (MFA),55 and a more 
accurate second-order approximation (SOA).56 

The MFA replaces N , ,  N , ,  and N ,  in (6.16) by their a priori average values: 

~ ~ ( 5 )  4 + n 2 A  
N , { < )  -+ $ n 2 A  (6.17) 

N 2 ( 5 )  n 2 A  

where n is the lattice-filling fraction N / A .  With this assumption all terms in 
the partition function sum become equal, so 

Taking logarithms, and differentiating with respect to volume, the MFA 
equation of state for the lattice model is easily found to be 

= -In (1 - n) - pn2($E, + $el + e,) (6.19) 

The liquid-vapor critical point can be located from the horizontal inflection 
point of the pressure isotherm family (6.19). At this critical point, 

A 

(6.20) 

Fleming and Gibbs point out that the experimental critical temperature 
can be reproduced by setting 

E, = 4.65 kcal/mole 
E ,  = E~ = 7.2 x lo-' kcal/mole 

(6.21) 
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for the MFA. Certainly, the hydrogen bond energy is not unreasonable, 
in the light of available quantum mechanical information (Section 111). 

If the experimental critical density is used to assign the nearest-neighbor 
distance, the result is 3.93 A, far too large for a well-formed hydrogen bond. 
As an alternative, Fleming and Gibbs chose to use the nearest-neighbor 
separation determined by x-ray scattering measurements on liquid water,5 
which increases slightly (and linearly) with increasing temperature but 
remains within an acceptable distance range for linear hydrogen bonds. In 
this manner they derived the following critical constants (experimental 
values in parentheses) : 

p, = 0.688 g/cm3 

p ,  = 783 atm 
(0.325 g/cm3) 

(218 atm) 

(6.22) 

That the errors in predicted critical constants are very large no doubt 
stems primarily from a weakness of the MFA, which assumes each molecule 
is surrounded by a shell of neighbors having the macroscopic distribution of 
density and orientation. The SOA explicitly removes this weakness by 
providing for a distribution of nearest neighbors that is correct to leading 
order in interactions with the central site. The reader should consult the 
original references6 for details. The SOA equation of state extends the MFA 
result (6.19) to order p2 : 

Using the SOA, it was found that the liquid phase would boil at 100°C 
under 1 atm pressure if 

Eb = 4.58 kcal/mole 
E~ = 0.915 kcal/mole (6.24) 
e2 = - 1.19 kcal/mole 

This set of interactions seems somewhat more reasonable than the MFA 
set (6.21), in that relative configurations leading to - e 2  are now energetically 
very unfavorable. By using the same x-ray measurement assignment for the 
lattice spacing as before, the liquid density at 100°C and 1 atm is found to be 



THEORY AND MOLECULAR MODELS FOR WATER 53 

1.323 g/cm3, compared to the experimental value 0.958 g/cm3. Fleming and 
Gibbs ascribe the discrepancy to remanent correlation error in the SOA, 
rather than inherent crudeness of the lattice model itself. By implication a 
more accurate treatment of the statistical mechanical evaluation of Ql 
should improve predictions relative to experiment. In any event the SOA 
improves on the MFA dramatically, for the latter predicts a 30-atm vapor 
pressure for the liquid at 1OO"C, using the interaction set (6.24). 

The critical parameters obtained for the SOA and energies (6.24) are 

T, = 739.1"C 
pc = 0.353 g/cm3 
p ,  = 478.5 atm 

(6.25) 

somewhat too large in each case. 
The most interesting feature of the SOA calculation is that the liquid, 

in coexistence with its vapor, exhibits a maximum at 61°C in the lattice-filling 
fraction n = N/&. The actual mass density requires accounting for the 
temperature variation of lattice spacing, and as a result the density maximum 
becomes displaced to roughly -50°C. Although one would have liked the 
mass density to reach a maximum at 4°C to agree with measurements, the 
significant point to note is that the lattice model evidently possesses the 
general capacity to produce maxima. No doubt further refinements could 
achieve better agreement, since it is clear that a delicate balance of opposing 
influences is present. 

Fleming and Gibbs calculated the specific heats C ,  and C, in the SOA, 
and found the results to be "fairly good." However, the isothermal compress- 
ibility K~ is too large by a factor of 2 for the liquid between 0 and lOO"C, 
and increases with temperature instead of showing a minimum as experiment 
does at 46°C. 

Implicit in the SOA is a specification of the mean number of nearest 
neighbors of each type to a typical molecule. Throughout the normal liquid 
range, 0 to lOO"C, the total mean number of nearest neighbors is close to 6.8. 
This is significantly larger than the value 4.5 suggested by x-ray scattering 
work.s8 It would be informative to know if a more precise statistical treatment 
than SOA would improve this comparison. 

C. Bell's Version 

Bell59 has proposed and analyzed a lattice model for water that is closely 
related to that of Fleming and Gibbs. It also uses the body-centered cubic 
array of sites shown in Fig. 14, and each molecule has the same 24 discrete 
orientations as before. The major difference is that Bell's version incorporates 
both two and three-molecule interactions. 
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The specific pair interaction used by Bell operates only between nearest 
neighbors : 

V2){t1, t2) = - ( E  + w )  if t,, t2 corresponds to a hydrogen bond 
- - - E  if no hydrogen bond exists (6.26) 

(This is identical to the Fleming-Gibbs interaction if E ,  = E + w  and 
E ,  = E~ = E.) The nonadditive three-molecule interaction operates only 
between compact triangles of molecules: 

(6.27) 

that is, for three simultaneously occupied sites in a 45"-45"-90" triangle 
whose legs connect nearest neighbors and whose hypotenuse connects 
second neighbors. No such compact triangles of molecules exist for the half- 
filled lattice in an ice Ic configuration, but the completely filled lattice has 
12A compact triangles. The incorporation of positive u into the Bell version 
becomes the mechanism whereby interpenetrating ice VII hydrogen bond 
networks are thermodynamically relegated to high pressure. 

Corresponding to the Fleming-Gibbs expression (6.16), Bell's lattice 
model partition function has the form 

As before, N ,  is the number of hydrogen-bonded pairs; N p  stands for the 
total number of neighboring pairs of water molecules of all types 

N ,  = N, + N ,  + N ,  (6.29) 

The total number of compact trimers has been denoted by N, .  
In order to evaluate Ql for the fluid phases, Bell invokes a cluster-variation 

method attributed to Guggenheim and McGlashan.60 For the present case 
this method self-consistently calculates the distribution of molecules over 
compact tetrahedral sets of four sites, one of which is shown in Fig. 15. Two of 
the edges of the tetrahedron connect second-neighbor sites, while the other 
four connect first neighbors. The body-centered cubic lattice consists of four 
face-centered cubic sublattices, and each of the tetrahedral clusters has one 
vertex belonging to each of the four. Considering the nature of the molecular 
interactions involved in Bell's version of the lattice model, these clusters 
should be sufficient to describe the most important aspects of short-range 
order in the fluid phases. 

Bell lists 10 fundamentally distinct ways a cluster of sites can be occupied 
by molecules or left vacant. Each of these has a degeneracy factor 
Si( 1 5 i 10) expressing the number of ways molecules in a given species of 
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Fig. 15 Tetrahedral cluster of sites (outlined with solid lines) 
used by Bell to evaluate his lattice model partition function 
[see (6.28)]. 

cluster can be reoriented and reassigned to sites. The essence of the 
Guggenheim-McGlashan technique is its approximation for the number 
of ways g that cluster species present in fractional concentrations 
Yihi(1 I i I 10) can be realized by placing molecules at the lattice sites: 

10 

go is a normalization factor which can be assigned from the known result 
for random molecular distribution over the lattice: 

(6.31) 

Associated with each of the cluster species is a characteristic interaction 
energy e i ,  so that the entire system interaction energy is: 

10 &'I e i6 ,Y,  (6.32) 
i = l  

The Helmholtz free energy F then can be obtained by maximizing 

10 

l n g ( Y ' , ~ . . Y ' , , ) - p & ' ~ e , 6 , Y i = - ~ F  - N l n  ry)  ~ (6.33) 
i =  1 

with respect to permissible variations in the Y i  (namely, those variations 
consistent with their normalization, and with fixed n). 
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Thermodynamic properties were investigated for several choices of the 
interaction ratios q'w and u/w. The most significant conclusion drawn from 
these studies was that the anomalies of liquid-phase density maximum and 
compressibility minimum could be produced by a rather wide range of 
assignments of the interaction ratios. Furthermore, these anomalies tended 
to be suppressed at elevated pressure, just as they are in real water. Table I1 
presents some results taken from Bell's paper which illustrate these features, 
along with the corresponding experimental numbers. The average number 
of nearest neighbors is 2(N,) /N,  and has been included in Table I1 for the 
temperature of maximum liquid density at the vapor pressure. 

TABLE I1 

Properties Calculated by Bell59 for His Lattice Model 

Ice IattIce Interaction 

ratios p c y c  W a x  P )  T(min KT) 2<N,(max P)> energy 
E / W  u/w k,T, Tc T c  N (kcal/mole) 

1/2 1/2 0.197 0.525 0.455 4.07 9.0 
1 314 0.208 0.477 0.447 4.42 7.2 
2 5/4 0.218 0.364 0.381 4.82 5.7 
Experiment: 0.243 0.427 0.494 4.4 13.4 

_ _ _ _ _ _  

The lattice energy of ice in the present model is 2 ( ~  + w) per molecule. 
In order to fix the energy scale for each of the energy ratio cases considered 
in Table 11, the calculated critical temperatures were fitted to the measured 
value. The resulting lattice energies (for cubic ice) are given in the last column 
of the table. Although they are compared with an experimentally determined 
value for hexagonal ice, the cubic-versus-hexagonal distinction should have 
little importance since the two polymorphs have such similar bonding 
geometry and density. The comparison shows that the lattice models tend 
to have considerably weaker binding than real ice. 

The average coordination numbers look very encouraging, and seem to 
stay small compared to the Fleming-Gibbs result for a wide range of inter- 
action ratios. 

The cluster variation technique employed by Bell is probably more 
accurate at low temperatures than the Fleming-Gibbs SOA. In order to make 
decisive comparisons of the two lattice model versions, it would be valuable 
to have available a set of cluster variation calculations for the Fleming-Gibbs 
case. 
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D. Possible Extensions 

The existing calculations demonstrate that the lattice model approach 
is a valuable theoretical tool in understanding water. It would also be 
valuable to have research on this class of models widened in scope. We now 
list several feasible possibilities. 

57 

1. In the body-centered cubic lattice models discussed here, the melting 
transitions and range of crystal stability should be studied for the ice\Ic 
and ice VII structures permitted by the models. Beside comparing the 
fluid-phase properties to experiment as has already been done, at least the 
low-pressure melting temperature of cubic ice should be required to agree 
roughly with that of real ice Ih. This would put an extra constraint on the 
interaction energy parameters. 

Four long-range order parameters would be necessary in an order-disorder 
treatment of the crystals, corresponding to the four ways of building complete 
ice Ic networks on the lattice. Their introduction would complicate each of 
the statistical treatments somewhat, but not to the point of impossibility. 

It hardly needs to be mentioned that prediction of a negative melting 
volume for ice is one of the attractive goals of this extension. 

2. In addition to the interactions employed by Fleming and Gibbs, 
and by Bell, there are other versions that deserve to be tested. Most obvious 
is the need to rectify the short-range nature of the pair interactions, and for 
this purpose dipole-dipole interactions could be introduced for second 
neighbors at least, or perhaps perturbatively for all distances beyond first 
neighbors using a reasonable value of the molecular dipole moment. 

With respect to nearest-neighbor molecule pairs, neither the Fleming- 
Gibbs nor the Bell version can be reconciled fully with the known behavior 
of the pair potential-energy function V@)(x1, x2) as discussed in Section 1II.C. 
A more realistic alternative would involve distinguishing classes of nearest 
neighbors as : (a) hydrogen-bonded with all relevant angles tetrahedral; 
(b) single, linear hydrogen bond, but with the acceptor molecule twisted 
out of one of the tetrahedral arrangements; (c) unlinked by a linear hydrogen 
bond. The first two of these would have constant interaction energies 
- E ,  and -eb ,  the former being more negative. Pairs in category (c) could 
be treated as interacting via electrostatic dipole moments at their centers. 

Bell’s three-molecule nonadditive energy [see (6.27)] may indeed be 
effective in destabilizing interpenetrating networks at low pressure and in 
holding down the mean coordination number in the liquid. However, it has 
doubtful validity as a representation of real water molecule interactions. 
More useful in the long range would be use of trimer nonadditivities only for 
the three doubly bonded species shown in Fig. 10, with signs and magnitudes 
agreeing with the available quantum mechanical studies. An inquiry of this 
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kind could help to resolve the long-standing question how hydrogen 
bond cooperativity (i.e., nonadditivity) influences the microscopic state of 
aggregation in the l i q ~ i d . ~ ~ , ~ ’  

3. We have viewed the lattice models as analogues for the classical 
configuration integral of the familiar rectangle rule used for numerical 
integration with one variable. To improve precision for the lattice models, 
it is desirable to identify specific ways of achieving a finer grid size than the 
convenient but coarse body-centered cubic lattice. One suggestion is 
illustrated in Fig. 16. It amounts to augmenting the body-centered cubic 
array to form a face-centered cubic array with 16 times as many sites per 
unit volume. The original pairs of sites that were nearest neighbors have 
become sixth neighbors under the elaboration, and are 6liZ times as far 
apart as the new nearest-neighbor site distance. 

Fig. 16 Conversion of the body-centered cubic array to a face-centered cubic array by adding 
new sites (solid circles). The new lattice formed in this way has a site density 16 times that of its 
precursor. 

If the old pairs of neighboring sites in the body-centered lattice are retained 
as the separation for an unstrained hydrogen bond, it is obvious that several 
other distances are now available in the augmented lattice for describing 
stretched and compressed hydrogen bonds. It should also be obvious that 
the orientation space for a single molecule can now be more finely subdivided 
according to the new set of ways that OH bonds can point toward nearby 
sites. The greater number of interaction energies that would have to be 
specified with the finer grid is a conceptual virtue, but a computational vice. 

Hydrogen bond polygons on the body-centered cubic lattice can have 
only even numbers of sides (6,8, 10, 12, etc.). The denser face-centered lattice 
affords sufficient configurational flexibility to allow odd polygons (5, 7, 9, 
11, etc.) to exist with relatively little bond strain. This may prove to be an 
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important structural feature for a topologically accurate description of 
liquid water. In addition, a set of ice polymorphs should become possible 
larger than that permitted by the coarse body-centered array. 

4. The conventional lattice model for simple substances has previously 
been quantized to provide a description of liquid helium.61 By introducing 
creation and annihilation operators for each of the rotational states at a 
lattice site, with appropriate commutation relations, a quantized lattice 
model for water could also be constructed. This extension might be a valuable 
theoretical tool for explaining isotope effects in water and its solutions. 

VII. CELL MODELS 

A. Cell -Cluster Expansion 

The principle behind the lattice model approach to evaluation of the water 
partition function is that a sequence of finer and finer grids enforces con- 
vergence toward the desired continuum description of configurations for the 
full set of molecules. The rate of convergence may be rather slow, however, 
since hydrogen bonds are not only strong but also markedly concentrated 
in small regions of relative distance and angle space for a pair of interacting 
molecules. That the empirically determined bond strengths are low for 
lattice calculations [see (6.24) and Table 111 doubtless stems from the fact 
that they are averages over finite regions and therefore necessarily include 
strained configurations. 

An alternative route of convergence to the full continuum representation 
is available, which offers several attractive advantages. This route defines 
the so-called cell models which attempt in a direct way to account for rapid 
variation in intermolecular potentials as molecules move away from regularly 
spaced lattice sites. As we shall see, this approach can be developed as a 
formally exact method by introducing a cell-cluster expansion. The general 
character of the cell models is such that the dynamics of the water system 
can also be investigated, especially in regard to short-time behavior. Of 
course, the lattice models do not normally possess this capacity. 

The cell-cluster general development begins at the same stage as the lattice 
theory, by using a regular array of A? sites in volume Y ,  on which molecules 
can adopt a number of v of discrete orientations. In principle, it does not 
matter what geometric type of array is used, for the subsequent development 
is always exact. But for practical reasons one will always want to optimize 
the rate of convergence of the method, and this demands selection of a 
starting grid that permits the molecules to adopt energetically “natural” 
configurations relative to each other. The body-centered cubic lattice dis- 
cussed at length in Section VI fulfills this requirement, and is probably the 
most sensible starting point for any serious cell model computations. 
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The basic cell-cluster identity writes the semiclassical partition function Q 
first in terms of independent-molecule cell factors Z('), and then incorporates 
correction factors Y(")  to account for errors attributable to the correlated 
motion of each subset of n > 1 molecules moving in their cells at the same 
time. Thus we write: 

Here we rely on the notation used earlier for the lattice partition function 
QI in (6.9). Subscripts on the 2s  and Ys refer to the lattice sites involved 
and, by convention, if any one of these sites is unoccupied in state {<}, the 
corresponding factor shonld be set equal to unity. 

The single-molecule cell factors Z!'){5} are the integrals : 

where a(') is the potential energy of the molecule (numbered 1) when it is 
located precisely at the lattice site (configuration xi'){(}): 

and where a(') is the change in potential energy experienced by molecule 1 
as it wanders off of the lattice site and rotates: 

W ( X 1 ,  (5,) = V&,, x',"'cr>, x',o'{tl ' . . x!") 
- FN(xY){(}, X',''{(} ' '  ' x$){t}) (7.4) 

Although a!') and in the strict sense depend on the status of all sites, 
it is clear that only those close to site i matter substantially. The integration 
in (7.2) is to be carried out over a six-dimensional cell, denoted by (ti), 
corresponding to the restriction of the center of molecule 1 to the interior of 
the nearest-neighbor polyhedron surrounding site i, with orientation re- 
stricted to the 8n2/v region belonging to the standard orientation decreed 
by ti. The Z!') have been defined to reduce to unity in the limit of vanishing 
interactions. 

Aside from normalization the Z!'){ 5) are classical configurational partition 
functions for single molecules moving under the influence of the inter- 
molecular forces of fixed neighbors. In a similar way, for every 2 < m < N 
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we can define configuration integrals: 

dx, ..-dx,exp [-P@!:)...,im(xl... x,, {O)l (7.5) .s (tit)... (ti,) 

for molecules 1, 2, . . ., m formally attached to sites i,, . . . , i, by (5). The 
appropriate multiple-cell potential energy is 

@(,’ (1 ... l m  , (xl .’.X,,{<)) = VN(X1 ~~-x,,x~”!{<}--~x~~~<}) 
- 

- vN(xy){<}~~.  X(No’{(}) (7.6) 

It includes interactions within the movable set of m molecules, as well as 
their interactions with the surrounding N - m rigidly fixed molecules. 

The integration limits in (7.5) are such as to allow the center of each mole- 
cule 1, . . . , m to inhabit all m cells i,, . . . , i,. If all surrounding cells are filled, 
in the noninteracting limit, 

However, if there are vacant sites near i , ,  . . . , i,, we append the restriction 
that the minimum sum of squares of distances for the m molecules to sites 
unoccupied by fixed particles be attained only with sites i,, . . . , i,, and not 
with the inclusion of local vacant sites. 

If sites i and j are widely separated, the motion of molecules in the respec- 
tive cells will be independent. With cells small enough that multiple occu- 
pation is unlikely on energetic grounds, 2:;) then factors into 2“’s: 

Zif’{() - Zy’{<}zy){<} (7.8) 

The cell pair correction term Y$’ appearing in the general cell-cluster 
expansion (7.1) is simply a ratio whose deviation from unity measures the 
extent to which factorization is inappropriate : 

Three-cell correction factors are also defined by appropriate ratios of 2 s  : 
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These factors differ from unity only when all three sites i ,  j ,  and k are close 
together, for if one of them (say, k )  recedes from the other two, 

(7.11) 

The higher-order correction factors Y(m) have a similar structure. In 
each case Z(m) is divided by Ys of lower order for every proper subset of 
sites that can be formed out of the full set of rn given sites: 

where for notational convenience we have set 

(7.13) 

The recursive linear relations between logarithms of the Zs on the one hand, 
and the logarithms of the Y s  on the other hand, are isomorphous to the 
identities (3.2) to (3.4) relating total potentials V ,  to the component potentials 
V”). That (7.1) is in fact an identity results from thorough cancelation of 
factors between the Ys for each term of the occupation state sum (over (5)) 
in (7.1). In fact, the recursive quotient definitions (7.12) for cell correlation 
factors reduce (7.1) to the elementary form 

(7.14) 

which simply resolves Q into separate contributions from distinct modes of 
occupation of the set of v A? six-dimensional cells by molecules. 

Provided the number of lattice sites A is no less than the number of 
molecules N ,  the precise value of A can in no way affect the validity of cell- 
cluster expansion (7.1); it is rigorously correct independently of the choice of 
A. But just as an optimal choice exists for the lattice structure itself from the 
standpoint of convergence rate, there ought to be a “best” value for A?. 
A reasonable choice would be that A%’ = Al, which minimizes the free 
energy (i.e., maximizes Q) in the single-cell approximation 

(7.15) 

On restoring just the pair factors Yc2) ,  a slightly shifted A = A2 would 
minimize the resulting more accurate free energy. Similarly A3, A4, and 
so on, would give minima after restoring triplet, quadruplet, and so on, 
correction factors, but it must be the case that the free energy near these 
successive minima becomes a flatter and flatter function of A. This raises 
an interesting question, yet to be answered, for the general cell-cluster theory 
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of the liquid state: Under what conditions (if any) on the underlying lattice 
structure does the sequence of formal vacancy concentrations 

- N 4 2  - N 4 3  - N 
) . . .  (7.16) 

converge to a limit with respect to increasing order of included cell correla- 
tion? The existence of the limit would define precisely the “holes” in the 
liquid state. 

A1 ’ d2 ’ A3 

B. Weres-Rice Cell Theory 

For simple fluids and their mixtures, calculations falling under the general 
heading “cell theory” have had a long history.62 By contrast, analogous 
calculations for water are sparse, and a recent phenomenon. Weissmann and 
B l ~ m ~ ~  have reported single-molecule partition functions for cells in an 
expanded (but perfect) ice lattice, and have suggested that the results might 
be relevant to the liquid state. Nevertheless, the only concerted attack on 
liquid water using cell theory formalism, and including a realistic assessment 
of local molecular order, has been published by Weres and Rice.64 This 
section outlines their work. 

Weres and Rice have based their calculations on an approximate effective 
pair potential for water molecules that was proposed by Ben-Naim and 
Stillinger4’ (BNS). This BNS potential v utilizes a spherically symmetric 
short-range part vLJ ,  plus an angular portion designed to describe formation 
of linear hydrogen bonds at a small separation: 

v(xl, x2) = U L J ( R 1 2 )  + S(R12)vel(x17 x2) (7.17) 

The distance R, is measured between the oxygen nuclei. Each water mole- 
cule is regarded as a symmetric tetrad of point charges (two are +q, and 
the other two -q), as shown in Fig. 17. The positive charges represent 

Fig. 17 Molecular charge tetrahedra used in the BNS effective pair potential. The point 
charges + q  are symmetrically located 1 A from the oxygen nucleus. Only one of the 16 charge 
pair distances d ,  used in the potential has been shown explicitly. 
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partially shielded protons, and the negative charges simulate unshared pairs 
of electrons at the back side of the molecule. All four charges are precisely 
1 A from the oxygen nucleus. The electrostatic interactions of the 16 pairs of 
point charges, one in each molecule, make up uel:  

(7.18) 

Here a and p index charges (with odd indices belonging to negatives and 
even indices to positives), and the d,, are the appropriate distances. The 
tendency for tetrahedron vertices with opposite charge signs to align is the 
mechanism for describing successive linear hydrogen bonds at the tetra- 
hedral angle el.  This idea by itself is old, due originally to Bjerrum in his 
studies of ice,65 but the BNS application involved for the first time a modu- 
lation function S(R 2) which switches off the electrostatic interactions before 
the molecules become so close that a charge overlap catastrophe (da, = 0) 
can occur. Specifically, S is a cubic spline function: 

with singular points 

R L  = 2.0379 A 
R ,  = 3.1877A 

(7.19) 

(7.20) 

The original strength parameterization for the BNS potential required a 
rough simultaneous fit to both ice and water vapor properties. Subsequent 
detailed studies using molecular dynamics (see Section VIII) have indicated 
that a renormalization of the original function with multiplier 1.06 through- 
out materially improves its overall accuracy.66, " After this renormaliza- 
tion the charge q becomes 

q = 0.19562e = 0.93952 x lo-'' esu (7.21) 
while the Lennard-Jones short-range function 

requires 
o = 2.82 A 
E = 5.3106 x erg 

= 7.6472 x lo-' kcal/mole 

(7.22) 

(7.23) 
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With these values the minimum of the BNS potential is achieved with a 
linear hydrogen bond (R12 = 2.760 A) at energy - 6.887 kcal/mole. 

The Weres-Rice calculation has essentially been carried out with approxi- 
mation (7.15), that is, with neglect of all cell deviation correlation factors 
Y(”), n 2 2. The single-cell factors Z(l )  were distinguished by the occupation 
state of the octahedral grouping of 14 first- and second-neighbor sites only; 
the influence of molecules beyond the second-neighbor shell was taken into 
consideration by means of a dielectric cavity assumption. The cell-model 
calculation therefore breaks down into three major parts. The first requires 
classification of the states of the basic 15-site cluster and construction of an 
entropy expression for a general set of concentrations for these cluster species. 
The second part involves evaluation of the distinct Z(l ) ,  using the BNS 
interaction. Finally, the third task requires minimization of the free energy 
with respect to cluster species concentrations to obtain their equilibrium 
values. 

Just as Fleming and Gibbs had done for the lattice model, Weres and Rice 
varied the nearest-neighbor spacing linearly with temperature to maintain 
agreement with x-ray scattering  experiment^.^^ Specifically, the spacing 
varies from 2.82 A at 0°C to 2.88 A at 100°C. 

In accord with Stevenson’s spectroscopic evidence that the number of 
water molecules in the liquid with zero or one hydrogen bond must be 

all Z(’)  were required to involve two, three, or four hydrogen bonds 
to nearest neighbors. Even with this restraint there remained 374 distinct 
“neighbor environments” to be included in the calculations. 

A rather elaborate argument is provided in Ref. 64 for the relevant com- 
binatorial factor g, giving the number of ways the cells can be fitted together 
to form the system. We shall not reproduce that argument here, except to 
state the result which consists of six contributing factors: 

6 

g =  f l g j  (7.24) 

The first factor gives the number of ways to distribute N molecules over A 
sites : 

j =  1 

A! 
= N!(& - N ) !  (7.25) 

The second involves the number of hydrogen bonds present in the system, 
denoted by NP,, and gives the number of ways that they may be distributed 
over the 4Nn nearest-neighbor molecular pairs expected in a random arrange- 
ment of molecules (n = N/A):  

(4Nn)! 
g 2  = (NP,)! “(4n - Ph)] ! 

(7.26) 
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The next factor is present to account for the fact that a random distribution 
of hydrogen bonds frequently causes molecules to “have too few or too 
many hydrogen bonds or incorrect angles between the hydrogen bonds”;64 
specifically, 

(7.27) 

Since molecules have two, three, or four hydrogen bonds, with respective 
fractions P,, P,, and P,  (note that 2P, = 2P3 + 3P3 + 4P4), it is necessary 
to account for the multiplicity of ways that these bonding species may be 
assigned to the N occupied sites: 

N! 
g4 = (NP,)!(NP,)!(NP,)! 

(7.28) 

Taking into consideration the angularly acceptable arrangements of two, 
three, or four hydrogen bonds about a given central site (numbering 12, 8 ,  
and 2, respectively), it is also necessary to include the factor 

g5 = 12NPzgNP32NP4 (7.29) 

Finally, there is the analog, for the random hydrogen bond network, of 
Pauling’s degeneracy factor for ice,69 giving the number of ways that protons 
may be distributed along hydrogen bonds asymmetrically so as to leave 
molecules intact : 

N 

96 = (A) (7.30) 

Several approximations were used to evaluate the cell factors Z(’ ) .  We 
have already mentioned that neighbors beyond the second-neighbor shell 
were treated as a dielectric continuum. Most importantly, the cell potentials 

were replaced by a quadratic form (calculated using the BNS function) 
about the stable hydrogen-bonding configuration in such a way that transla- 
tional and librational motions were dynamically independent harmonic 
oscillators. Furthermore, the relevant potential-energy second derivatives 
were averaged over the two relative orientations permitted to hydrogen- 
bonded neighbors by the body-centered cubic lattice of sites. In this locally 
harmonic approximation, only that subset of the v (= 24) standard molecular 
orientations was considered that led to the maximum number of hydrogen 
bonds possible with the given arrangement of nearest neighbors. 

Neighbors in both the first and second coordination shells that do not 
hydrogen-bond to the central molecule were treated as linear perturbations 
(with magnitudes provided by the BNS potential) whose effects could be 
added, as appropriate, to the cell harmonic oscillator partition functions. 
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Because linear lattice expansion with temperature was used, the calculated 
potential-energy curvatures and harmonic oscillator frequencies had to be 
calculated separately at each temperature of interest. 

To compensate partially for neglect of the cell distortion correlation 
factors Y@),  Y ( 3 ) ,  and so on, Weres and Rice elected to include a “communal” 
entropy of vibrational origin. For the diamond lattice a complete phonon 
c a l c ~ l a t i o n ~ ~  yields 0.391 entropy units more than the comparable Einstein 
approximation for single-particle motion. To scale this result to a random 
network in which only a fraction Ph/2 of the maximum possible number of 
hydrogen bonds is present, 0.391(Ph/2) entropy units were added to the free 
energy of the independent cells. 

The translational and librational frequencies generated in this calculation 
were sufficiently high that Weres and Rice felt obliged to use quantum 
mechanical, rather than classical, partition functions for them. This was 
done in spite of the fact that the BNS interaction was originally devised 
within the regime of classical statistical mechanics alone.40 

When the librational frequencies were calculated for the cubic ice structure, 
they were found to be considerably higher than librational bands measured 
for ice Ih (the cubic form should be very similar in this respect). Weres and 
Rice thus concluded that the BNS interaction was too highly curved in the 
directions of libration about linear hydrogen bonds, and they suggested 
that this deficiency could be rectified in an ad hoc fashion simply by scaling 
the BNS librational curvatures downward with a factor 0.458. Conse- 
quently, two parallel sets of calculations were carried out, one set using the 
BNS interaction directly, and the other set using the “curvature-rescaled 
BNS” with lower librational frequencies. 

The effective pair potential is based on the vibrationally averaged com- 
ponent potentials V(”).  As (4.8) shows, the latter functions (and thus also the 
former by implication) include effects arising from shifts in vibrational 
frequencies due to bonding. However, Weres and Rice felt that, because the 
BNS effective pair potential was originally derived on a purely classical 
basis, its use for their quantized cell oscillators should be accompanied 
by a compensating inclusion of extra binding energy due to intramolecular 
vibration frequency shifts. Using measured vapor- and liquid-phase fre- 
quencies, they calculated an extra 0.900 kcal/mole binding energy for the 
liquid at its melting point, to be added into the final cell approximation 
results. At the boiling point 0.694 kcal/mole is the corresponding value. 

Minimization of the cell model free energy was carried out by a gradient 
descent technique in the multidimensional space of species fractions for the 
various permitted cell neighbor types. A constraint was applied to this 
minimization, to the effect that the various cell species concentrations should 
display a ratio of 4:3 for the average number of first to second neighbors. 
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This is the same as the ratio of numbers of sites in the first and second 
coordination shells (eight and six, respectively). Unfortunately, this con- 
straint seems to inhibit the proper distribution of vacant sites throughout 
the system. In particular, this ratio is not applicable for the first and second 
neighbors in the ice Ic structure. 

Over the normal liquid range 0 to lOO"C, the computed Gibbs free energy, 
and its component enthalpy and entropy, showed the proper temperature 
trends and roughly the correct magnitudes. Use of the librationally rescaled 
BNS interaction tended to reduce the error in comparison with experiment 
by a factor of 2 at all temperatures. Table 111, from Ref. 64, shows the various 
contributions to the enthalpy and entropy at 0°C and lOO"C, and compares 
their totals to the respective experimental magnitudes. In this table the 
standard state for enthalpy is infinitely dilute vapor at absolute zero, while 
for entropy it is that of ice at absolute zero with frozen-in Pauling disorder 
N k ,  In 3 and with nuclear spins disregarded. 

Since empty cells were not explicitly considered in this calculation, the 
liquid density was assumed to be the same as the average density over the 

TABLE 111 

Thermodynamic Properties Calculated by Weres and Rice for 
Liquid water, using the Uncorrelated-Distortion cell approximation." 

Property 0°C 100°C 

Enthalpy (kcal/mole) 
Lattice (@O') 
Translational 
Librational 
Nonbonded neighbors 
Long-range (diel. approximation) 
Intramolecular zero point 

Total 
Experimental total 

Entropy (entropy units) 
Configurational 
Orientational 
Translational 
Librational 
Nonbonded neighbors 
Vibrational 

Total 
Experimental total 

- 8.296 
1.729 
2.517 

- 1.325 
- 1.190 
- 0.900 
- 7.465 
-8.594 

4.48 
1.70 
7.12 
2.00 

- 1.17 
0.26 

14.39 
15.17 

- 8.088 
2.290 
2.858 

- 1.271 

- 0.694 

- 6.791 

-1.166 

-6.071 

4.48 
1.69 
9.28 
3.44 

-0.95 
0.26 

18.20 
20.79 

The librationally rescaled BNS interaction was employed. (This 
tabulation was copied from Ref. 64, Table 11.) 
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first and second coordination shells. On a per-site basis, this density remains 
nearly constant throughout the temperature range of the liquid, with a 
value of 0.587. Taking into account the lattice expansion, this leads to mass 
densities which agree with observation to 1 % or better. The greatest error 
occurs at the lowest temperature, and the cell calculation has a monotoni- 
cally decreasing density with temperature with no hint of a density maximum. 

The average number of hydrogen bonds per molecule remains equal to 
about 1.35 from 0 to 100°C, and the mean number of nearest neighbors 
remains 4.7. The latter result is consistent with x-ray scattering measure- 
m e n t ~ . ~ ~  The respective fractions of doubly, triply, and quadruply hydrogen- 
bonded molecules stay constant at 0.46, 0.38, and 0.16, respectively. Each of 
these results concerning local structure in the liquid refers specifically to the 
rescaled BNS interaction. Taken together they imply that very little structural 
reorganization (beyond lattice expansion) takes place in the liquid between 
0 and 100°C. However, this conclusion might perhaps be regarded with some 
suspicion, since the structurally sensitive heat capacity C,  comes out of the 
calculations too low (12 cal/mole deg at 0°C instead of the 18 cal/mole deg 
measured). 

Weres and Rice utilized their rescaled BNS cluster concentrations as 
input for a calculation of the amorphous-medium translational frequency 
spectrum, according to a method developed by  were^.^' Strictly speaking, 
this goes beyond the scope of cell theory itself, but does test the predicted 
medium structure. At 10°C the frequency spectrum (i.e., the mode density) 
has two prominent peaks, at 70 cm-' and at 190 cm-', which compare well 
with the broad bands observed in Raman, infrared, and neutron spectro- 
 copy^^ at 60 cm-' and at 170 cm-l. 

This cell-model calculation was carried out with a large number of ap- 
proximations, some of which have uncertain numerical effects. However, 
the general approach followed seems sound, and at the very least has estab- 
lished that cell-model calculations for water are both feasible and capable of 
producing nontrivial and interesting results. It would be valuable for the 
developing field of water theory to exploit cell theory further, using a syste- 
matic series of modifications building on the Weres-Rice work. Some 
possibilities are: 

1. The BNS interaction has been superceded by a more accurate effective 
pair potential (denoted by ST2; see Section VIII). This revised potential has a 
considerably lower curvature for vibrational motions, and should reduce or 
eliminate the need for a rescaling operation. 

2. The constraint of equal occupation probabilities for first and second 
coordination shell sites should be removed. 

3. A more accurate combinatorial factor g should be sought, perhaps 
along the lines established by Guggenheim and McGlashan.60 
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4. The equilibrium density should be determined by minimizing free 
energy with respect to vacancy concentration, rather than by identifying it 
with the average density over first and second coordination shells. This 
would be particularly important if the cell model were extended to describe 
the critical-point region of water, at which local density fluctuations become 
especially important. Considering the lattice-model results (Section VI), it 
would not be very surprising if the cell model then produced a liquid-phase 
density maximum. 

5. Since the most frequent number of hydrogen bonds involving the cell 
molecule turned out to be two, it seems reasonable to expect that singly 
bonded configurations, and perhaps even unbonded ones, ought to have been 
permitted at the outset. If Stevenson’s68 ideas are correct, that these species 
have a low concentration in the liquid, an accurate cell-model calculation 
should lead to the same conclusion automatically. 

6 .  The assumption of harmonic (and independent) translational and 
librational motions should be relaxed. Perhaps the requisite cell integrals 
could be calculated accurately by purely numerical means in the classical 
limit, and then quantum corrections (as a power series in Planck’s constant) 
explicitly appended. 

7. At least a few cell distortion correlation factors Y ( 2 )  and Y ( 3 )  could be 
evaluated classically by the Monte Carlo technique7 to estimate their 
importance in the full cell cluster development (7.1). 

recently used the configurational results of the Weres- 
Rice cell theory as a starting point for calculation of the intramolecular fre- 
quency spectrum in liquid water. Although they were required to introduce 
partially untested force-field assumptions, the results seem to account 
qualitatively for the observed spectra. It will ultimately be rewarding to see 
if the suggested improvements in the underlying cell theory create major 
changes in the predicted intramolecular spectra. 

Denley and 

VIII. MOLECULAR DYNAMICS SIMULATION 

A. Techniques of Computer Simulation 

The lattice theory, and the cell theory at the dynamically uncorrelated 
level, have an attractive appeal due to the simple configurational descrip- 
tions of local molecular order that they introduce. If they could be followed 
through to exact solutions, they would provide compelling and remarkably 
vivid guides to intuition, thus largely satisfying the human urge to “under- 
stand” water. 

Unfortunately, it is not possible to solve exactly lattice or cell theories, of 
the type we have encountered, in three dimensions. The results that have been 
obtained rest on simplifying statistical mechanical approximations, and 
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thus inevitably convey uncertainty. This situation also applies to any other 
analytical approach to understanding liquid water, such as the integral 
equation method for predicting molecular distribution  function^.^ 

It is therefore fortunate that the complementary technique of direct com- 
puter simulation affords a viable and fertile alternative. This is not to imply 
that computer simulation methods are free of difficulty, for they are restricted 
to relatively small aggregates of molecules ( N  in the range 10’ to lo3), and 
to classical statistical mechanics at present. However, it is a general rule that 
the precision and the range of detail available in results of computer simu- 
lation for liquids far exceed those of other theoretical methods. 

Two distinct simulation techniques have been developed, initially to 
describe simple liquids. Historically, the Monte Carlo method appeared 
first.76 Given the appropriate intermolecular potential, it is designed to 
generate a large number of system configurations, distributed canonically 
according to preset values for the temperature and density. The collection of 
configurations then provides the basis over which arbitrary static properties 
(energy, virial, fluctuation quantities like C, and I C ~ ,  etc.) can be computed 
as suitable averages. Although some Monte Carlo work relevant to liquid 
water has been p ~ b l i s h e d , ~ ~ , ~ ~ , ~ ~  its sum total at present is not very extensive, 
and therefore is not representative of the inherent capacity of the method to 
characterize the liquid in depth and detail. Consequently, we concentrate 
attention instead on the other simulation option. 

The molecular dynamics method relies on a powerful digital computer to 
solve the classical equations of motion for the molecular aggregate, subject 
to suitable initial and boundary conditions. The temporal evolution of the 
molecular system is recorded in the course of solving these equations and, 
unlike the Monte Carlo method, this technique permits the calculation of 
kinetic properties, such as the self-diffusion constant, rotational relaxation, 
neutron inelastic scattering, and so on. A single molecular dynamics “run” 
is representative of a microcanonical ensemble, since total energy is a con- 
stant of the motion. But since the canonical (Monte Carlo) and micro- 
canonical (molecular dynamics) equilibrium ensembles are equivalent in the 
large-system limit, barring first-order phase transitions, both are equally 
valid sources of structural and thermodynamical information. It is in its 
capacity to describe molecular motions and irreversible phenomena that the 
molecular dynamics approach enjoys a major advantage over the Monte 
Carlo approach. 

The first use of molecular dynamics, by Alder and Wain~right,~’ involved 
spherical structureless particles. In this case the dynamical evolution is 
prescribed by the Newton equations for each of the N particles with mass m 
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which link acceleration aj to the total vector force Fj on each particle j due 
to all others. In the case of water, the simplest realistic version of molecular 
dynamics treats each molecule as a rigid asymmetric rotor capable of simul- 
taneous translation and rotation. As a result, it is necessary to supplement 
(8.1) for the center-of-mass motion by Euler equations" for the angular 
velocities w j  in terms of the torques Nj: 

Zlhjx - w ~ , , w ~ ~ ( Z ~  - Z3) = N .  J* 

12hjy - ~ j , ~ j , ( Z g  - Zl) = N j ,  (8.2) 

Here the Cartesian coordinates are affixed to molecule j ,  diagonalizing the 
inertial moment tensor Z so that I,, = I,, and so on. 

Normally, molecular dynamics calculations are carried out with periodic 
boundary conditions, the unit cell having dimensions fixed by the density of 
interest. The resulting absence of real boundaries produces an optimal 
situation for observing bulk water properties. However, this choice need 
not be the case and, in fact, deliberate insertion of "walls" or of crystal 
surfaces whose forces and torques appear in the dynamical equations (8.1) 
and (8.2) would be the means for studying interfacial water. 

Temperature is implicitly determined by the amount of total energy given 
to the system as initial momentum and position data. In the long run the 
translational and rotational kinetic energies are equipartitioned between 
molecules, with the well-known mean values 

Z 3 h j z  - w ~ ~ w ~ ~ ( I ~  - I,) = N .  J =  

('mv.2) 2 J  = ('0 2 j  . I .  J * w.) .I = $k,T (8.3) 

Molecular dynamics calculations must perforce span a limited time interval. 
The statistics of fluctuations separately for the translational and rotational 
terms in (8.3) offers one means of monitoring the quasi-ergodicity of the 
calculation. 

In application to liquid argon, accurate and stable numerical integration 
of the equations of motion is possible using discrete time increments of 10- l4 
sec." This interval is related to the magnitude of the molecular accelerations 
present in the liquid, and a longer time increment could be used to good practi- 
cal advantage if the argon atoms interacted more weakly. The situation is 
quite the opposite in water, however, for the hydrogen-bonding interactions 
are very strong and highly directional. In conjunction with the small inertial 
moments possessed by water molecules, this characteristic requires that time 
increments in the neighborhood of sec be used,66 making the simula- 
tion of water a significantly more arduous task than that of argon. For a 
modest number of rigid water molecules, the time-dilation factor for a power- 
ful digital computer between the absolute time interval for the molecules 
on the one hand, and the much slower running time on the computer on the 
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other hand, would be about To carry the water sample forward in 
time by 1 sec would require 3 x 10' years. Fortunately, most kinetic pheno- 
mena of interest in liquid water fall into the picosecond range or shorter, 
making them fully accessible to the molecular dynamics technique. 

Both the Monte Carlo and molecular dynamics simulation methods have 
frequently been called computer experiments. It is difficult to know if this 
phrase is offered as a profoundly edifying classification, or as a value judg- 
ment. In either event it fails to illuminate. The basic distinction between 
experiment and theory is that the former manipulates and observes real 
matter in the laboratory, while the latter constructs algorithms and theorems 
which may be esthetically pleasing in themselves but which encode numerical 
operations with varying efficiencies. An exact closed-form solution for the 
three-dimensional king model partition function, for example, would be a 
remarkable achievement for a variety of reasons, not the least of which 
would be the rule it gives for high-precision numerical tabulation of the 
thermodynamical properties for the model at all temperatures. Looked at 
in this light, it is obvious that the Monte Carlo and molecular dynamics 
algorithms ought more properly to be classified as computer theory rather 
than computer experiment. 

Only selected portions of the published molecular dynamics work can be 
covered in this review. The reader may wish to check the cited articles for more 
detail. 

B. ST2 Interaction 

The initial studies of liquid water via molecular  dynamic^^^,^^ used the 
BNS effective pair potential defined earilier in (7.17) to (7.23). This potential 
assigns specific positions to the oxygen and hydrogen nuclei (bond length 1 8, 
and bond angle 0J, so the inertial moments I , ,  I,, and I ,  are determined 
completely by the atomic masses. The results of those initial molecular 
dynamics calculations were very encouraging, but suggested that the BNS 
potential was too tetrahedral, that is, its hydrogen bonds were too direc- 
tional. This presumption was supported by the Weres and Rice o b ~ e r v a t i o n ~ ~  
that librational frequencies were much too high for the BNS potential. 

Consequently, a "second-generation " effective pair potential was devised8' 
to mitigate the difficulty. The new interaction is called ST2, and represents 
a conservative modification of its predecessor. It has the same generic form 
as before : 

4 x 1 ,  XJ = u L J ( R 1 2 )  + '('l,)ueLxl, xz) (7.17) 

with a short-range Lennard-Jones 12-6 part uLJ and a modulated electro- 
static portion Soel again based on charge tetrads in each molecule. The pri- 
mary geometric change involved in BNS -+ ST2 is that the two negative 
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point charge ( -  g in Fig. 17) have been drawn inward from 1 to 0.8 A, 
measured along the tetrahedral rays from the oxygen nucleus. The charge 
tetrahedra thus have lower symmetry than before (the OH bond lengths are 
still 1 A,  and the angles about the 0 are still OJ, but remain consistent with 
the molecular C,, symmetry. 

Changes in the parameters of course were required. For ST2 the Lennard- 
Jones parameters are 

[T = 3.10 A 
E = 5.2605 x lo-'' erg 

= 7.5750 x lo-, kcal/mole 

while the point charges to be used in (7.18) for ue1 are 

q = 0.2357e = 1.13194 x lO-''esu (8.5) 

The modulation function S has the same cubic spline form (7.19) as before, 
but now the singular points are 

R, = 2.0160A 
R, = 3.1287A 

The absolute minimum of the ST2 potential is achieved in a mirror-sym- 
metric configuration for the dimer as illustrated in Fig. 4. The displacement 
angle c( of the donating OH (see Fig. 4) is only 1.1", so the hydrogen bond is 
virtually linear. The separation R,,  of the oxygens is 2.852 A, and at this 
minimum u(ST2) is -6.839 kcal/mole. 

It is interesting to trace out the constrained minimum for the ST2 potential 
for fixed oxygen-oxygen separation R,, . When this distance exceeds 4.964 8, 
= R,, the molecular symmetry axes are rigorously collinear (the molecular 
planes are perpendicular as in Fig. 4 for all R12). This collinearity reflects 
the predominant influence of dipoleedipole interactions at these large 
separations. However, the interactions of higher multipoles succeed in 
producing an instability at R,, wherein mutual twisting of the molecules at 
smaller R,, leads to configurations more in accord with linear hydrogen 
bonding. At R, the dimer can go in either of two ways toward a linear hydro- 
gen bond, depending on which OH bond of the donor molecule begins to 
rotate toward the acceptor oxygen. Thus R, is a critical point at which a 
spontaneous symmetry breaking arises. This point for the constrained 
energy surface is analogous to the critical point of the free-energy surface 
(versus magnetization) for a field-free Ising model. In the latter example the 
spontaneous magnetization also represents a broken symmetry. With respect 
to water potentials, the existence of a critical separation R, is not unique with 



THEORY AND MOLECULAR MODELS FOR WATER 75 

the ST2 interaction ; the BNS interaction has qualitatively the same behavior, 
and so too should the exact water potentials V(2)(X,, XJ, V(2)(x1, x,), and 

C. Nuclear Pair Correlation Functions 

Many of the important characteristics of short-range molecular order in 
liquids are conveniently portrayed in the nuclear pair correlation functions. 
For water there are three, goo(v), goH(r), and gHH(r). They give the probability, 
relative to random expectation, of the occurrence of distance Y as a separation 
between pairs of nuclei of the subscripted species. The conventional normal- 
ization requires (p, v = 0 or H) 

V(X1, x2). 

lim g,J r )  = 1 (8.7) 
r + m  

in the infinite system limit. These correlation functions obviously represent 
integral contractions of the pair distribution function p(2)  introduced earlier; 
for example, 

(8.8) 
3 2 2 - 1  

gOO(r)  = (3271 p Y 1 J dx2 w,, - r ) ~ ( ~ ' ( x , ,  ~ 2 )  

where R , ,  is the distance between oxygens. 
Figure 8 shows the gOO(r) determined by molecular dynamics for a sample 

of simulated waters2 (using the ST2 potential) at 10°C and mass density 
1 g/cm. The calculation involved N = 216 molecules confined to a cube 
with edge length 18.62 A, to which periodic boundary conditions applied. For 
comparison, Fig. 18 also shows a gOO(r) result inferred by Nartens3 from 
x-ray diffraction intensities for water at 4°C (the small temperature dif- 
ference is negligible for present purposes). The dynamical simulation spanned 
8.1 psec, and for convenience was carried out with neglect of molecular 
interactions for pairs of molecules having their oxygens more than 8.46 8, 
apart. 

The main features of the two curves agree well. The positions at which the 
prominant first peak occurs differ by no more than 0.01 A, and the broad 
successive maxima exhibit nearly equal positions as well. The experimental 
curves usually show some short-wavelength ripples, and that in Fig. 18 is no 
exception. If it is justifiable to consider those ripples artifacts of the ex- 
perimental data processing, the agreement of the molecular dynamics 
curve with experiment at the first minimum of gOO(r)  (near 3.5 A) may be 
somewhat better than Fig. 18 seems to indicate. 

The most important structural theme carried by these goo(r) curves is the 
persistence of tetrahedral icelike order into the liquid phase. Although the 
second maxima around 4.5 8, are broad, they occur at about the correct 
multiple (1.633) of the first peak distance to represent second neighbors 
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Fig. 18 Comparison of oxygen nucleus pair correlation functions for liquid water. The mo- 
lecular dynamics result” was based on 216 molecules at mass density 1 g/cm3 interacting 
through the ST2 effective pair potential. The x-ray diffraction result is due to Narten.83 

connected along a path of two hydrogen bonds at an angle which on the 
average is 8,. In ice Ih or Ic, the second neighbors of course produce a narrow 
peak; the breadth manifested in the liquid phase indicates frequent and 
considerable strain. 

The molecular dynamics first-neighbor peak is higher and narrower than 
its experimental counterpart. For the ST2 model the molecular dynamics 
curve in Fig. 18 is an accurate determination. The experimental curve for real 
water is probably a less precise determination, considering the interpretive 
ambiguities one is forced to accept in analyzing the experimental data. 
Even so, the shape distinction between the respective first peaks is almost 
certainly real. It probably arises from failure of the molecular dynamics 
calculations to account for quantum corrections, which tends to delocalize 
particles somewhat. The same effect on the broader successive goo maxima 
is less obvious, and this seems to be the case. 
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The average number of neighbors computed for the molecular dynamics 
goo out to its first minimum is 5.5. The corresponding number for the ex- 
perimental curve is 5.3, nearly the same. (Note that the average coordination 
number 4.4 reported by Narten, Danford, and Levys8 was based on a 
different definition of “first neighbor.”) 

ST2 molecular dynamics runs at temperatures both above and below 
10°C have also been carried out.” The trend observed for goo agrees with 
that found by x-ray diffra~tion,’~ namely, that the amplitude of oscillation 
of this function about unity diminishes with increasing temperature, while 
the average coordination number increases somewhat. At least on the basis 
of goo evidence, one can conclude that the molecular dynamics approach 
with the ST2 potential gives a moderately good structural representation 
of real liquid water. 

Some of the characteristic macroscopic anomalies exhibited by water are 
also qualitatively obtained in the ST2 simulation.’* It has been found that the 
liquid density (at the vapour-liquid coexistence line) passes through a 
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Fig. 19 Nuclear pair correlation functions goH and gHH for ST2 water model at l O T ,  1 g/cm3. 
The intramolecular pairs are not included. The main contributing structures for the prominent 
peaks are shown. 
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maximum at 27”C, at which the mass density reaches 1.0047 g/cm3. Further- 
more, the isothermal compressibility passes through a shallow minimum at 
about 20°C. No doubt these phenomena are related to the remanent tetra- 
hedral order observed in goo, which slowly disappears as the temperature 
rises. 

In principle it should be possible to combine results from x-ray and neutron 
diffraction experiments (the latter using distinct isotopically substituted 
waters) to determine all three functions goo, goH, and g H H .  But in practice this 
demanding project has not been yet attempted. The molecular dynamics 
simulations have preceded experiments by calculating goH and gHH separately 
and (for the model) precisely. Figure 19 shows these functions determined 
by the 10°C, 1 g/cm3 run on which the goo curve in Fig. 18 was based. The 
prominent peak in both functions at a small distance can be identified as 
shown in terms of hydrogen bonding between neighbors. As expected, these 
features diminish in distinctiveness as the temperature rises. 

By invoking a plausible assumption about the nature of local order in 
water, Narten produced tentative goH and gHH functions from available x-ray 
and neutron diffraction data.84 Their shapes are qualitatively similar to those 
shown in Fig. 19, with the same prominent peaks. These peaks are sub- 
stantially broader than the molecular dynamics versions, perhaps in part 
because of quantum fluctuations present in the real water. 

D. Hydrogen Bond Patterns 

The existence of a hydrogen bond between two molecules is not funda- 
mentally a yes-or-no proposition. Analogous to the case for conventional 
covalent chemical bonds, the hydrogen bond phenomenon is connected with 
continuous spatial variation in interaction energies, and does not dis- 
continuously “click on” at an unique distance. However, this observation 
should in no way be interpreted as minimizing the importance for chemistry 
of the hydrogen bond concept, since this concept conveys specific quanti- 
tative information about potential surfaces and serves to motivate extremely 
important correlations of diverse experimental data.8 

In connection with computer simulation of water, one is obliged to estab- 
lish a convention for hydrogen bonds, which can be applied to an arbitrary 
given configuration of N molecules, that states what pattern of hydrogen 
bonds exists. In particular, the application of this criterion to ice should 
automatically have each water molecule hydrogen-bonded to all its four 
nearest neighbors and to no other molecules. Although such a criterion 
necessarily must involve some element of arbitrariness, it can serve to legiti- 
mize an important class of questions about the topological patterns of 
hydrogen bonds existing in liquid water and aqueous solutions. 

Since the primary attribute of hydrogen bonding is the energy of stabiliza- 
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tion involved, it is convenient to base the hydrogen bond convention on 
potential energy alone. For models using an effective pair potential u, 
one decides whether a pair i, and j of molecules is bonded or not depending 
on how u( i , j )  compares with a preassigned negative cutoff energy VHB: 

v(xi, xj) 5 VHB i a n d j  hydrogen-bonded 

> VHB i and j not hydrogen-bonded (8.9) 

The element of arbitariness of course is the magnitude of VHB, but once it is 
assigned the criterion is mathematically unambiguous. A study of the ST2 
potential shows that, if V H B  lies between -1.7 and -4.5 kcal/mole, the 
conventional hydrogen bond pattern in ice will be reproduced.86 

Having selected V,,, it is possible to classify molecules according to the 
number of hydrogen bonds in which they simultaneously participate. 
Relative concentrations of nonbonded, single-bonded, double-bonded, 
and so on, water molecules have been calculated both for BNS67 and ST287 
water simulations for a wide variety of VHB choices. For all temperatures and 
densities investigated to date, the distributions obtained for the liquid have 
a single maximum. Consequently, one can rule out of serious consideration 
earlier  suggestion^^^-^^ that liquid water consists of a fully bonded framework 
heavily invaded by unbonded interstitials for, if that were true, a bimodal 
distribution would arise for some VHB choice. The two maxima of this required 
bimodal distribution would occur at zero hydrogen bonds (interstitials) and 
at four hydrogen bonds (framework molecules), with virtually no molecules 
with one, two, or three hydrogen bonds. Evidently, a more accurate descrip- 
tion of liquid water would be “defective, strained, random network,” to be 
consistent with the observed hydrogen bond distributions. 

Fixing the concentrations of molecules with different numbers of hydrogen 
bonds still leaves a wide range of possible topological connections between 
these bonds. Further specification of the network topology can be achieved 
by examining the polygons formed by the hydrogen bonds. If it were true, 
for example, that the liquid networks were equivalent to ice Ih or Ic in which 
a certain fraction of the nearest-neighbor bonds had been randomly broken, 
the remaining polygons would have 6, 8, 10, 12, and so on, sides, but no 
polygons with odd numbers of sides could occur. 

Table IV shows polygon counts carried out by computer on the 10°C, 
1 g/cm3 sample of water simulated with the ST2 potential.s6 Four alternate 
values of VHB were employed to illustrate dependence on this arbitrary 
parameter, from a rather permissive value (-2.121 kcal/mole) to a very 
stringent value ( - 4.848 kcal/mole). Only “non-short-circuited polygons” 
are included ; these are primitive polygons having no hydrogen bond cross- 
links tending to split them into smaller polygons. For practical reasons it 
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TABLE IV 

Parameters Characterizing the hydrogen bond patterns in Liquid Water at 
10°C and Mass Density 1 g/cm3." 

Parameter I I1 111 I V  

-2.121 
3.88 
0 
0.0026 
0.05952 
0.1564 
0.3459 
0.3548 
0.3320 
0.27 15 
0.1971 
0.1118 
0.07573 

- 3.030 
3.14 
0.0033 1 
0.029 
0.002976 
0.04663 
0.1362 
0.1306 
0.1280 
0.1045 
0.09854 
0.09292 
0.08664 

-3.939 - 

2.26 
0.0410 
0.180 
0 
0.007606 
0.03406 
0.02447 
0.01687 
0.01224 
0.01224 
0.01422 
0.005952 

4.848 
1.18 
0.249 
0.415 
0 
0 
0.001 323 
0.00066 14 
0 
0 
0 
0 
0 

"The mean number of hydrogen bonds terminating at a molecule is ( b ) ;  
no is the fraction of unbonded molecules, and n ,  is the fraction with precisely one 
bond; C j  stands for the number of non-short-circuited polygons per molecule of 
the liquid with j sides. (Results from Ref. 86, Table 11.) 

was necessary to terminate the search-and-count routine after 11-bond 
polygons. 

The entries in Table IV show no preference for either even or odd numbers 
of sides. Furthermore, by extrapolating the results shown, it is clear that 
polygons with more than 11 sides exist in nonnegligible concentrations, 
except when a very strict definition of hydrogen bonds (low VHB) is applied. 
These observations are inconsistent with published  opinion^^^-^^ to the 
effect that liquid water consists of unconnected, bulky, icelike clusters 
suspended in a medium of unbonded water molecules. Instead, further 
support seems to be given to the random, space-filIing, hydrogen bond 
network view, without any large-scale inhomogeneities, that was first 
developed for the molecular dynamics simulations by examining stereo- 
scopic photographs of molecular  position^.^^,^' 

When aqueous solutions are eventually studied by computer simulation, 
it will be interesting to see what characteristic hydrogen bond structures 
tend to form around chemically different types of solutes, in comparison with 
those in pure bulk water. Particular importance attaches to those nonpolar 
functional groups that engage in hydrophobic bonding.'j 

Up to  the present only time-average properties have been calculated 
for the hydrogen bond network present in liquid water. However, there 
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are analogous kinetic properties that could also be probed with the available 
simulation apparatus, whose understanding would unquestionably enrich 
our comprehension of the molecular nature of water. Using the same 
definition of hydrogen bonds as before in terms of a preassigned cutoff 
energy VHB, we mention three distinct lifetime queries: 

1. Identify the molecular pairs bonded at time t = 0. Define P l ( t )  to be 
the average fraction of pairs that remain bonded without interruption over 
the entire interval from 0 to t .  

2. In terms of the same set oft = 0 pairs, let P2( t )  be those that are bonded 
at later time t ,  irrespective of intervening interruptions. 

3.  Denote the total number of hydrogen bonds present in the system at 
time t by Nb(t),  and set 

(8.10) 

PI, P ,  , and P 3  are each equal to unity at t = 0, and in the infinite system 
limit they all approach zero as t increases. Their long time behaviors ought 
to be roughly exponential with characteristic decay times zl, z2,  and z3. Naive 
considerations lead one to expect 

z1 < z2 < 73 (8.11) 

which could be checked for the molecular dynamics simulations. 
The ability to pose and answer quantitative questions of the sort mentioned 

here illustrates the dramatic power of the simulation methods. No experi- 
mental techniques are known, or are ever likely to be developed, to determine 
the topological properties of the hydrogen bond network in liquid water 
and its solutions. Thus computer simulation has the dual tasks of reproducing 
experimental results as well as complementing them. 

E. Effect of Pressure 

The crystallographic structures of the ice polymorphs7 demonstrate that 
in the solid phases the response to increasing pressure involves the use of 
more and more efficient packing with little change in length of hydrogen 
bonds. In some of the ices, packings denser than ice Ih and Ic are achieved by 
deformation of angles between successive hydrogen bonds from the ideal 
O , ,  so as to move second- and higher-order neighbors of any given molecule 
inward. But interpenetration of networks also accomplishes the same end 
and, as we have previously noted, the interpenetration of two equivalent 
ice Ic networks appears in the very-high-pressure ices VII and VIII, with 
the effect of doubling density and number of nearest neighbors (from four 
to eight). 
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One would expect similar considerations to apply in the liquid state. 
Although experiments to determine structure in very highly compressed 
liquid water, such as x-ray and neutron diffraction, are probably impractical 
to execute, molecular dynamics or Monte Carlo simulations are no more 
difficult to perform with extremes of temperature and pressure than under 
ordinary conditions. 

Figure 20 shows an oxygen-oxygen pair correlation function gOO(r! 
computed for 97°C and mass density 1.346 g/cm3. This is the liquid density 
that exists at the experimental triple point (81.6"C, 22.0 kbars) for liquid, 
ice VI, and ice VII. Once again the ST2 interaction was employed for the 
molecular dynamics simulation. 
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O 1 2 3 4 5 6 7 

r (i, 
Fig. 20 Oxygen-oxygen pair correlation function for 97"C, 1.346 g/cm3, based on the ST2 
molecular dynamics simulation, The horizontal arrow shows how far the minimum displaces 
outward as a result of isothermal compression from 1 g/cm3. 

The first maximum of gOO(r) occurs at 2.81 A, only slightly less than its 
position at 1 g/cm3, namely, 2.86 A. However, the subsequent minimum 
shifts outward to 4.00 A, from the 1-g/cm3 distance 3.68 I$, as shown ex- 
plicitly in Fig. 20. The mean number of neighbors out to the 4.00-A minimum 
is 11.8. In order to make a fair comparison with the low-density number 
(5.8 neighbors at 97"C), the distance 3.68 A should instead be used as the 
upper cutoff, and in this event the high-compression structure possesses 
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10.0 neighbors. From any point of view, the packing of molecules has been 
dramatically altered by compressing the liquid from 1 to 1.346 g/cm3. 

The four tetrahedrally disposed directions pointing from the oxygen 
nucleus to point charges + q  in definition of the ST2 potential bear an 
intimate geometric relation to the regular octahedron. In particular, by 
placing the oxygen at the center of the octahedron, the four tetrahedral 
directions may be oriented so as simultaneously to pierce the centers of four 
of the eight triangular faces which share vertices but not edges. This relation- 
ship is shown in Fig. 21. 

The four pierced octahedron faces in Fig. 21 are faces through which 
first-neighbor oxygens in an unstrained hydrogen bond network would be 
seen from the position of the central oxygen, as in the ice crystal. The solid 
angles described by the unpierced triangular faces would be devoid of first 
neighbors. The octahedron thus provides a useful way to resolve gOO(r) 
into angular components: 

qoo(r) = SrvW + S V ( 4  (8.12) 

where the established convention67 denotes pierced and unpierced faces by 
subscripts IV and V, respectively. The extent to which ice rules on first 
neighbors are violated in the liquid indicates either angular strains in the 
local network structure, or interstitial molecules (due possibly to network 
interpenetration). 

Fig. 21 Tetrahedral directions piercing centers of alternate octahedron faces. 
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In the low-pressure case (1 g/cm3), most of the nearest neighbors are known 
to occur in grv.67 But when glV and gv are evaluated for high-compression 
molecular dynamics runs (1.346 g/cm3), nearly equal numbers of nearest 
neighbors appear in grv and gv, undoubtedly indicating substantial network 
penetration. 

The interpenetrating cubic ice networks forming ice VII place four nearest 
neighbors in each of glV and gv, not enough to make up the observed 10 to 12 
in the compressed liquid simulation. Furthermore, the neighbor distance7 
in ice VII is 2.86 A, significantly larger than the 2.81 A found in the simulation 
for the liquid. Finally, the second maximum of goo in Fig. 20 is too far out 
compared to the first maximum to be consistent with successive hydrogen 
bonds at an average angle 8,. Evidently, it cannot be valid to view the highly 
compressed liquid as dominated by ice VII structures. 

Similar considerations seem to rule out ice VI as a major contributor to the 
liquid structure. In particular, a well resolved second-neighbor peak7 would 
have to appear around 3.51 A;  clearly, it does not in Fig. 20. 

The situation concerning the highly compressed liquid is similar to the 
liquid at atmospheric pressure. A much more diverse set of local structures 
is represented than can reasonably be generated by slight deformations of 
the crystal forms present at the respective pressures. 

F. Molecular Motions 

One aspect of molecular motion in liquids is revealed by the magnitude 
of the self-diffusion constant D. In an infinite system D may be written in the 
alternative forms 

= jsOy(Vj(O) Vj(t)) dt (8.13) 

in terms of equilibrium ensemble averages. The former involves the mean- 
square displacement ARj of the center of molecule J over time t, while the 
second utilizes the velocity vj of this molecule’s center. For molecules that 
do not dissociate, it does not matter what fixed point is used as the center. 

Neither infinite systems nor infinite periods are available in simulations 
by molecular dynamics. Nevertheless, (8.13) is still useful. In the first case 
( CARj]’) versus t tends to approach a limiting slope quite rapidly, and this 
slope can be identified with 60. In the second case the velocity autocorrelation 
function decays towards zero sufficiently quickly that the time integral may 
normally be cut off at an upper limit considerably shorter than the dynamical 
run interval. 
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Figure 22 exhibits a normalized velocity autocorrelation function for 
center-of-mass motion : 

3k,  T 
m (Vj') = ~ 

(8.14) 
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It was calculated for the ST2 simulation of a 10°C, 1-g/cm3 liquid. The inset 
shows the power spectrum : 

f ( o )  = Jomp(t) cos (ot) dt (8.15) 

Evidently, p(t) is essentially zero for times larger than a picosecond, whereas 
the dynamical run from which Fig. 22 was prepared lasted more than 8 psec. 

The marked oscillatory nature of ~ ( t )  arises from the strong hydrogen 
bonding present in the liquid. A typical molecule tends to vibrate back and 
forth several times in the force field of its neighbors before it breaks free or 
theneighbors shift positions to modify the force field. Velocity autocorrelation 
functions computed by molecular dynamics for liquid argon" approach 
zero from below as does the water case, but without the distinctive oscilla- 
tions. 

The two broad maxima inf(o) are centered at 44 and 215 cm- '. These can 
probably be identified with broad bands observed e~pe r imen ta l ly~~  by 
infrared, Raman, and inelastic neutron-scattering spectroscopy to occur at 
about 60 cm-', and in the region 150 to 200 cm-'. 

As might have been expected, raising the temperature causes the oscillatory 
nature of ~ ( t )  to diminish. At the same time, the two broad maxima inf('o) 
lose their distinctiveness, while drifting somewhat to lower frequencies.82 

In principle the velocity autocorrelation function must have an asymptotic 
tail, of hydrodynamical origin, behaving at t P 3 l 2  at long t i r n e ~ . ~ ~ . ~ ~  However, 
none of the molecular dynamics investigations for water has succeeded in 
identifying this tail. It is likely that the strong hydrogen bonds present in the 
liquid create a rigidity toward high-frequency stress, which tends to quench 
the hydrodynamical tail compared to simple liquids. 

The values of D found in the ST2 simulations for water at 1 g/cm3 show the 
proper rapid increase with temperature. However, they are uniformly 
higher than experimental values by about 30% between the melting point 
and about 40°C.8 * Comparisons are not yet available beyond this temperature 
range. Although much better agreement could be obtained by increasing the 
strength of the ST2 interaction (by a simply multiplicative renormalization), 
such tampering would cause undesirable damage to other properties. Until 
quantum corrections can be appended to the manifestly classical simulation, 
it would be misdirected effort to insist on very precise agreement between 
predicted and measured D. 

Rotational diffusion of water molecules has also been studied by the 
simulation method. Autocorrelation functions for angular momentum 
components about the three principal axes separately exhibit strong oscil- 
latory character, showing that the molecules execute rapid librational motion 
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under the directional hydrogen bond forces of neighbors. The quantities 

r,(t) = ( P ” C C 0 S  W)l> (8.16) 

measuring the distribution of angles O ( t )  through which the dipole axis of a 
molecule turns in time t have also been computed for n = 1, 2. The initial 
behavior of the r, reflects the high-frequency librational motion, but at 
long times the decay seems to involve a single dominant exponential function 
of time. Analogous to the center-of-mass velocity autocorrelation function, 
the presumed hydrodynamical nonexponential tails on the r, are not 
~ is ib le .~’  The decay time exhibited by rl is closely connected to the macro- 
scopic dielectric relaxation time, and indeed compares reasonably well in 
magnitude with measured values. However, the exact connection between 
the microscopic and macroscopic rates is still c o n t r ~ v e r s i a l , ~ ~  so that a 
decisive comparison cannot yet be made. 

The ST2 simulation has also provided the basis for a molecular dynamics 
calculation of neutron inelastic scattering from liquid water.99 Protons act 
as strong incoherent scatterers for neutrons, so observed scattering cross 
sections yield information about proton motions. In particular, the cross 
section for scattering with momentum change hk and energy change ho 
gives the function 

Si,,(k, o) = dt cos (wt) (exp [ik - Arj(t)]) (8.17) 

where Arj(t) is the displacement of a typical proton j over time interval t. 
It is known that 

S-P 
w2 

lim - S,,(k, o) = h ( o )  
k - 0  k 2  

(8.18) 

is, aside from trivial factors, the power spectrum of the proton velocity 
autocorrelation function. The molecular dynamics calculations explicitly 
show that for all intents and purposes the limiting behavior shown in (8.18) 
is achieved for w2S,,/k2 at k = 1 A- ’, which ought to be directly obtainable 
in real experiments. 

Careful studies of both proton and center-of-mass motions by molecular 
dynamics give no support to quasi-crystalline “jump-and-wait ” descriptions 
for molecular motions in liquid water.’” 

IX. WEAK-ELECTROLYTE MODEL 

A. Central Interactions 

None of the statistical models mentioned above (lattice models, cell 
model, molecular dynamics simulations) has permitted water molecules to 
dissociate. Yet in real water this occurs to produce the chemically important 
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hydrated H +  and OH- ions. Unless it can eventually describe the structure 
and kinetics of these species in water, the theory of this liquid must be re- 
garded as partial failure. To help avoid this shortcoming, Lemberg and 
Stillinger have proposed a weak-electrolyte model for water”‘ in which the 
separate H and 0 particles become the basic dynamical entities, and H,O 
molecules spontaneously form as “ion triplets” on account of the specific 
forces attributed to these particles. The dissociation process thus becomes a 
natural thermally activated process in the model. 

At the heart of the weak-electrolyte model is the selection of three central 
potentials VHH(r), V,,(Y), and Voo(r) which must adequately represent in 
additive form, for all pairs of nuclei, the totality of interactions in an arbitrary 
collection of molecules and ions. The first two of these functions are con- 
strained by the requirement that the energy minimum they give for an isolated 
H,O possesses the accurately known nonlinear triatomic geometry dis- 
cussed in Section 11. Furthermore, VHH, VoH, and V,, should each have 
Coulombic forms at large Y characteristic of electrostatic charges on Hs and 
0 s  which produce the correct dipole moment for the isolated molecules. 

Beyond the capacity to describe dissociation and the nature of the resulting 
solvated ions, the weak-electrolyte model presents other attractive features. 
Owing to the fact that only central forces are used, it is much easier than 
otherwise to construct formal expressions for quantum corrections to the 
classical limit formulas both for equilibrium and for transport properties. 
Also, it is important that the three normal vibrations have been restored to 
each molecule,with frequencies determined by the curvatures of V,, and VoH. 
As a result, it should be possible to examine the broadening of vibrational 
bands in condensed phases due to interactions between molecules which are 
themselves described by the three potential functions VHH, VoH, and V,,. 
Finally, the use of only central pair interactions makes it feasible to examine 
binary mixture versions of standard integral equations (e.g., BGY, PY, 
CHNC equations4’) for prediction of the three nuclear pair correlation 
functions gOO(r), gOH(r), and gHH(r), which is not possible with rigid-molecule 
models generally. 

Continuing study of the weak-electrolyte model will be necessary to 
identify the optimal set of central interactions; however, we can display a 
tentative set which clearly illustrates the main ideas involved. First, the 
effective charges on the hydrogens (Q*) and the oxygens (-2Q*) must be 

Q* = 0.32983e 
= 1.5841 x lO-’Oesu 

to conform to the known molecular dipole moment. We then demand that 
V,,(Y) consist just of two inverse power terms, -2Q*’/r  for the Coulombic 
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attraction between the 0 and H, plus a strong repulsion 
(n  > 1) :  

89 

at short range 

This function passes through its minimum when r = re, the equilibrium 
bond length in the water molecule. In the present central force context, the 
asymmetric stretch normal mode frequency depends only on the curvature 
of V,, at re, so n was determined to be 

n = 14.9797 (9.3) 

from the observed D,O frequency. In terms of the convenient units angstroms 
for length and kilocalories per mole for energy, V,, has the specific expression 

2.66366 72.269 
VoH(r) = ___ - ~ 

r 1 4 . 9 7 9 7  r (9.4) 

Two protons simultaneously present in the minimum of V,, at re can be 
constrained to form a nonlinear triatomic molecule only if V,, possesses a 
relative minimum at the correct proton-proton distance rp = 1.515.1 A. 
Energetic stability of the H,O molecule of course requires 

2V&(re) + VHH(rp) < 0 (9.5) 

but VHH(rp) can be positive. The symmetric stretch and symmetric bend 
normal mode frequencies are determined by both curvatures Vg,(r,) and 
VhH(rp) but, since the first has already been fixed, the second must be chosen 
to achieve the best simultaneous fit to the symmetric mode frequencies. 
With this understanding the following specific function was constructed for 
V,, (in angstroms and kilocalories per mole): 

36.1345 30 
+ 1 + exp [21.9722(r - 2.125)] V'dr) = ~ r 

-26.51983 exp [-4.728281(r - 1.4511)'] (9.6) 

With this potential, and that shown for V,, in Eq. (9.4), the symmetric bend 
frequency is 14.4 % too low and the symmetric stretch frequency is 14.4 % too 
high, compared to observed values, all for D,O. 

The primary task assigned to V,, is to keep oxygens in different molecules 
apart. Otherwise the strong attraction between oxygen and hydrogen leads 
to linear hydrogen bonds of length about 2re, with the bridging hydrogen 
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half way between. One function found to produce proper asymmetric linear 
hydrogen bonds with the correct length and strength is 

1697116 4039.394 144.538 +- (9.7) r6 r 
Voo(Y) = ~ - 

r12 

expressed as before in angstroms and kilocalories per mole. This and the other 
two potentials (9.4) and (9.6) are plotted in Fig. 23. 

The mechanically stable structure for the hydronium cation H 3 0 +  is 
pyramidal, with all three OH bonds having length Y,, and the apex angles at 
the oxygen the same as the bond angle in the water molecule. This arises 
because of the possibility that all six pairs of particles in H,O+ can exist 
simultaneously at the minima of their respective central potentials. It is 
relevant to note in this connection that the real H 3 0 +  is also pyramidal, 
with apex angles and bond lengths only slightly larger than those predicted 
by the weak-electrolyte model. lo' 

The disproportionation reaction 

H,O + H,O + H 3 0 +  + OH- (9.8) 

with widely separated reactants and products all at their respective mechanical 
equilibria, is energetically unfavorable. Counting pairs, it becomes clear that 
the energy must increase by VHH(rP) to produce the ionic products, which 
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Fig. 23 Central potentials for the weak electrolyte model of water. 
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Fig. 23 shows to be about 28 kcal/mole. A positive energy of this magnitude 
is necessary to prevent gross ionization in water molecule aggregates. 

Although it is true that the weak-electrolyte model utilizes only interactions 
for pairs of ionic particles, the molecules out of which they are composed do 
not necessarily behave as though they have experienced additive molecular 
interactions. Neighboring molecules tend to perturb one another's normal 
models of vibration, and (4.7) to (4.10) show that vibrationally averaged 
component potentials Fen) of all orders should in principle arise. The auto- 
matic incorporation of these many-molecule effects ought to be listed as 
one of the weak-electrolyte model's virtues. 

The H f  and OH- ions in the present model do not carry the full charges 
+e, but only the partial charges k0.32983e. However, the electric fields of 
the real ions in liquid water are diminished, or shielded, by the electronic 
polarizability of neighboring molecules. This form of polarizability is not 
present in the weak-electrolyte model, but the reduced ionic charges offer 
partial compensation for this omission. 

B. Some Classical Formulas 

At sufficiently high temperatures the partition function Q for the weak- 
electrolyte model (with N oxygens and 2N hydrogens) takes the classical 
form: 

N 1 
= N ! (2N) ! AT$," J d r 1 '  . ' J d r 3 ,  {exp [ - B  i < j = l  1 V o o ( r i j )  

N 3 N  3N (9.9) 
+ c c 'OH('ij) + 'HH('ij)]] 

i =  1 j = N +  1 i < j = N + l  

where r l ,  . . . , rN locate oxygens, and r N + l , .  . . , r3N locate hydrogens. 
The integrations span the allowed volume V,  and 

A, = h ( 2 ~ m , k , T ) - " ~ ,  CI = 0, H (9.10) 

are the mean thermal de Broglie wavelengths. Denoting the potential energy 
in (9.9) by V,,,, for compactness, the correlation functions in this classical 
limit may next be introduced: 

v 2  s dr3 ' '  ' s dr3N exp [-flvN,2N(r1 ' '  ' r 3 ~ ) I  

j drl ' ' ' s dr3N exp [-p'N,2N(rl ' ' ' r3N)1 
~oo(r12) = 
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In the infinite system limit, with fixed ionic densities, these correlation 
functions each approach unity at a large separation. goH and gHH have sharp 
peaks at re and r p ,  respectively, corresponding to the intramolecular pairs. 

Setting p = N/V, the local electroneutrality conditions on the infinite 
system' limit correlation functions may be written 

and 

1 (9.12) 

2P / b O H ( r )  - gHH(r)l dr = (9.13) 

These can be supplemented by a "second moment condition" which must 
always exist for an ionic fluid:'03 

(9.14) 

The fact that interactions in the weak-electrolyte model are central and 
additive allows the thermodynamic energy E to have an especially simple 
form : 

The virial equation of state undergoes analogous simplifications : 

BP' 
pp = 3P - ~ sdr ' [goo(r)VvOO(Y) + 4goH(r)VvOH(r) f 4gHH(r)VvHH(r)1 

6 
(9.16) 

Although the ideal gas term 3p  corresponds to 3N independent particles, 
one can show for the dilute vapor of undissociated molecules that the integral 
term equals - 2p, leaving 

B P  = P (9.17) 

the appropriate ideal gas form for N independent (but composite) particles. 
The isothermal compressibility xT may be expressed in terms of the oxygen- 

oxygen pair correlation function : 
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The local electroneutrality conditions (9.12) and (9.13) allow this to be 
converted to the alternate forms 

2pk,T~, = 1 + 2p Jdr [gHH(r) - 11 (9.19) 

and 

(9.20) 
J 

Since large-scale charge separation is not possible in the collection of 0 and H 
ions forming the weak-electrolyte model, these two species are forced to 
execute density fluctuations of long wavelength together, thus producing 
the variety (9.18) to (9.20) of fluctuation-compressibility theorems. It should 
be stressed that their validity depends in no way on the extent of water 
molecule dissociation being small. 

By using standard methods of statistical mechanics, one can easily express 
the static linear response of the ionic fluid to application of an external 
electrostatic potential in terms of goo, goH, and g H H .  We consider just a 
single Fourier component, for which the applied potential is 

Yap(r) = Y o  sin (k - r) (9.21) 

with Y o  small. The H and 0 ions will rearrange under the influence of Yap so 
as partially to shield it. The average potential T will also be spatially sinu- 
soidal, and we write it: 

(9.22) 

thereby defining the wavelength-dependent dielectric constant ~ ( k ) . ~ '  The 
requisite calculation yields the formula 

(9.23) 

At any finite temperature some of the water molecules will have dissociated, 
rendering the pure liquid slightly conducting. Because it is a conductor, the 
water will be able to shield very long-wavelength external fields completely: 

. 1  
lim- = 0 
k - 0  E(k) 

(9.24) 

The electroneutrality and second moment conditions (9.12) to (9.14), when 
applied to (9.23), assure that this limit is obeyed. However, with a very small 
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degree of dissociation, it is only for very small k (comparable to, or less than, 
Debye’s K for the dilute ionic solution) that ~ ( k )  begins to rise to infinity. 
Fork larger than these tiny values, but still reasonably small, ~ ( k )  should equal 
the static dielectric constant (z 80 at room temperature) normally quoted 
for water. At  very large k ,  one sees from (9.23) that ~ ( k )  approaches unity. 
Figure 24 schematically illustrates the expected behavior. 

Amplitudes o(k) for fluctuating charge density waves may be introduced 
by the definition 

N 3 N  

-2 c exp (ik - rj) + 1 exp (ik - rj) 
j = N +  1 

k 

Fig. 24 Schematic graph for ~ ( k )  in liquid water a t  room temperature. The Debye K refers to 
the very dilute solution of ions formed by molecule dissociation. 
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It is straightforward to compute the equal-time quadratic fluctuation 
average for the (TS, with the result 

(9.26) 

By comparing this expression (9.23), one obtains an alternate e (k )  formula : 

(9.27) 

The quadratic fluctuation is always positive for finite k,  so ~ ( k )  cannot be 
unity or less, thus 

for all k ,  irrespective of temperature and density. 
Whereas equal-time fluctuations in (TS suffice to give static dielectric 

response, unequal-time correlation functions are related to dielectric 
response at a finite frequency o. Yet another advantage of the weak-electro- 
lyte model for water therefore resides in its capacity to describe dielectric 
relaxation and conduction by providing a means to evaluate real and imagi- 
nary parts of s(k, w). 

C. Quantum Corrections 

In applying the weak-electrolyte model to water at about room tempera- 
ture, quantum corrections to the classical statistical mechanics just outlined 
are unavoidable. Fortunately, there is a simple prescription for generating 
leading quantum corrections to 

the diagonal elements of the density matrix for the 3N ionic particles. This 
permits one in principle to calculate corrected averages for operators 
involving position only, specific examples being the correlation functions 

This simple prescription disregards spin and statistics, which should be 
valid for condensed phases. It states that the classical format applies, provided 

9002 gOH? and gHH* 
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that the potential is replaced by a temperature-dependent apparent po- 
tential.'04 For the weak-electrolyte model, V,,,, is replaced by 

. N  N 3 N  

C WoO(rij3 P)  + 1 WN,zN(ri ' '  ' r 3 N )  = ~ o H ( r i j ,  8) 
i < j = l  i = l  j = N + l  

7 N  

(9.30) 

where (y, 6 = 0, H). 

my, is the reduced mass: 

1 1 1  

my, my ma 
- + -  (9.32) 

In particular this result assures that computer simulations (Monte Carlo or 
molecular dynamics) can be carried out as usual, using W,,,, in place of 
VN, 2 N ,  to produce corrected static correlation functions. 

It is easy to see from (9.31) that the leading quantum corrections (order 
h2 terms) have the following shape-changing effects on V,,(r). 

1. Regions of positive curvature (as in the vicinity of minima) are raised, 
while regions of negative curvature (such as maxima) are lowered, to produce 
diminished variation. 

2. Minima are broadened; maxima are narrowed. 

The net effect of these modifications at a given temperature is that the 
potential energy is less effective in localizing particles relative to one another. 
Consequently, the correlation function peaks should be somewhat broader 
and less distinct than if V,,,, alone were used. 

Off-diagonal elements of the density matrix can also be displayed in a 
systematic expansion about the classical limit."' However, the results are 
more elaborate in appearance and interpretation. They are nevertheless 
required to calculate a wide variety of interesting equilibrium properties, 
such as the momentum distributions for the two types of atoms present. 

Although a molecular dynamics simulation formally carried out with 
W N ,  2 N  in place of the interaction VN, 2 N  is a valid procedure for generatiqg 
equilibrium structural properties through order h2, one must be careful 
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not to overinterpret the apparent transport properties emanating from such 
a simulation. As an example, the quantity 

(9.33) 

involving the classical velocity autocorrelation function for molecule j in 
the presence of potential W is not necessarily the correct expression for the 
self-diffusion constant D through order h2. Instead, one would generally 
expect additional quantum corrections as well. The development of such 
quantum corrections for each of the transport coefficients (self-diffusion 
constant, shear and bulk viscosities, thermal conductivity, complex dielectric 
constant at arbitrary frequency) to be appended to the classical W-dynamics 
expression is an important problem whose solution would dramatically 
extend the power of the molecular dynamics technique. 

X. CONCLUSION 

The major topics covered in this article show that the theory of water now 
has a well-established rational basis. Yet it is clear that considerable work 
remains to be done both on the quantum theory of water molecule inter- 
actions and on statistical mechanical techniques for utilizing these inter- 
actions in many-body calculations. Presuming that the present high level of 
interest in the subject persists, the prognosis nevertheless is good for rapid 
maturing of the field. Furthermore, the special techniques and insights 
developed for water should encourage similar activity for other polyatomic 
liquids. 

Aqueous solutions have purposely been excluded from this article. 
However, each of the four statistical mechanical approaches discussed 
(lattice and cell theories, computer simulation, weak-electrolyte model) has 
obvious application to solutions. Quantum mechanical studies of solute- 
water and solute-solute potential energy functions are necessary prerequis- 
ites to quantitative statistical theory, and fortunately these calculations 
have been initiated for noble g a s e ~ , ' ~ ~ . ' ~ ~  monatomic ions,107~108 and small 
organic molecules.'09~' l o  Certainly, far more needs to be done, especially in 
examining characteristic functional groups which are included in large mole- 
cules of biological interest. A systematic study of the interactions between 
water molecules and hydrocarbons needs to be carried out, so that realistic 
models for hydrophobic bonding93 can be constructed and investigated by 
the available statistical methods. With aggressive effort along these lines, it 
is possible within the foreseeable future that conformational kinetics of bio- 
polymers will be simulated via computer, with full accounting of biopolymer 
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intramolecular degrees of freedom, of ambient water molecule motions, and 
of interactions between them. 

The theoretical study of chemical reactions in aqueous solution is another 
extremely important subject to which research attention needs to be directed. 
Fast reactions involving hydrogen ions' could probably be simulated by an 
extension of the weak-electrolyte model described in Section IX, since it 
already incorporates dissociation and proton transfer. In any case suitable 
energy surfaces would have to be constructed to describe the interaction of 
reactants. Furthermore, the precise distinction between reactants and pro- 
ducts in terms of separate regions of configuration space leads to the same 
situation encountered above in defining hydrogen bonds. An element of 
arbitrariness intrudes, but prediction of measurable properties for the 
chemically reacting solution must be demonstrably independent of the 
criterion used to define reactants and products. 

The importance of these extensions for a deeper understanding of chemistry 
cannot be ignored. 
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