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Several recent studies have shown that some of the unusual properties of liquid water can be reproduced 
with a classical lattice-gas model, wherein the host lattice is body-centered cubic. In this paper we quantize 
both rotational and translational motion in those models, using suitable hopping operators. Several 
alternative forms are possible for the rotational kinetic energy; we provide comparisons for each with the 
experimental spectrum. Variational calculations have been performed for (H20)2' (020)2, and (T20)2 ground 
states on the lattice to estimate hydrogen bond destabilization by zero-point motion. Finally, expressions 
have been developed for thermodynamic-property and distribution-function quantum corrections that 
should be useful in classical lattice_gas simulations of water via computer. 

I. INTRODUCTION 

Several versions of a lattice-gas model for water 
have recently been studiedl - 4 in order to understand the 
molecular ordering and thermodynamic properties of 
that liquid. Each of these versions has relied exclu­
sively on classical statistical mechanics in spite of the 
fact that substantial quantum effects should be present 
for molecules with inertial moments as small as those 
in water. It is the goal of the present paper to introduce 
quantization into lattice-gas models for water, and to 
draw some useful conclusions therefrom. 

Conventionally, the statistical mechanics of classical 
lattice gases concentrates attention on the configura­
tional counting problem. Particle kinetic energy is 
fully separated in this limit, and need not be considered. 
However, the quantum corrections to the classical limit 
arise largely from noncommutivity of kinetic and po­
tential energy operators, so both operators must be 
present and explicit from the outset if one is to calculate 
these corrections. 

In the case of lattice gases consisting of structure­
less particles, a systematic procedure has been de­
veloped for generating quantum corrections to the con­
ventional classical limit. 5 In that case the kinetic en­
ergy operator for each particle consisted of a hopping 
operator capable of moving that particle from site to 
site by nearest-neighbor shifts. The present circum­
stance requires discrete hops both in position and orien­
tation. 

The Simplest lattice on which water can realistically 
be modelled is the body-centered cubic lattice. 2

- 4 The 
oxygen atom of each molecule resides at (or very near 
to) a site, and its covalent OH bonds are permitted to 
point toward pairs of nearest-neighbor sites which sit 
across a cube face from one another. Figure 1 illus­
trates this geometry. It is possible to construct a 
cubic ice crystal on this lattice, using half of the Sites, 
with each molecule hydrogen bonded to four nearest 
neighbors in a tetrahedral pattern. Nominally, the HOH 
bond angle for water molecules fitted to this lattice 
would be the tetrahedral angle 109.47 0

, only Slightly 
larger than the free molecule angle 104.5 0

•
6 

It is clear from Fig. 1 that each molecule is per­
mitted 24 distinct orientations at any given lattice site. 
The melting of the cubic ice crystal presumably results 

from both rotational disorder and translational dis­
order, since either type of motion can separately dis­
rupt the fully formed tetrahedral network of hydrogen 
bonds. 

In the present context, we presume that the total 
kinetic energy operator T for Nwater molecules in the 
lattice has the following form: 

N 

T= L (Tti+Tri)· (1.1) 
i::zl 

Here Ttl stands for the translational kinetic energy for 
molecule i, and T ri stands for its rotational kinetic en­
ergy. Acting on a function >11 of position 01; and orienta­
tion w; for molecule i, the translational operator T Ii has 
the prope rty5 

T t ;>11(01;, w;) = 2~~2 [8>11(01;' w;) - ~ >I1(OI~, W;)] (1. 2) 

• 
(this is merely a discrete version of the conventional 
Laplacian), where m is the molecular mass, the sum 
spans the eight nearest-neighbor sites for Olio and dis­
tance I is 2/13 times the nearest-neighbor spacing. 

\ 
\ 
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6 

FIG. 1. The body-centered cubic lattice of water. 
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The following section introduces specific forms for 
the rotational kinetic energy operators T rio The corre­
sponding rotational spectra of single-molecule eigen­
states are then deduced and compared to experiment. 

Section TIl contains an examination of the potential 
energy functions that are appropriate for lattice-gas 
models of water. In particular, we display there a 
nearest-neighbor version for an additive pair potential 
that seems adequate to induce local order of the type 
thought to be present in liquid water. 

A variational study of binding in the water dimer ap­
pears in Sec. IV. 

High-temperature quantum corrections for lattice­
gas water (including both thermodynamic properties and 
distribution functions) are stated and discussed in Sec. 
V. Although it is difficult to evaluate these corrections 
under condensed-phase conditions, we anticipate that 
the formulas exhibited will find important application in 
connection with computer simulation studies. 

II. ROTATIONAL LATTICE SPECTRUM OF WATER 

A. Lattice states 

The 24 rotational states w for a water molecule on a 
given lattice site may temporarily be denoted by Ijk), 
where the indices j and k identify neighbor sites toward 
which OH groups point (see Fig. 1). Elementary rota­
tions consist of transitions between these 24 states. 
The rotational energy operator must be invariant with 
respect to the rotation-inversion-permutation sym­
metry group for the H20 molecule. In the present case 
of a cubic rotation lattice, the 24 proper rotations form 
the octahedral point group 0. For a complete descrip­
tion of this group and the related notation we refer the 
reader to one of the standard texts. 7 In particular, the 
representation r of lattice states is regular in 0, with 

(2.1) 

Further classification with respect to inversion i and 
hydrogen exchange P12 (e.g., iI13)= 168), P 12 113)= 131») 
yields the following irreducible representations: 

r =A~K +A;u +E~ +E;+ T;u + T 2g + Tiu + Tig + T;g + Tau' 
(2.2) 

Here (g/u) indicates (even/odd) character with respect 
to inverSion, and (+/-) labels (even/odd) exchange sym­
metry. Exchange symmetrized elementary states are 

(2.3) 

with 

(P12 - l)s jk = (P12 + l)a jk = O. 

Basis functions for the irreducible representations in 
Eq. (2.2) were constructed using standard group the­
oretical projection operator techniques. These lattice 
rotation states appear in Tables I and II for even and 
odd exchange parity, respectively. The multidimen­
Sional representations E g , T1, and T2 have been labelled 
in terms of their transformation properties with respect 
to the x, y, and z axes of Fig. 1. The basis is ortho­
normal for the inner product, 

(2.4) 

Since each irreducible representation in Eq. (2.2) 
appears only once, the group theoretical lattice states 
diagonalize the (as yet unspecified) rotational hopping 
Hamiltonian for water, giving a total of 10 distinct en­
ergy levels. We thus find ourselves in the position of 
knowing the eigenfunctions of the Hamiltonian indepen­
dently of its precise form, subject only to its invariance 
with respect to the product group of space-fixed lattice 
rotations, inversions, and exchange. 

B. General form of the hopping Hamiltonian 

Since the water molecule is an asymmetric rotor, the 
lattice rotation energy cannot be expressed solely in 
terms of the five classes of equivalent rotations for the 

TABLE I. Group theoretically constructed lattice rotation states having even exchange symmetry. 

Mixing coefficients of elementary states a 

State $13 $68 $24 $51 $15 $26 $48 $31 $11 $46 $35 $28 N 

1. Aig 1 1 1 1 1 1 1 1 1 1 1 1 12 

2. Tiu<z) 1 -1 1 -1 0 0 0 0 0 0 0 0 4 

3. Tiulx) 0 0 0 0 0 0 0 0 -1 1 1 -1 4 

4. Tiu<Y) 0 0 0 0 -1 1 -1 1 0 0 0 0 4 

5. E;(3z 2_r2) 2 2 2 2 -1 -1 -1 -1 -1 -1 -1 -1 24 

6. E;<x2_y2) 0 0 0 0 -1 -1 -1 -1 1 1 1 1 8 

7. E+ 
u 0 0 0 0 1 -1 -1 1 -1 1 -1 1 8 

8. E+ 
u 2 -2 -2 2 -1 1 1 -1 -1 1 -1 1 24 

9. T;glxy) 1 1 . -1 -1 0 0 0 0 0 0 0 0 4 

10. Ti/Yz) 0 0 0 0 0 0 0 0 -1 -1 1 1 4 

11. Tiizx) 0 0 0 0 -1 -1 1 1 0 0 0 0 4 

12. A2,. 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 12 

aq:, =N-1/ 2L:,$jk C jk. where the CJk are tabulated here. 
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TABLE II. Group theoretically constructed lattice rotation states having odd exchange symmetry. 

Mixing coefficients of elementary states a 

State a13 a6B a24 a51 a15 

1. Tju(z) 0 0 0 0 -1 

2. Tiu(Y) 1 -1 -1 1 0 

3. Tiu(x) 1 -1 1 -1 1 

4. Ti,.(Rz ) 0 0 0 0 1 

5. Ti,.(Ry) 1 1 1 1 0 

6. Ti,.(Rx ) -1 -1 1 1 1 

7. Tz,(xy) 0 0 0 0 -1 

8. T'2,(zx) 1 1 1 1 0 

9. T 2hz) 1 1 -1 -1 1 

10. Tzu(z/ -zx2) 0 0 0 0 -1 

11. Tzu(yz2 _yx2) 1 -1 -1 1 0 

12. Tz..(xz2- xy 2) 1 -1 1 -1 -1 

a<t> =N-1/ 2EaJkdJk, where the dJk are tabulated here. 

octahedral group: IE, 6C4, 8C3, 3(Cz = C~), and 6Cz• 
Instead we must classify the types of possible rotations 
with respect to a body-fixed set of axes. We therefore 
adopt the convention here that the x, y, and z axes in 
Fig. 1 represent a body-fixed system for the configura­
tion 113). Principal axes for the molecule are then a 
=(x+Y)/v'2, b=z, and c=(x-y)/v'2. There are 10 dis­
tinct types of rotations for this internal reference 
frame, consisting of subdivisions of the six octahedral 
rotation classes. They are the identity operator E, 
plus 

6C4 = 2C! + 4C!, 8C3 = 4C~ + 4Ci, 
(2.5) 

3Ca = C~ + 2C~, 6Ca = C~ + C~ +' 4Q. 

Here a, b, and c label the prinCipal axes, and e labels 
axes bisecting the cube edges excluding a, b, and c. 
The label II denotes rotation axes within the plane of the 
molecule, while 1 rotation axes have a nonvanishing 
component normal to the molecular plane. All rotations 
of a given type are equivalent, so that the lattice rota­
tional Hamiltonian is characterized at most by 10 pa­
rameters. The totally symmetric A;,. ground state can 
be aSSigned zero energy, thus reducing the number of 
independent parameters to nine. 

The rotational kinetic energy can be written in the 
following general form: 

9 

Tr= Lwkt,., ,.-1 
(2.6) 

where the w,. are parameters and the t" are a set of re­
duced energy operators for the distinct types of rota­
tions. They are 

tl = 2-LC!, ta=4- LC~, t3=4- LC~, 

t4 = 4 - LCi, t5 = 1- C~, t6 =2 - LC~, (2.7) 

t7 = 1- C~, ta = 1 - C~, t9=4-LC~, 

a26 a4B a31 al1 a46 a35 a2B N 

-1 -1 -1 -1 -1 -1 -1 8 

0 0 0 1 1 -1 -1 8 

1 -1 -1 0 0 0 0 8 

-1 -1 1 -1 1 -1 1 8 

0 0 0 -1 1 1 -1 8 

-1 1 -1 0 0 0 0 8 

1 1 -1 -1 1 -1 1 8 

0 0 0 1 -1 -1 1 8 

-1 1 -1 0 0 0 0 8 

-1 -1 -1 1 1 1 1 8 

0 0 0 -1 -1 1 1 8 

-1 1 1 0 0 0 0 8 

where Z; denotes a summation over all rotations of the 
type specified. For instance, 

t7 157) = 157) - 124) (2.8) 

and 

The t" constitute a mutually commuting set of opera­
tors which are diagonal in the group theoretical baSiS, 
since the operators are invariant under all space-fixed 
lattice symmetry operations. In addition, it is possible 
to express all of the t" in terms of the four operators t1> 
ta, i, and Pia' Specifically, this representation is 

t5 = I-Pia, 

t7 = 1 - iP1a, 

t9 = 4 + (fa - 4)P1a• 

t4 = 4 + (fa - 4)i, 

t6= 2+ (tl - 2)i, 

ta = 1- i, 

For use in subsequent sections we define also 

(2.10) 

zr=tl+ta, D~=tl' (2.11) 

Note that zr = 6 - Z; C4, where the summation covers the 
six C4 rotations. Eigenvalues of zr are obtained easily 
using the theory of fi'nite groups, 7 namely, if eis a 
class of operations in a group G of order h, and if the 
operator Ie is the sum over all group elements RE e, 
then Ie is diagonal on any basis cP" of irreducible rep­
resentations of G, with 

(2.12) 

Here I" is the dimension of the kth irreducible represen­
tation, l(e) is the corresponding character under e, 
and Ne is the number of elements in e. 

This result has general applicability to the theory of 
rotational spectra of lattices. In our model it allows 
zr, t3+t4' t5+t6' and t7+ta+t9 to be evaluated simply, 
requiring only the use of the character table for the 
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TABLE III. Eigenvalues of the elementary rotation hopping 
kinetic energy operators tk for the 10 lattice energy levels. 

Hopping operator 

Level D' D~~tl 12 I, 14 15 t6 17 td t, 

1. A+ 
11 0 0 0 

2. Tiw 4 

a. Tiw 4 

4. Til G 2 

5. E: 6 4 0 0 

6. E+ • 6 G G 

7. Ti. 0 

8. T;, 4 4 0 4 

9. T;' G 

10. A211 12 0 

octahedral group. A compilation of eigenvalues for the 
tk appears in Table III. 

Equation (2.6) permits empirical energy operators to 
be defined by fitting the coefficients w k to give nine ex­
cited states of the H20 rotational spectrum. This 
procedure is not unique, since there exists no unam­
biguous criterion for selecting the states for the fitting. 
In order eventually to estimate quantum corrections to 
thermodynamic properties of the lattice-gas model it 
may be advantageous to use a simpler form of TT' in­
volving only a few of the physically important tk • Indeed, 
we feel that fits to the spectrum involving high energy 
levels is not justified due to the coarseness of the 24-
state rotational lattice. We therefore pursue in Sec. 
II C the derivation of a simple nearest-neighbor hopping 
Hamiltonian which is sufficiently accurate for estimat­
ing at least the gross features of the rotational spec­
trum. 

The operator Tr in Eq. (2.6) is applicable only to HaO 
and its isotopes D20 and TaO. Mixed isotopes such as 
HOD destroy the exchange symmetry. However, due to 
the limited number of states in the cubiC rotationallat­
tice, exchange remains a good quantum number in all 
energy levels except Ttu and T~I" The form of the hop­
ping Hamiltonian would have to be altered accordingly 
for mixed isotopes. In this initial investigation we con­
sider only isotopiC species having C2v symmetry. 

C. Derivation of an approximate single-molecule 
Hamiltonian 

The energy levels of an asymmetric rotor (for which 
the full range of Euler angles is permitted) are eigen­
values ofs 

F=AJ~+ BJ~+ CJ~. (2.13) 

Here J a, J b, and J c are the projections of the angular 
momentum operator J along the principal axes of the 
molecule. The rotational constants satisfy A > B > C, 
and for convenience the experimental constants of Be1let 
et ai. 9 for water isotopes are displayed in Table IV. We 
seek a discretized version of F on the lattice, and ex­
pect that the spectrum of the hopping Hamiltonian will 
reproduce at most only the lower portion of the exact 

spectrum. This stems from the inherent deficiency of 
any lattice in attempting to represent the oscillatory 
structure of the energy wavefunctions. 

The continuous operators J~ and J~ for angular mo­
mentum about an arbitrary axis x can be approximated 
with finite rotations through an angle a as follows: 

J~- [exp(iaJ~) - exp( - iaJ~) ]/2ia, 

J;- [2 - exp(iaJ~) - exp(- iaJ~)]/ a 2
• 

(2.14) 

(2.15) 

These representations become exact in the limit a - 0, 
but may not always give accurate approximations for 
finite a. In this connection note that only C2 rotations 
are possible about the a and c axes, requiring 1 a 1 to be 
no smaller than 'IT (although C4 rotations with I a 1 = 'IT/2 
can occur about b). Using Eq. (2.15) to discretize F 
gives 

(2.16) 

which yields a spectrum bearing little resemblance to 
the exact asymmetric rotor energy levels. The first 
excited lattice state is the T;:u level having an energy 
(2/ 'IT) 2 (2B + C) = 15. 53 cm-1, which is significantly lower 
than the experimental10 J T = L1 level at 23.79 cm-1

• 

We expect that more accurate representations of F 
will result from discretizations in which the angle a 
assumes the smallest possible values for a given lattice, 
so as to describe only the nearest-neighbor rotational 
hops. These are C4 rotations in the present model, 
defined about the x, y, and z(= b) axes for the 113) ori­
entation in Fig. 1. In order to utilize these rotations 
we rewrite F in the equivalent form 

F=t(A+C)(J;+J~+J~)+t(2B-A - C)J~ 

+t(A - C)(J~J~ +J~J~), (2.17) 

where cross terms are to be represented as products of 
discretizations about perpendicular axes. Thus, for 
instance, 

(2.18) 

where C:x and C4x are + 90' and - 90° rotations, re­
spectively, about the x axis. The discrete lattice rep­
resentation of F is then 

F- (2/'IT)a[t(A + C)Da + t(2B - A - C)D~ + t(A - C)(ts - t4 )]. 

(2. 19) 
The term ts - t4 involves Cs rotations which result from 
products of two C4 rotations. The lowest excited rota­
tional for Eq. (2.19) is T;:u having an energy (2/'IT)2 
x[tA+2B+%C], or 23.06 cm-1 for HaO. Higher excited 
states tend to be substantially lower than the exact 
asymmetric rotor levels, but nevertheless they repre-

TABLE IV. Rotational constants for 
water isomers in cm-1, adapted from 
Ref. 9. 

A 
B 
C 

27.88 
14.52 

9.28 

15.42 
7.27 
4.85 

11.30 
4.86 
3.30 
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TABLE V. Lattice rotational energies for 
the operators T~ and RO • 

state Energy 

TO 
T 

RO 

Ai .. 0 0 

TiN B+C ~ TiN A+C -i-(A+B+C) 

Ti, A+B \ 
/ 

E~ i(A+C)+2B 

f E+ i(A+C) 
A+B+C 

I 

Ti, A+B+2C 

! T~, A+2B+C !(A+B+ c) 

Tiu 2A+B+C 

A'2u 2(A+B+C) 2(A+B+C) 

sent a significant improvement over the spectrum of 
Eq. (2.16)_ 

These results suggest a semiempirical Hamiltonian 
of the form 

T~ = is,H(A +C)D2 + t(2B - A - C)~] +Yr[t(A - C)(ts - t4)], 

(2.20) 
where iST and Y r are to be chosen to represent as well as 
possible the lower energy region of the spectrum. For 
iSr=t and yr=t, T~ generates the three lowest excited 
asymmetric rotor levels8 exactly, while retaining nearly 
the same spectrum for the higher states as that from 
Eq. (2.19). The energy levels of T~ appear in Table V 
as functions of A, B, and C. The spectrum consists of 
pairs of levels symmetrically displaced above and below 
an average energy T~=A+B+C. 

T ~ should be more than sufficient for estimating 
quantum corrections to thermodynamic properties of 
the lattice gas. In fact it may be advantageous instead 
to use the even simpler approximation F- RO, with 

RO ==r~. (2.21) 

This form corresponds to representing water as a 
spherical rotor on the cubic orientation lattice. Nor­
malization of the spectrum can be achieved by fitting r 
so that the degenerate TI levels (cf Table III) are equal 
to the average energy of the exact J = 1 level. This 
method gives 

r= (A +B +C)/6, (2.22) 

and the resulting spectrum of RO appears in Table V 
with that of T~. Note that the average energy lfl=A + B 
+C== T~. 

D_ Comparison with experimental spectrum 

Clearly there does not exist a one-to-one correspon­
dence of lattice rotation levels with the exact asym­
metric rotor levels8 J.... Instead, each lattice state 
represents a mixture of J ... levels, with perhaps only 
several low-lying states contributing significantly to the 

mixture in some cases. We conSider here transforma­
tion properties of the exact rotational states with re­
spect to the lattice symmetry in order to determine 
which values of J ... correlate with the lattice rotational 
levels. 

There are a total of 2J +1 degenerate asymmetric 
rotator states within each level J ... , with the eigenfunc­
tions forming an irreducible representation Dcn of the 
three dimenSional rotation group. The decomposition 
of DCJ) with respect to the octahedral point group is 
thus identical to that of the corresponding Jth spherical 
harmonic representation, for which the correlations are 
well known from the theory of atomic crystal field split­
tings. IO For Js 5 the reduction of DCI) is 

D CO
) =Al' 

D (2
) =E+ Tz, 

D(4l=A1 +E + Tl + T2 , 

D(1) = T
1

, 

D CS ) =A2 + Tl + Tz, 

D CS ) =E + 2Tl + T2 , 

(2.23) 

Further comparison with the lattice states is possible 
using the classification of asymmetriC rotor levels with 
respect to C2 and C~ rotations. 8 Since the highest en­
ergy lattice state A~u evidently correlates with J = 3, we 
expect that the remaining lattice states also represent 
exact states having Js 3. 

A compilation of the symmetries and the correspon­
dence of these J ... levels to the lattice rotation levels 
appears in Table VI. Also listed are average experi­
mentalll HzO energies of the states for comparison with 
the spectra of T~ and RO calculated using data in Tables 
IV and V. The energy level orderings of both experi­
ment and theory are identical, although our definition 
of an experimental average is rather arbitrary. For the 
higher levels the lattice energies are roughly t the ex­
perimental averages. This disparity is hardly surpris,.. 
ing considering the short wavelength limitations of any 

TABLE VI. Exact asymmetriC rotor levels J ... having octahe-
dral symmetry components identical to the discrete hopping 
model state (Js3 only). 

Body- Average 
lattice energy e Hopping fixed J T energy 

state symmetry a values (cm-I) b TO RO 
T 

A+ 
11 ++ 00 0 0 0 

Ti. -+ 1.1 • (3_3 • 3,)d 23.8 ~., l 
Tiu In. (3_ 2• 32). 37.1 37.2 34.5 

Ti. +- 110 (3_1 • 3
3
)d 42.4 42.4. 

E+ 20 95.2 47.6l . 
E+ 51.7 

• ++ 2_2• 22 103.1 55.7 

T- +- 2_10 3_1 126.4 61.' ( 2< 

Ti.- ++ 2_ 2 • 22 • 30 137.5 66.2 68.9 

Ti. -+ 211 3_3 , 31 161.3 79.6. 

Ai. 3 -2. 32 213.7 103.4 103.4 

"Signs of eigenvalues for body-fixed rotations C~ and q, re­
spectively. 

bAveraging assumes equal weights for indicated J ... levels, 
using experimental H20 rotation levels of Ref. 11. 

"Described in Table V. 
~ot included in energy average. 
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FIG. 2. Geometric representation of the configurations per­
mitted to a pair of neighboring water molecules. 

lattice hopping model, and is analogous to errors that 
appear in the translational spectrum. 5 

III. WATER-MOLECULE INTERACTIONS 

The existing papers devoted to lattice-gas models of 
water employ several different versions of the inter­
molecular interaction potential V. 1

-
4 It seems advis­

able at this stage to reexamine prospects for simple 
representation of V in the light of current knowledge 
about water-molecule interactions. 

Accurate Hartree-Fock calculations12
- 14 have shown 

that nonadditive components to the interaction in water­
molecule aggregates are clearly present. However, 
these components have modest magnitudes, and vary in 
sign so as to cancel to some extent. Consequently, we 
feel justified in assuming at the lattice-gas level of 
precision that V consists solely of an additive combina­
tion of molecular pair interactions 

Vo: t V(Z)«(}I>Wi;(}j,Wj)' 
i<j*1 

(3.1) 

Formation of linear hydrogen bonds between neighbor­
ing molecules is the single most important feature which 
0 2

) must display. In the liquid and solid forms of 
water, these hydrogen bonds possess lengths in the 
range 2.75-2.90 A 15; consequently the neighbor spacing 
in the bcc lattice-gas model should likewise fall in this 
range. 

The (24)2: 576 configurations permitted to a pair of 
neighboring water molecules may easily be classified 
according to Fig. 2. In this geometric representation 
each water molecule is rendered as a regular octahe­
dron with labelled faces. These octahedra must always 
be oriented so that outward normals to their triangular 

faces point directly toward the eight nearest-neighbor 
sites. Pairs of faces are labelled with letters P, p, N, 
and n. P stands for "proton, " and identifies a face out 
through which an OH bond can be imagined to point. 
Inversely, N represents the negative regions occupied 
by (tetrahedrally hybridized) lone pairs of electrons. A 
well-formed hydrogen bond would require that adjacent 
P and Nfaces be presented to one another. Labels p 
and n identify faces which share two edges, respec­
tively, with P or with N faces. 

One easily verifies that the following numbers of con­
figurations exist, totalling 576, for a neighbor pair of 
water molecules: 

(pp) = (pP): (nn): (NM = 36, 
(3.2) 

(pp): (Pn) = (PM: (pn) = (PM: (nM: 72. 

Use of these adjacent-face labels constitutes only a 
partial classification of nearest-neighbor dimer con­
figurations. Within each such category, Cs rotations of 
one of the participating molecules about the line of cen­
ters is pOSSible, leading to inequivalent dimer con­
figurations. V(2) would be expected to vary somewhat 
under these rotations, but that variation would be rather 
modest since hydrogen bonds would never be formed or 
broken. 

We propose that a qualitatively reasonable lattice-
gas VIZ) could be constructed in which (a) 0 2) is infinite 
if both molecules reside on the same site, (b) V(2): 0 
for all separations beyond the first-neighbor distance, 
and (c) when molecules are first neighbors V(2) depends 
only on the labelling of the adjacent octahedron faces 
shown in Fig. 2. The 10 distinct values of the nearest­
neighbor potential, V(2) (pP)~ V(2) (pp), "', V(2) (NM, 
should suffice to create tetrahedral hydrogen-bond order 
for the cubic ice Ic that can fit on the bcc lattice, as 
well as the partially disordered (but still prejudicially 
tetrahedral) hydrogen-bond networks that characterize 
the liquid phase. 1s 

We remark in passing that the bcc lattice can in 
principle accommodate two interpenetrating ice Ic net­
works. The resulting high-density structure is realized 
in nature as the high-pressure ices vn and VITI. 15 In 
order to destabilize these interpenetrating networks at 
low pressure, Bell invoked a positive three-molecule 
interaction which acted in compact groupings of those 
three molecules. 2 However, such nonadditive interac­
tions are not obligatory in the present view (and are not 
indicated by Hartree-Fock studies); pairs of neighbor­
ing molecules with one in each of the two unconnected 
networks will experience interactions VIZ) (pP), V(2) (pn), 
or V(2) (nn) only. Provided that these quantities are 
sufficiently high in energy, the requisite destabilization 
will automatically occur. 

No doubt interactions are important between water 
molecules beyond the first-neighbor distance. These 
longer-range interactions would predominately be of 
dipole-dipole form. If the major objective were to 
study dielectric behaVior, it would be necessary to in­
corporate this extension into the present theory. Our 
proposed form of nearest-neighbor interaction, how-
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TABLE VII. Nearest-neighbor interac­
tions for pairs of water molecules. a 

Configuration V (2) (kcal/ mole) 

PP 8.678 
Pp 1.662 
Pn -1.762 
PN -5.871 
pp 0.948 
pn -0.388 
pN -0.931 
nn 1.206 
nN 2.156 
NN 5.192 

aThe values listed here refer to the octa­
hedron-face categories illustrated in 
Fig. 2, and were estimated from the 
"ST2" potential (Ref. 16) at oxygen-ox­
ygen separation 2.85 A. 

ever, enjoys the advantage of great simplicity and 
should permit application of well-known methods for 
nearest-neighbor lattice gases in the statistical mechan­
ics. 17 It is our belief that the present nearest-neighbor 
form for V(2} is a reasonable "zeroth-order" model, 
into which longer-range dipolar forces could eventually 
be inserted by standard perturbation theory. 

Table VII provides a set of values for the 10 V(2) 
nearest-neighbor categories. These values were esti­
mated from the semiempirical "ST2" potential that has 
been reasonably successful in representing liquid water 
through the molecular dynamics Simulation technique. 16 

IV. DIMER VARIATIONAL GROUND STATE ENERGY 

The lattice wavefunction for the ground state of the 
water dimer, having zero center of mass translational 
motion, may be written in the form 

(4.1) 

where l}I(n) vanishes except for relative dimer configura­
tions at nth nearest neighbor positions. In general, 

(4.2) 

where a1 runs over all lattice positions for molecule 1, 
and a2 includes only the nth nearest-neighbor sites for 
molecule 2 relative to molecule 1. Furthermore, we 
can write 

<p(n)(ah Wh a2, W2) == L I W1, wa>an(alJ W1, a2, W2), 
Wl'W2 

(4.3) 
where I WlJ wa> is a direct-product state vector for the 
two rotational degrees of freedom, and the an are suit­
able coefficients. 

In order to estimate the zero-point energy of the 
lattice dimer, we have performed a simple variational 
calculation on the ground state. The trial wavefunction 
used, l}Io, was obtained from Eqs. (4.1)-(4.3) by apply­
ing the following constraints: 

bn == 0 if n> 5, 

an(a1, wlJ ai2, w 2 ) = 1 if n> 1, 

(4.4) 

(4.5) 

a1 (a1' WI, a2' W2) = 1 if the dimer is 
hydrogen bonded, 

a1 (au WI, a2' w2) = 71 if the dimer is not 

(4.6) 

hydrogen bonded. (4.7) 

This form permits free monomer rotation for all but 
nearest-neighbor positions. 

The variational energy is obtained by minimizing 

(4.8) 

with respect to bl> b2, b3 , b4 , bs, and 71 in the limit of 
an infinitely extended lattice. Evaluation of Eo reduces 
to a simple counting procedure over lattice Sites, the 
details of which we shall omit. 

For the dimer Hamiltonian H we have used monomer 
rotational energy operators T~, defined earlier in Eq. 
(2.20), and the nearest-neighbor pair potential speci­
fied in Sec. III and Table VII. The corresponding vari­
ational energy expression is 

Eo= W/Q, 

with 

W = Eo + E1TJ2 + 12r(1 - 71)2 

- 4t[ (1 + 7TJ)(3b2 + 3b3 + bs) + 24(b2 + 2b3 + bs)b 4 ] 

and 

Q = 1 + 7712 + 6b~ + 12b~ + 24b~ + 8b~. 

Here we have employed the definitions 

t=1i2/2m12, r=(A+B+C)/6, Eo=V(2)(N,P), 

(4.9) 

(4.10) 

(4.11) 

E1 = V(2)(pn) + y(2)(pN) + y(2)(pp) + V(2)(nN) + V(2) (nP) 

d[V(2)(nn) + V(2) (pp) + 0 2 ) (pp) + 0 2) (NN)]. (4.12) 

An identical expression for Eo, and in particular for 
the rotational energy contribution 12r(1- 71)2 in Eq. 
(4.10), is obtained using the simpler R O form for mono­
mer rotation energy [Eqs. (2.21)-(2.22)]. At the 
present level of approximation this result must be re­
garded as somewhat fortuitous. 

USing 1 = 2. 85 'A, and information contained in Table 
IV for rotational parameters, and in Table VII for in­
teractions, the variational energy Eo has been mini­
mized for each of H2 1~O, D2

160, and T2
160. The nu­

merical results are contained in Table VIII. Although 

TABLE VIII. Results of variational calculations 
for the ground state of the lattice water dimer. a 

Hl60 D2
160 T2

160 

E -5.5772 -5.7140 -5.7599 

E-V(2)(pN) 0.2938 0.1570 0.1111 

1) 0.00615 0.00322 0.00226 

lOS b2 6 5 5 

105 b3 3 3 2 

b4 0 0 0 

lOS bs 2 1 1 

aEnergies in kcal/mole. 
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the zero-point energy destabilization of the hydrogen 
bond, 

t.:.E =Eo(min) - VIZ), (4.13) 

is significant in each case, it is obvious from the values 
of 17 ••• bs that rather little tunneling out of the bonded 
configurations is involved. Probably our assumptions 
(4.4)-(4.7) that >¥ is independent of relative orientation 
(if no bond is present) tends somewhat to retard that 
tunneling. In any event, the magnitudes obtained for 
t.:.E seem roughly to be consistent with thermodynamic 
property differences between the three isotopiC waters.1S 

It should be pointed out that real water dimers may 
exhibit isotope shifts in their binding energies due to 
changes in vibrational zero-point energy when the free 
molecules form a hydrogen bond. However, this will 
entail partially cancelling effects, since the OH bond 
stretch should experience a force constant reduction on 
bonding, while the bend mode should be stiffened. It 
will be desirable eventually to include these internal 
degrees of freedom in a more complete theoretical 
study of binding in the dimer. 

V. QUANTUM CORRECTIONS IN THE STATISTICAL 
THEORY 

A. Definitions 

We now consider the thermal equilibrium behavior 
of N water molecules on the bcc lattice. The N-mole­
cule Hamiltonian operator 

(5.1) 

consists of the kinetic and potential energy operators 
specified in Eqs. (1.1) and (3.1), respectively. The 
corresponding partition function Z and associated free 
energy F at absolute temperature T are given by 

Z = Tr[exp(- ,BIl)] =exp(- (3F), 
(5.2) 

where the trace involves a basis suitable for the given 
isotopiC species. 

Let the eigenvalues of H be denoted by E U' Since the 
lattice-gas model confines the separate molecules to a 
discrete set of positions and orientations, there will be 
a finite number M of eigenvalues (provided the lattice 
is finite) so we take 1 ~ j.J. ~ M. Thus, we can write 

{3F=: -In[~eXp(- (3Eu1 

'" -lnM -In(exp(- (3Eu) , (5.3) 

where the angular brackets denote an unweighted aver­
age over eigenvalues, 

1 M 
(f(Eu) '" M ~ f(Eu). (5.4) 

Equation (5.3) may be expanded in a (3 power series, 
with coefficients that are cumulants of spectral mo­
ments18

: 

{3F = - InM + (3(E u) - t # [(~u) - (E Y] 
+i{33[(E::,>-3(~u)(Eu>+2(EY]-"" (5.5) 

The "classical limit" partition function Zo corre­
sponds to the limit in which the molecular mass and 
moments of inertia all become infinite. This limit 
causes the kinetic energy operator T to vaniSh, so that 
the E JJ. are then eigenfunctions of Valone. 

Molecular distribution functions pIs) may be defined as 
follows: 

= Z-1 Tr fexp( - ,BIl) iI n( a j, W j)] , 
~ j=1 

(5.6) 

where n(a, w) is the number operator for molecules on 
site a with orientation w. pIS) gives the probability 
that the given s sites are simultaneously occupied with 
the specified orientations. The" classical limit" dis­
tribution functions p~S) naturally correspond to setting 
T= 0 in both numerator and denominator of Eq. (5.6). 

B. Low density limit 

If the number of sites n in the bcc lattice far exceeds 
the number of molecules N, the system will comprise 
a dilute vapor in which collisions are rare. Then pro­
vided the temperature is not too low (to avoid cluster­
ing), the molecules will virtually always be free and 
will move independently. The N-molecule energy spec­
trum may then be regarded as composed additively of 
single-molecule energies Ev, where 1 ~ 1I~ M 1• Taking 
due account of molecule identity, we have in this case 

(5.7) 

Consequently, in the dilute vapor regime the N-mole­
cule partition function Z may be expressed simply in 
terms of the single-molecule partition function Z1: 

(Z t Ml 

Z~ N~ , Z1 = ~ exp(- (3Ev). (5.8) 

Just as it was possible to generate the cumulant ex­
panSion (5.5) for the full N-molecule spectrum, so can 
a similar cumulant expansion be generated for the 
single-molecule spectrum. In this way we can verify 
that the low-density form for Eq. (5.5) is as follows: 

(3F =N {-In(eM1/N) + {3(E)1 - t {32 [(E~)1 - (E)D 

where now 

1 M1 

(f(Ev) 1 = M1 ~ f(Ev)· (5.10) 

The obvious isomorphism of cumulants in Eqs. (5.5) 
and (5.9) persists to all orders on account of the fact 
that Eo is additively composed of N independently dis­
tributed variables Ev. 18 

Since we have assumed from the outset that trans., 
lational and rotational motion do not couple, each Ev 

will itself consist of separate translational (t) and 
rotational (r) parts: 

(5.11) 

This permits the cumulant series (5.9) once again to be 
resolved into separate components for the individual 
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degrees of freedom: 

(3F IN = -In(eM1IN) + {3{(E)l + (E)J 

- t~{ [(E~)l - (Etm + [(E~>t - (E7)~]) 

+~{33{[<E~)1- 3(E~)1 (E t)l +2(Et)~] 

+ [(E~>t - 3(E~>t (Er>+ 2(EYJ) - • " . (5.12) 

The translational energies, for periodic boundary 
conditions, are easily found to be 

Et(k) = (41i2Im12) [1 - cosdk,J) cos(ik)) cos(ikzl)] , 

(5.13) 

where the 52 vectors [k = (kx, ky, k,.)] form the dodecahe­
dral first Brillouin zone for the bcc lattice. 19 Notice 
that near k = 0 the dispersion relation (5.13) is locally 
parabolic, and agrees with that for translation in free 
space. 

Rotational energies Er were determined in Sec. II 
above, and may be extracted from Tables IV-VI. It is 
important to recall that the levels listed there may be 
either even (+) or odd (-) under hydrogen atom ex­
change, so care must be exercised to select the cor­
rect weights depending on hydrogen isotope nuclear 
spins S(= i, 1, and t, for H, D, and T, respectively). 

In the classical limit defined above, all single-mole­
cule energies (both translational and rotational) col­
lapse identically to zero. Each cumulant in series 
(5.12) likewise vanishes in the classical limit. By re­
storing T to the problem the energy levels are shifted 
and spread apart, so as to produce nonvanishing cumu-

Here we have written 

(5.18) 

In order to keep the discussion as simple as possible, 
we shall use the spherical rotor form (2.21) for the 
rotational kinetic energy operator. Referring as well 
to Eq. (1.2), one has 

(5.19) 

where X and Y have been defined above [in Eqs. (5.14) 
and (5.15)], and operators '.T t and '.Trare devoid of 
physical parameters (f3, m, Ii, 1, A, B, C). In partic­
ular these operators have the following properties when 
operating on the N-molecule wavefunction 111: 

']'t II1(Q, w) = SNII1(Q, w) - L II1(Q', w), 
cr' 

(5.20) 
'.T r II1(Q, w) = 6NII1(Q, w) - L II1(Q, w'). 

tA' 

Here Q comprises the full set of occupied sites with 

lants in Eq. (5.12). 

USing energy units (3-1, the shift expected for trans­
lational energies Et will be proportional to the dimen­
sionless parameter5 

(5.14) 

The analogous dimensionless quantity for rotational en­
ergy shifts may be taken to be 

(5.15) 

The free energy series (5.12) for the dilute vapor could 
be written as separate power series in X and Y with no 
cross terms. Since collisions can produce coupling be­
tween translation and rotation, we expect cross terms 
in X and Y to occur at higher vapor density, and to be 
Significant in liquid and solid phases of water. 

In the case of H2
160 at ooe, X and Y have the fol­

lowing values (assuming that the nearest-neighbor dis­
tance is 2.85 A): 

X = 6. 069X 10-4, Y = 4. 537x 10-2. (5.16) 

The relative importance of these parameters cannot 
be judged before examining their respective coefficients 
in the series of interest. 

C. Asymptotic free energy corrections 

We now examine the case of arbitrary density. With 
respect to the free energy F, we seek explicit expres­
sions for corrections to the classical-limit free energy 
Fo in leading orders of X and Y. For this purpose it is 
convenient to use the following formal expansion5,2o: 

(5.17) 

only single occupancy permitted; the sets Q' included 
in the summation differ from Q in that one molecule 
has been displaced (with fixed orientation) to an empty 
nearest-neighbor site. Likewise w comprises all N 
molecular orientations; the permissible w' differ only 
by a single C4 rotation of any of the molecules. 

When expressions (5.19) and (5.20) are used to re­
place f3T in Eq. (5.17), the resulting operator series 
can be used to calculate the trace required by partition 
function Z in Eq. (5.2). It is clear that terms of all 
orders in X and Y will be generated by that procedure 
including cross terms. We omit details since they par­
allel those in Ref. 5 so closely. The final result will 
have the follOWing form: 

InZ=lnZo+ 1::1 A"n(f3)X,yn , (5.21) 
(/+n)O) 

where of course 

ZO= Tr[exp(- f3V)] 
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provides the classical-limit partition function. 

The leading coefficients At • o and Ao• t involve only the 
diagonal parts of the operators 'l't and 'l' ,. Consequent­
ly, they are trivial to evaluate. One finds 

At •o= - 8N, Ao•t = - 6N. (5.22) 

Since the corresponding contribution to the free energy 
F, namely - N(8X + 6Y)//3, is independent both of tem­
perature and volume, these leading-order quantum cor­
rections cannot affect the pressure equation of state 
[recall that p = - (aF jaVkTl. 

The second-order corrections in Eq. (5.21) involve 
the nondiagonal parts of 'l't and 'l' ,. In particular, two 
molecular shifts (in position or orientation) must occur, 
after which the system of molecules has returned either 
to its original configuration or to one equivalent to it 
by permutation of identical particles (with identical spin 
variables). This requirement can be satisfied in three 
ways: 

(a) shift of anyone of the N molecules (at fixed ori­
entation) to an empty nearest-neighbor site, and then 
back again; 

(b) C4 rotation of any molecule, followed by the in­
verse rotation to restore the original configuration; 

(c) two successive rotations C~ (in the same sense) 
so as to interchange positions of hydrogen nuclei with 
identical spin variables. 

where S stands for the hydrogen-isotope nuclear spin. 
The first w' summation [corresponding to (b) above], 
includes all C4 rotations from w, while the second in­
cludes only those about the molecular symmetry axis. 
The upper sign is appropriate for bosons (i. e., deuter­
ons), the lower for fermions (protons or tritons). 

In contrast to the first-order corrections, the sec­
ond-order contributions affect the pressure equation of 
state. Since A2•0 is always positive it acts to reduce 
F; however, its ability to do so is hampered at high 
compression due to lack of empty sites into which 
translational shifts could occur. Consequently, lower 
densities receive greater A2• 0 stabilization, and in par­
ticular this term will act to raise the vapor pressure 
of condensed phases. Similar comments apply to the 
first part of AO•2 in Eq. (5.25), corresponding to cate­
gory (b) of C 4 rotations and returns. The exchange part 
of AO•2, corresponding to category (c) with two C: rota­
tions, acts in the same way for bosons (D) but oppo­
sitely for fermions (H, T). 

Following the procedure outlined in Ref. 5, higher­
order quantum corrections for F can also be derived. 
They require knowledge of n-step shift probabilities 
(including both translations and rotations) in the clas­
sical-limit ensemble. The results are rather com­
plicated, and we do not reproduce them here. We re­
mark only that with the bcc lattice, cross terms in-

The first of these provides coefficient A2• 0, while the 
second and third combine to give AO•2 • Since the given 
requirement cannot be satisfied with one translational 
shift and one rotational shift, A t • t must vanish. 

In order to give explicit form to the second-order 
quantum corrections, it is necessary to introduce a 
"shift probability" Qo for the classical-limit lattice gas. 
Specifically, the symbol Qo(a, w; a', w'; 6.V) will stand 
for the probability (in the classical limit) that (1) site 
a is occupied by a molecule with orientation w, (2) 
site a' (if it is distinct from Q') is empty, and (3) that 
transfer of the molecule at a, w to a', w' causes the 
total potential energy to change by 6. V. 

With this definition in hand, one obtains 

A2 • 0 = z:: Qo(a, w; a', w'; 6.V)!(/36.V), 
01,0/ ,w, 

(5.23) 

l>V 

where 

(5.24) 

is a monotonically decreasing positive function of x. 
In the summations indicated in Eq. (5.23), a covers 
all lattice sites, but a I is restricted to be a nearest 
neighbor of a. With potential energy V restricted to 
the form discussed in Sec. III, 6. V can have only a 
finite set of distinct values, all of which must be in­
cluded in the summation. Similarly, one finds 

(5.25) 

volving both X and Yare encountered first in fourth 
order, where A2 •2 "" O. 

D. Molecular distribution functions 

For completeness, we now state the leading-order 
quantum corrections for the molecular distribution 
functions p(s) that were defined in Eq. (5.6). Except 
for minor modifications the derivations follow those 
provided in Ref. 5 and again rely on the operator ex­
panSion (5.17). 

No first-order corrections arise for any p(S). In 
order to express the second-order corrections, it is 
necessary to introduce a generalization of Qo above, 
to accommodate the site occupancy required by p(S). 

Let 

(s) - - - -I I I Qo (at, w 1, •• " as, w. a, w; a , w ; 6. V) (5.26) 

represent the classical-limit probability that (1) ini­
tially sites a1' .. as are occupied by molecules with 
respective orientations w1 , •• w., (2) site Q' (possibly 
one of a1 • •• as) initially has a molecule with orienta­
tion w, (3) site a ' is initially empty, and (4) shift of the 
particle from a, w to a', w' causes the total potential 
to change by amount 6. V. At least in the fluid region of 
the phase diagram, QciS

) should reduce to the prior Qo 
if Q' and a ' are widely separated from a1 ' •• as. 
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One finds 

p(S)(a1' •• ws) =p~S)(al ••• ws) [1 + A~:~(al ... ws)X
2 + A~:~(al ••• ws) y2 + ••• ], 

where 

(5.27) 

A~:~ = L f((3~ V) [Q~S)(al .•• wsl a, W; a', W; ~ V) - Qo(a, W; a', W; ~ V)] (5.28) 
a,a',w, 

AV 

The function f was defined in Eq. (5.24). The same 
summation conventions apply in Eqs. (5.28) and (5.29) 
that did for the analogous Eqs. (5.23) and (5.25). 

The results shown for Ai:~ and A~:~ have an obvious 
interpretation. The presence of s particles in a1 • •• Ws 
influences the second-order free energy corrections 
involving two-step translational or rotational shifts. 
The relative degree to which these fixed particles sta­
bilize or destabilize the system influences the probabil­
ity of their spontaneous occurrence in the canonical 
ensemble, and p(s) is affected accordingly. 

VI. DISCUSSION 

All of the calculations in the present paper have been 
based on the body-centered cubic lattice illustrated in 
Fig. 1. The sites in this lattice afford only a coarse 
subdivision of space, so that it is desirable to identify 
finer lattices for future applications. 

With respect to translational motion, it has been 
pointed out before21 that the bcc lattice can be embedded 
in a fcc array with 16 times the site density. Sites which 
were originally nearest neighbors become sixth-neigh­
bors. Use of this higher density array would permit 
hydrogen-bond bending, stretching, and compreSSion 
to occur, as it surely must in real liquid water. Hy­
drogen-bond polygons with an odd number of sides be­
come possible for the first time. 

In principle this increase in density of translational 
sites could be implemented while retaining the same 24 
discrete orientations permitted at the outset. However, 
it seems at least as important to provide a larger num­
ber of orientations. 

Figure 3 shows that a regular pentagonal dodecahe­
dron can be erected about a cube, such that the ver­
tices of the latter are coincident with eight of the 20 
vertices of the former. If a water molecule is located 
at the center of the cube, it has 120 distinct orienta­
tions (regarding its hydrogens as distinguishable) that 
point OH groups toward pairs of pentagonal vertices. 
Of course one-fifth of these are the o">iriginal 24 orienta­
tions for the cube alone. 

Examination of Fig. 3 shows that there are two ways 
that the dodecahedron can be placed around the cube. 
USing both ways simultaneously to define acceptable 

(5.29) 

orientations leads to a total of 216 molecular orienta­
tions, nine times as many as permitted in the elemen­
tary bcc model. No doubt this elaboration would dra­
matically improve ability to fit the lower portion of the 
water-molecule rotational spectrum. 

All lattice-gas models for water to date have treated 
the individual molecules as rigid and forever stable. 
However, it should be noted that this point of view can 
be relaxed to allow molecular dissociation into H+ and 
OH-. The most straightforward way to achieve this end 
is to treat the entire collection of 0 and H nuclei as 
dynamically distinct entities subject to a suitable set of 
forces which can cause molecules spontaneOUSly to 
form; in fact these forces can be central and additive. 22 

The bcc lattice would still be a suitable set of sites for 
oxygens, while trisection of each 0-6 nearest-neigh­
bor line would provide suitable sites for hydrogens. 

FIG. 3. A regular pentagonal dodecahedron erected about a 
cube, the vertices of the latter being coincident with eight of 
the 20 vertices of the former. 
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The resulting theory would provide valuable insights 
into both equilibrium and kinetic aspects of the dis­
sociation-association process in water. 

*Present address: Chemistry Department, University of Ore­
gon, Eugene, OR 97403. 
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