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Application of hypernetted-chain integral equations to 
a central-force m o d e l  o f  water 
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(Received 20 April 1976) 

Hypernetted-chain (HNC) integral equations have numerically been 
integrated to give atom-pair correlation functions for supercritical water. 
The classical model employed postulates additive central interactions for each 
pair of H and O particles. At low temperature these interactions are known 
to cause separate non-linear H~O molecules to form spontaneously, and then 
to engage in hydrogen bonding. The high-temperature, low-density fluid 
structure found in this study also exhibits formation of intact molecules (though 
incompletely), accompanied by substantial molecular distortion. The direct 
iterative solutions constructed here pave the way for efficient variational 
extension toward room temperature. 

1. INTRODUCTION 

A vast amount  of scientific effort has been expended in theoretical investiga- 
tion of the equil ibrium structure and thermodynamic  properties of liquid water 
[1]. While many recent advances stem from direct numerical simulation of 
hamiltonian models of water [2-5], the formulation of an analytical approach to 
the full statistical mechanics of water remains an important  and largely unresolved 
issue. We report  in the present paper an exploratory study aimed at partial 
resolution of the problem. 

T h e  models of  water that have received most serious attention to date have 
been based upon a representation of the molecules by rigid arrays of unpolarizable 
force centres [6]. On account of molecular rigidity, the interaction between two 
molecules, consisting of coulombic and non-coulombic terms, depends strongly 
on relative molecular orientation as well as on the separation of the centres of 
mass. This  non-central  component  of the energy of interaction is sufficiently 
complicated to make the development of an approximate analytical theory of 
liquid water a formidable task indeed. 

In a previous paper [7] the present authors have described an approach which 
attempts to c i rcumvent  this difficulty. A class of models for water is defined 
which is based upon central-force interactions operating between point-charge 
ions that move separately. Three  potential functions are required to specify 
the interactions between ' oxygen  ions '  and ' h y d r o g e n  i o n s ' ;  as shown in 
reference [7], a set of potentials may be constructed which constrains two hydrogen 
ions and one oxygen ion to assume the known monomer  geometry (bond length 
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354 H. L. Lemberg and F. H. Stillinger 

0.9584 A, bond angle 104.45~ and which also enforces linear hydrogen bonding 
between two neighbouring molecules. The following set of functions was 
explored in reference [7] : 

144"538 1'69712x 106 4"03939x 10 a 
Voo(r)/kcal mol-* = )(/tx',"*~ -} (r/A)l 2 - (r/a)6 , (1.1 a) 

voH(r)/kcal mol 1_ 
72.269 2-66366 (r/A~q (r/A)14.9797, (1.1 b) 

VHH(r)/kcal mol 1 _ _ _  
36.1345 30 

(r/N) l- 1 +exp [21.9722(r/A- 2.125)] (1.1 c) 

-26.51983 exp [.-4.728281 (r/A-1.4511)2]. 

These functions are displayed graphically in figure 1. 
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Addit ive central interactions used to model water. 

An important justification for a central-force approximation to water inter- 
actions is the extent to which the evaluation of the liquid's equilibrium structure is 
facilitated. In the present paper we report some highly encouraging results 
from solution of the hypernetted-chain (HNC) equations [8] for central-force 
water. A molecular dynamics investigation reported separately [9] (for a set of 
potentials similar to (1.1 a) (1.1 c)) has firmly established that central forces 
alone can account for hydrogen bonding and nearly tetrahedral order in liquid 
water. Because the interactions are independent of angular degrees of freedom, 
these computations proceeded somewhat more rapidly than comparable calcula- 
tions with the BNS reference [2] or ST2 reference [4] potentials. 

By focusing attention on spherically symmetric ions instead of complete 
molecular units, the central-force representation of water molecule interactions 
considerably simplifies the statistical mechanical description of wa te r .  Thus, 
each pair distribution function (for ions) is dependent on a single distance 
variable ; the internal energy, virial pressure, and dielectric response are among 
numerous physical properties that can be expressed in relatively compact form 
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Central-force model of liquid water 355 

for the model [7]. In addition, the central-force formulation treats intra- and 
intermolecular forces from a unified point of view, and makes possible, for the 
first time, some study of the consequence of molecular non-rigidity, as well as 
dissociation. 

Some comment seems in order regarding the choice of hypernetted-chain 
theory in this paper. From the integral equation studies that have been 
pursued in recent years, one may fairly conclude that different approximate 
integral equations (HNC, Percus-Yevick [10], Born-Green [11], etc.) are 
appropriate for different fluid systems. Thus, the Percus-Yevick theory appears 
to encompass those classes of cluster diagrams which are important for systems 
dominated by repulsive interactions. The H N C  approximation, on the other 
hand, provides a more realistic treatment of systems with strong attractive 
forces and with long-range coulombic forces. The HNC work of Friedman and 
his collaborators [12], for example, stands as a significant contribution to the 
theory of electrolyte solutions. More recently, Hansen and McDonald [13] 
have successfully solved HNC equations for symmetrical models of a dense 
molten salt. We wish to establish in the present paper that the HNC approxima- 
tion may also be fruitfully applied to the study of polyatomic liquids. Water, 
anomalous in many respects, probably presents the most severe test for such an 
investigation. 

2. HNC INTEGRAL EQUATIONS 

As modelled by central forces, water consists of a binary mixture of positive 
(hydrogen) and negative (oxygen) ions, bearing charges q and - 2q, which inter- 
act in a pairwise manner. A complete set of integral equations for such a system 
is most compactly expressed in a 2 x 2 matrix representation. With pair cor- 
relations g~j defined in the usual fashion (see reference [14]), one constructs a 
matrix I-I(r) of indirect correlation functions with elements h~j(r )=gi~(r ) - l .  
The Ornstein-Zernike (OZ) relation then determines a matrix T(r) of direct cor- 
relation functions (dcf's) t~j(r) by 

T(r) = H(r) - ( [-t*T + T* H )/2. (2.1) 

The asterisks in (2.1) denote a matrix product and convolution operator in which 
each term is weighted by an appropriate concentration variable % : 

(H*T)~.j-- y~ ck~ dr' H~k(]r'])Tkj(Ir--r ' i) .  (2.2) 
k 

Equation (2.1) has been expressed in a symmetrized form to emphasize the fact 
that the matrix OZ relation comprises only three independent scalar equations for 
the binary mixture. 

In order to obtain a complete set of integral equations for the liquid structure, 
a second set of relations between sets {h~j(r)} and {t;t(r)} must be chosen. For 
reasons discussed in the Introduction, the H N C  approximation was adopted for 
study in the present efforts. In terms of the correlation functions defined 
above, the HNC equations may be expressed as 

hit(r ) = exp [h,t(r ) - tit(r ) - fivit(r)] - 1, (2.3) 

i, j = O ,  H 
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356 H . L .  Lemberg and F. H. Stillinger 

where fi = 1/k~ T and vij(r ) is the potential energy of interaction between particles 
of species i and j which are separated by distance r. 

Although the HNC approximation gives rise to some inconsistencies when 
the integral equation solutions are employed to evaluate thermodynamic quanti- 
ties (such as internal energies and pressures from virial and compressibility 
expressions), for an ionic system the equations are fully consistent with funda- 
mental physical requirements on the zeroth and second moments of the pair 
correlation functions [15] : 

Co I [goH(r) - goo(r)] dr = 1, (2.4 a) 

c~ I [goH(r)--gHn(r)] d r =  1, (2.4 b) 

I [2goH(r) -- goo(r) -- gntI(r)] r2 dr  = 3k B T/87rcoZq 2. (2.4 c) 

The first two of these equations express the electroneutrality of a system of N 
oxygen and 2N hydrogen ions in the thermodynamic limit (N, V-+oo, c o= 
N / V  constant), whereas (2.4 c) summarizes the way in which dielectric screening 
affects the long-range correlations between essentially ionic particles. 

In addition to conditions (2.4), a satisfactory treatment of water by means of 
integral equations should be consistent with known data on molecular stoichio- 
metry and structure. Thus, at low temperatures ( ~  room temperature), two 
hydrogen ions should be bonded to each oxygen ion, with OH bond distances 
~0.96 h and an unbonded H H  distance of ~ 1.52 A (corresponding to the 
equilibrium HOH angle of 104.5~ A reasonable approach to the structure and 
properties of liquid water should therefore exhibit saturation of the extremely 
strong attractive forces which are entailed by (1.1 b). On a quantitative level, 
these structural restrictions on the monomer are best stated in terms of a separa- 
tion of intra- and intermolecular distance scales. At ordinary temperatures this 
separation will be nearly exact (except for the one molecule in roughly 108 which 
dissociates); as a consequence, the correlation functions goH(r) and grin(r) 
should assume values very close to zero within intervals around r = 1"3 A and 
1-9 A, respectively. The stoichiometric conditions can then be written as 

LOll 

Cn I goH(r) dr=2, (2.5 a) 
O 

and 
LHH 

c n • gHH(r) dr=l ,  (2.5 b) 
o 

where Loll ~ 1.3 A and LHH % 1.9 A. 
At high temperatures and pressures, significant molecular distortion and/or 

dissociation may occur. Under these circumstances (2.5 a) and (2.5 b) may not 
hold exactly. The left-hand sides retain an instructive physical content, none- 
theless, if we define Loll and LHn as locations of the first minima in goH(r) and 
gHH(r), and interpret the integral expressions as the number of OH and H H  pairs 
per molecule. In spite of the imperfect separation of distance scales at elevated 
temperatures and pressures, saturation of the attractive forces should be manifest 
in the relatively small number of OH pairs which populate the region r ~<LoH, 
and H H  pairs which populate r G LHH. 
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Central-[orce model o[ liquid water 357 

3. METHOD OF SOLUTION 

To expedite numerical solution of (2.1) and (2.3), the equations were re- 
formulated. Because of the convolution operator in (2.1), this equation is most 
conveniently written in terms of Fourier-transformed correlation matrices 

t ( k ) =  j dr  T(r) exp [ ik.  r], 
(3.1) ( 

I=l(k) = j" d r  H(r) exp [ik.  r ] , J  

as 

t ( k )  = A(k) - (# l (k)Ct (k)  + t ( k ) C  IZl(k))/2. (3.2) 

(2 is a diagonal matrix of number  concentrations (Cij =c~3ij ). 
The direct correlation functions are next re-expressed in terms of their 

short-ranged components by defining 

t~j~(r) = t~j(r) + fl~q---J [1 - exp ( - ar)]. (3.3) 

Addition of the Coulomb potential times 1/kBT cancels the long-range tail in the 
full dcf, while the exponential correction ensures that all t~fl(r) remain well 
behaved near r = 0. 

Using the matrix T~(r) of short-ranged functions t~fl(r), the OZ relations can 
be written in terms of functions which are well behaved both in real space and in 
the space of transform variable k. We first define I~(k), the matrix Fourier 
transform of ' excess terms ' in (3.3) : 

flqiqja2 �9 (3.4) 
0 ,J (k )  = k2(k + a2 ) , 

then equation (3.3) becomes 

�9 ~(k) = A ( k ) +  O ( k ) -  A ( k ) C ( * ~ ( k ) -  Q(k))/2 

- ('l'~(k) - 0 ( k ) ) r  ~ ( k ) / 2 .  (3 .5)  

If we next define a short-ranged potential energy component vifl(r ) by 

v ~(r~ = v~j(r) - qs_2 [1 - exp ( - at)], (3.6) i t \  / r 

the H N C  approximation may be represented as 

hlj(r ) = exp [h~j(r) - t~.fl(r) - flv ifl(r)] - 1. (3.7) 

Equations (3.5) and (3.7) are the forms that were used for numerical work. 
Solution of the equations was attempted by an iterative method which relied 

upon the Cooley-Tukey Fast Fourier Transform [16], and which employed 
molecular dynamics results for initial estimates of h~j(r) and tlff(r ). Matrix 
transforms from step n were used in (3.5) to generate approximation n +  1 for 
t~(k) ; after Fourier inversion, the new dcf's were inserted in (3.7) to obtain an 
improved set of hij(r ). To ensure stability of the algorithm, linear combinations 
of approximate solutions n -  1 and n were constructed and used as input at the 
(n + 1)st iteration step. 

Numerical investigations were started at high temperatures and low densities, 
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358 H . L .  Lemberg and F. H. Stillinger 
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Figure 2. Atom-pair correlation functions for water at 1900 K, 0'32 g/cm 3. These are 
solutions to the H N C  equations (3.5) and (3.7) obtained by direct numerical itera- 
tion. 

the physical regime in which (3.5) and (3.7) should yield most readily to solution. 
' High temperature ', in this context, refers to thermal energies which are com- 
parable to the depth of the OH potential well entailed by (1.1 b), m3 x 104 K, 
the largest relevant energy parameter characterizing interactions in the system. 
Just as one intuitively expects, the correlation functions are relatively featureless 
under such conditions, except for nearest-neighbour peaks, on account of 
extreme thermal disorder. 

As temperature is lowered, however, the correlation functions begin to develop 
features which reflect the water's distinctive liquid-state structure. At 1900 K 
and a density of 0.32 g/cm ~ (close to the critical density of real water), goo has a 
maximum at 3.18 )~ (see figure 2), reasonably close to the optimal OO separation 
for hydrogen-bonded molecules near room temperature (2.86 A). A prominent 
OH peak centred at 0.98 A reflects the strong attractions which are responsible 
for intramolecular OH bonds in the model, but go~i exhibits little additional 
structure at this temperature. 

The H H  correlations provide support for the feasibility of the present 
approach and deserve somewhat more extended discussion. Even at 1900 K, 
gnr[ divides into distinct intra- and intermolecular regions : the H H  correlation 
function plunges to a minimum of ~ 10 -2 at 2.00 A which is bracketed by tv~o 
well-developed maxima. The peak at 1.46.4 corresponds to an equilibrium 
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Figure 3. Atom-pa i r  correlation functions for water at 1300 K, 0"32 g/cm a. 

distance of 1.52 A in the free molecule ; the decrease in unbonded HH distance 
parallels similar molecular dynamics results [9]. A second HH maximum at 
2.32 A is consistent with linear hydrogen bonding (for the most probable OO 
and OH separations) in which acceptor molecules are oriented at angles some- 
what greater than the value which produces ideal tetrahedral coordination. 

As temperature is decremented from 1900 K, one expects decreasing thermal 
disorder to be manifested in more effective localization of particles in potential 
energy wells. Correlations between particles should therefore extend to large 
separations, as the equilibrium structure for second-, t h i r d - , . . ,  neighbour 
distances reflects the propagation of favoured near-neighbour geometries 
throughout the liquid. Figure 3, which depicts the three pair correlation 
functions at 1300 K and 0.32 g/cm ~, supports these expectations. All three are 
more highly structured than at 1900 K. 

At this lower temperature, goo shows a more pronounced peak at 3.16 A, 
along with a number of subsidiary extrema that were barely perceptible at 1900 K. 
An OH maximum is again observed at 0.98 A, but is now about 25 per cent higher 
than the maximum in figure 2. Intermolecular correlations are significantly 
enhanced at 1300 K, as measured by goi-i ; the secondary local maxima and 
minima have shifted in magnitude and position in ways that suggest a more highly 
ordered liquid. 

Most encouraging for the present study is the fact that the first minimum in 
gOH has decreased in magnitude and has shifted to a smaller distance, both of 
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360 H . L .  Lemberg and F. H. Stillinger 

which imply a growing separation of intra- and intermolecular distances. This 
fact is all the more impressive when one recognizes that near the minimum, the 
bare potential Von assumes values ~ - 40 kcal/mole, corresponding to Boltzmann 
factors of about exp (15) at 1300 K. The H N C  equations apparently produce a 
potential of mean force which has correctly saturated the strong attractions of VoH. 

Finally, we observe the change in gnn  as T is lowered. The two correlation 
regions are more rigorously segregated at the lower temperature, for gHH is an 
order of magnitude smaller at the min imum ( r=2.00  A) at 1300 K. 

The  direct correlation functions, corresponding to the g~j's in figures 2 and 
3, are presented in figures 4 and 5, respectively. They  develop enhanced 
structure as temperature declines, in parallel with the g~/s. The  specific features 
exhibited by the tit's obviously stem from the unusual interactions in the model, 

Figure 4. 
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Direct correlation functions for water at 1900 K, 0'32 g/cm ~. 
correspond to the gij shown in figure 2. 
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Figure 5. Direct correlation functions for water at 1300 K, 0"32 g/cm 3. 
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Central-force model of liquid water 361 

but the detailed shapes and magnitudes obtained for the curves in figures 4 and 
5 seem to have no simple explanations. 

Self-consistency of the numerical solutions reported above was judged by the 
extent to which electroneutrality and second moment conditions (2 .4a)-  
(2.4 c) were satisfied. Although the equations are integral constraints only, the 
three together provide a good qualitative measure of errors in the calculations. 
Since the integrals weight errors in the correlation functions especially heavily 
at large distances, even minor inaccuracies in the long-range structure will be 
enormously magnified. 

At 1900 K the triplet of pair correlation functions corresponds to a model 
fluid which is very nearly electrically neutral, the mean deviation being about 
0.4 per cent. The second moment relation is satisfied to within 4.0 per cent. 
For the lower temperature 1300 K, where there is appreciably greater structure 
in the correlation functions, self-consistency is slightly less satisfactory. The 
two sides of (2.4 a) and (2.4 b) agree to within 1.2 per cent, while the exact 
expression in (2.4 c) is reproduced to within 6.7 per cent. The errors, it should 
be noted, do not reflect inadequacies of the H N C  approach, but are algorithm- 
dependent. Additional refinement of the results by more rapidly converging 
non-iterative methods will undoubtedly improve the degree of self-consistency. 

4. DISCUSSION 

It is our ultimate goal to examine liquid water in the neighbourhood of 300 K 
and 1.00 g/cm ~ as a dual test of HNC theory and of the central-force approach 
to the statistical mechanics of polyatomic liquids. Because the rate of con- 
vergence of the numerical scheme outlined above decreases substantially as one 
proceeds towards this physically interesting state, we have limited the results 
reported here to the high,temperature, low-density regime in which numerical 
solutions are readily obtained. 

More extensive studies will be reported in a later paper. In this connection 
we point out that numerical solution to coupled equations (3.5) and (3.7) can be 
cast into a variational format, with the tij serving as variational functions. With 
a small number of adroitly chosen variational parameters this can be an efficient 
process. In the present case with highly structured tij's , it is clearly necessary to 
have first established the qualitative forms required for these functions by a 
direct iterative solution of the integral equations. The results obtained in the 
present study thus serve as a natural prerequisite to variational extension to those 
lower temperatures where direct iteration co'nverges too slowly (if at all) to be 
practical. 

We believe that the present preliminary report depicts trends which are very 
encouraging for the development of an analytical approach to the theory of 
polyatomic liquids. The separation of intra- and intermolecular correlations for 
central-force water, in particular, is an unprecedented finding in integral 
equation studies. Although not conclusive, the results reported here strongly 
suggest that hypernetted-chain theory offers a promising microscopic blueprint 
for understanding water's unusual liquid state architecture. 

We wish to thank Dr. John D. Weeks for the insights and critical comments 
which he freely contributed during the course of this work. 
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