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Some aspects of phase transition behavior have been studied for a classical system of particles which 
interact in pairs via repelling Gaussian potentials. In a specific low-temperature. low-density limit, this 
model acts as though it were composed of rigid spheres. Study of lattice sums suggests that at T = 0, a fcc 
crystal stable· at low density transforms under compression to a bcc crystal. It is shown that sufficient 
compression at any fixed T> ° always produces a fluid phase. Under suitable temperature and density 
conditions, the model can exhibit positive, negative, or vanishing volumes of melting. 

I. INTRODUCTION 

It is widely believed that the repulsive portions of in
termolecular forces playa crucial role in fluid-solid 
phase changes. l

-4 Molecular arrangements present in 
liquids at their freezing pOints are determined primari
ly by nonoverlap conditions between neighbors, while 
crystal structures formed by solidification demonstrate 
geometrically efficient ways of packing the atoms or 
molecules in space. 5 

Statistical-mechanical studies of freezing have tradi
tionally relied on model systems with very simple re
pulsive forces. Frequently occurring examples are the 
rigid sphere model and inverse-power pair potentials. 
These elementary cases have led to valuable insights 
into the freezing behavior of monatomic substances. 

This paper is devoted to study of another simple 
model. Specifically, the postulated interaction poten
tial <I> consists of a pairwise sum of additive Gaussian 
components. Using suitable reduced units, we thus 
write the N-molecule interaction as follows: 

(1.1) 

The "Gaussian core" model embodied in Eq. (1. 1) 
deserves attention for at least three reasons. First, 
the relative" softness" of the interactions suggests that 
it may display behavior similar to that of real sub
stances which form plastic crystals (low melting en
tropy,6 high solid-phase mobility7). Secondly, this 
model is one for which terms in an asymptotic high
temperature series for the free energy may be evalu
ated explicitly. Thirdly, it should be relatively easy 
to generate a precise data base for the model by digital 
computer simulation. 

We leave each of these attractive features for later 
conSideration. The present paper instead concentrates 
on some elementary properties of the Gaussian core 
model. The conclusions of this study indicate sufficient 
richness of behavior to command attention even beyond 
that of the above three aspects. 

Section II shows that the Gaussian core model re
duces to the venerable rigid sphere model in an appro
priate low-temperature low-density limit. This reduc
tion encompasses both equilibrium and kinetic proper
ties (in the linear transport regime). 

Section III examines the zero-temperature behavior 

of the Gaussian core system at nonzero density. By 
evaluating lattice sums, we seem to have established 
that the stable crystal structure undergoes at least one 
first-order transformation (f. c. c. to b. c. c.) as the 
system is compressed at zero absolute temperature. 

An argument is presented in Sec. IV indicating that 
whenever the temperature is positive, application of 
sufficient pressure to the system will always cause 
melting. This observation implies that a maximum 
temperature exists at which crystallinity persists, and 
at this maximum the melting process entails no volume 
change. 

II. RIGID SPHERE LIMIT 

The classical partition function corresponding to <I> in 
Eq. (1. 1) is the following: 

Z"" (X3N Nl)-l J drl' .. J drN exp(- 13<1» , (2.1) 
v v 

where X is the mean thermal deBroglie wavelength, V 
is the volume, and 13 stands as usual for (kB T)-1. The 
integrand in Eq. (2.1) is a product of pair Boltzmann 
factors 

(2.2) 

It is clear that b is a monotonically increasing function 
of distance. 

Define the temperature-dependent distance R by 

R(j3) "" (lnj3)1/2 ; (2.3) 

at this distance b has risen to 1/ e of its asymptotic 
value. Now consider 

j(x) = lim b(xR). 
8-~ 

By inserting Eq. (2.3) into Eq. (2.2) one finds 

f(x) = lim exp(- &...,2) 

=u(ixi -1), 

where U is the unit step function: 

U(y)=O (y<O) 

=1/e (y=O) 

= 1 (y > 0) . 

(2.4) 

(2.5) 

(2.6) 

Hence on the distance scale established by R at least, 
b acts more and more like the corresponding pair 
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Boltzmann factor for the rigid sphere interaction, as 
T approaches O. 

The discontinuous limiting behavior of b does not 
arise merely because the unit distance R diverges. 
Since one has 

db I = ~(lnt3)l /2 
dr e ' 

r=R 

(2.7) 

the rise of b from 0 to 1 (essentially) is confined to an 
increasingly narrow range in r, even in unscaled units. 
Thus we also have 

limb(x + R) = U(x) • (2.8) 
s-.. 

Since each integrand factor b(r i ) in the partition func
tion develops the same discontinuity at the low-tem
perature limit, the collection of N particles should be
have as a system of rigid spheres in that limit (pro
vided the density is low enough that all particle pairs 
can stay beyond distance R). 

We now make this assertion more precise. The ex
cess Helmholtz free energy for the Gaussian core 
model, F~ex), is related to the configuration integral 
in Eq. (2.1) as follows (p=N/V): 

exp [ - (3F~·x) ({3, p)] = V-N J dr1 ••• f drN exp( - (3cJ» • 
y y 

(2.9) 
An exactly analogous relation defines the hard-sphere
model excess free energy F~"sx) ({3, p) for N spheres with 
diameters a in volume V. Then the preceding consider
ations lead to the conclusion that 

. F~ex>[,B poas / R3({3) L 
11m F texl [{3] -1, 
S -.. HS ,Po 

provided of course that 

poa3 <..!2 , 

(2.10) 

(2.11) 

so that the geometric close packing density is avoided. 

It is also clear that the low-temperature behavior of 
the b's will cause molecular distribution functions for 
the Gaussian core model to approach rigid-sphere 
values. SpeCifically, the sth order correlation function 
for the Gaussian case is defined by 

(s)( (3 ) _ V' f r dr,.+1 • •• f Y drN exp( - (3cJ» 
gG rl···r., ,P- fd fd (_/l;o..) 

y rl'" y rN exp ~ 
(2.12) 

and a similar expression applies for the {3-independent 
hard-sphere function g~~ (rl'" r s ' p). Then 

limgJ')[(R/a)rts')[ . (R/a)r" j, po a
3
/R

3
] = 1 (2.13) 

8-" gHS rl··· r., Po 

if Eq. (2.11) is satisfied and if 

Irj-ril >a (l~i,j, ~s). (2.14) 

Just as we have demonstrated asymptotic reduction 
to hard-sphere behavior for all equilibrium properties, 
the same can be shown for kinetic and transport proper
ties at least close to equilibrium. This follows by con
sidering first the steepness of the Gaussian core for 
low-energy collisions, then examining the turning-
point spread for such collisions. 

Note that the inverse-power potential function 

rpo(r) = (a/rY' (2.15) 

has the following logarithmic rate of change: 

rpf/rpo= -n/r . (2.16) 

The corresponding quantity for the Gaussian interaction 
is 

rp '/ rp = _ 2r . (2.17) 

The position-dependent "effective exponent" for the 
Gaussian, to be denoted by n*(r), can thus be specified 
by setting 

-n*(r)/r=-2r, n*(r)=2r. (2.18) 

Locally the Gaussian appears to act as a steeper and 
steeper wall as r increases, thus setting the stage for 
reduction to rigid-sphere dynamics if the preponderance 
of incident energies is low enough. 

We now turn attention to the collision mechanics for 
a pair of Gaussian particles. In the center of mass 
coordinate system, the radial coordinate r(t) is de
termined by the differential equation 

dr/dt=± 2{[E -exp(-r2)]/m - L2/m2r2}1/2, (2.19) 

where E is the energy of relative motion, L is the angu
lar momentum, and m is the mass of each particle. 8 

If E is small, the minimum value of r for most col
lisions will be essentially determined by the centrifugal 
barrier term L2/m2r2, i. e., the particles pass each 
other at sufficient distance to experience negligible 
mutual deflections. However, if L is also small (so 
the particles are initially well aimed toward each other), 
the minimum-r turning point r m will be jointly deter
mined by the centrifugal barrier and the direct central 
interaction. Equation (2.18) assures that the switch
over will be a sudden one. Suppose, for one of these 
collisions, that 

(2.20) 

so that 1J measures the relative contribution of the two 
terms at the turning point. Since dr/ dt vanishes at r "', 

(2.21) 

Since E is very small, the value of r m will be domi
nated by the term (_lnE)l /2; the TI part would provide 
only a negligible fractional change for any 1j of order 
unity. Consequently for those encounters producing 
significant enough deflections to be classed as "colli
sions," the distances of closest approach cluster strong
ly about (-lnE)l /2. In view of the specific functional 
form of this result, a modest spread in E values would 
cause little change in the clustering of turning points. 
In particular this is the observation already made about 
b(r) for the Maxwell distribution of velocities, where 
R(t3) in Eq. (2.3) merely incorporates a suitable aver
age collision energy. The implication of the more de
tailed collision analysis is that even with a modestly 
perturbed Maxwellian distribution, collisions can con
tinue to behave as though rigid particles were involved. 
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An important conclusion following from the asymptot
ic reduction to rigid-sphere behavior is that in the low
density, low-temperature regime, the system of Gauss
ian particles undergoes the same fluid-solid transition 
as does the rigid-sphere model to a close-packed crys
tal. Computer simulations for the hard-sphere model 
indicate the following parameters at that transition9

: 

(P/PcP)flUld=O.667±O.003, 

(p/PcP)solld=O.736±0.003, 

tJp/PCp=8.27±0.13 , 

c,S/Nk=1.16±O.10. (2.22) 

In these expressions Pcp stands for the maximum pack
ing density. Although the cell cluster theory suggests 
that the hexagonal close-packed lattice has greater 
stability than the face-centered cubic lattice for hard 
spheres, the difference is predicted to be very small. 10 

Molecular dynamics studies have been unable as yet to 
detect a stability difference,l1 whose existence there
fore remains an open question. By implication, then, 
the stable crystal structure for the Gaussian core model 
is similarly uncertain in the limit used in Eqs. (2.10) 
and (2.13). 

III. LATTICE SUMS 

The structure of the Gaussian core system at T = 0 
will be the next object for study. It is natural to ex
pect that this structure, corresponding to the particle 
arrangement with minimum total interaction <I> , will be 
crystalline. Consequently we have evaluated lattice 
sums for several simple lattices, over a wide range of 
particle densities, in an attempt to identify the absolute
ly stable arrangement. We are concerned here only 
with the conventional large system limit (N, V - 00, P 
fixed), so that the results will be unaffected by the 
presence of boundaries. 

For any crystal in which all particle sites are equiv
alent, the relevant lattice sum may be written as fol
lows: 

~ 

<t 1" r. (2 l2) N=2~ Zyexp -~y • 
(3.1) 

The terms in this sum collect contributions from suc
cessive shells of neighbors, indexed by v. The nearest 
neighbor distance has been denoted by l; the vth neigh
bor shell comprises Zy particles at distance ~y l. It is 
useful to compare lattice sums with <I>oIN, the mean 
interaction energy per particle for a random particle 
distribution at the given density: 

TABLE I. Lattice-sum parameters. 

Total 
Lattice c[Eq. (3.3)] Max. v Max. ~~ neighbors 

s.c. 1 92 108 4728 
b.c.c. 33/2/4 68 200/3 2974 
f.c.c. 21/l 60 65 3102 
h.c.p. 2112 130 185/3 2882 
dia. 33/2/8 80 328/3 3108 

TABLE II. Lattice sums (iI>/M for the Gaussian core modeL 

p S.C. B.c.c. F.c.c. 

0.1 0.0294885602 0.0178224647 0.0173386422a 

0.2 0.1791163214 0.1526057824 a 0.1528149849 
0.3 0.3968345053 0.3734162339a 0.3742473692 
0.5 0.9088059189 0.8987023648 a 0.8993063911 
0.7 1. 453802333 1.450207325a 1. 450443624 
1.0 2.285028123 2.284296878 a 2.284342296 
2.0 5.068333242 5.068328175a 5.068328351 
3.0 7.852492056 7.852491996a 7.852491997 
5.0 13.42081999 13.42081999a 13.42081999 
7.0 18.98914799 18.98914799a 18.98914799 

Hcp. nia. Random 

0.1 0.0173387416 0.0621164883 0.2784163998 
0.2 0.1528284648 0.2424360989 0.5568327997 
0.3 0.3743070889 0.4578664986 0.8352491995 
0.5 0.8994156605 0.9446984950 1. 392081999 
0.7 1. 450519692 1.471692930 1. 948914799 
1.0 2.284368105 2.290956417 2.784163998 
2.0 5.068328641 5.068503672 5.568327997 
3.0 7.852492000 7.852498865 8.352491995 
5.0 13.42081999 13.42082001 13.92081999 
7.0 18.98914799 18.98914799 19.48914799 

aDenotes apparent stable structure. 

(3.2) 

Not all lattice sums tested would have to give lower re
sults than this, but certainly the stable configuration 
must. 

No finite procedure exists for deciding with absolute 
certainty what the stable 1'= 0 structure is. But it is 
plausible to expect that structure to be found among the 
simple and highly symmetrical lattices. Consequently 
that is where we have searched. We do not rule out the 
possibility that our tentative conclUSions could be pre
empted by results of further search, though at least at 
low densities this seems unlikely. 

The specific lattices examined were simple cubic, 
body-centered cubic, face-centered cubiC, hexagonal 
close-packed, and diamond. For each, the nearest 
neighbor distance is related simply to p: 

l3=C/p, (3.3) 

with the various c values listed in Table I. The lattice 
sums were evaluated in all cases by inclusion of spheres 
of more than 2800 neighbors (Table I lists specific 
numbers), supplemented by integral estimates of more 
remote contributions when necessary. 

Table IT displays some representative results for the 
lattice sums, from a much more exhaustive study. 
Even before doing the calculations, one could antici
pate that the face-centered cubic structure would pre
vail at T = 0 for low density, and that is borne out by 
the table. The most important featUre of the low-den
sity case is the nearest-neighbor distance, and this 
distance is maximized by the f. c. c. and h. c. p. lat
tices. However, where these lattices first differ in 
coordination shell structure, h. c. p. has two neighbors 
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TABLE III. Coexistence parameters for T= 0 structural tran
sition. 

P 
if>/N 

P 
D.P 
t:,H/Nl 

F.c.c. 

0.17941 
0.115465107 

0.05529 
0.00036 
0.000608211 

B.c.c. 

0.17977 
0.116073318 

at a distance where f. c. c. has none, so the latter will 
have the lower energy. 

Evidently the f. c. c. structure gives way to b. c. c. at 
intermediate density. No obvious explanation suggests 
itself for this tendency to lower coordination as density 
rises. The s. c., h. c.p., and dia. lattices areap
parently unstable at all densities. 

The thermodynamic transition between the different 
crystal structures must be first order, since different 
symmetry groups are involved. 12 The only condition 
for coexistence of distinct crystal structures required 
at T = 0 is equality of pressure p in the two phases, 
where in this limit 

p= - a(<Tl!N)!a(l!p) • (3.4) 

Coexisting states can be located most conveniently by 
plotting ifJ!N for the different structures versus l!p, 
and then applying Maxwell's double tangent construction 
to the resulting curves. 13 Table ill provides transition 
parameters obtained in this way for the f. c. c. to b. c. c. 
transition. 

The stability of the crystal structures against certain 
simple types of modifications is easy to check. One 
such possibility is the change caused by removal of 
particles to cause formation of a few widely separated 
vacancies, followed by compression to the initial den
sity. But if 

p a(ifJ!N)! ap > ifJ!N , (3.5) 

this process causes the energy to rise, and that was 
always found to be the case for the lattice sums ex
amined. 

Another conceivable instability is that for which the 
lattice spacing increases as j particles are caused to 
sit atop one another at each lattice site. In order that 
this restructuring produce energy increase, it is neces
sary that 

(3 .. 6) 

Once again we find that the lattice sums numerically 
satisfy the criterion for stability. 

The validity of Table IT, for p = 1, has been checked 
independently by "molecular dynamics" computer 
studies. 14 Systems of 432 particles in a cubical cell 
(subject to periodic boundary conditions) were cooled 
slowly toward, and heated from, absolute zero. These 
systems were observed spontaneously to freeze into 
the body-centered cubic crystal structure in several 
trials. No alternative structure with lower final energy 
has ever arisen. 

IV. COMPRESSION MELTING 

Entries in Table IT suggest that energy differences 
between lattices might disappear as density rises toward 
infinity. Furthermore it seems that the common lattice 
value lies about one-half unit below that for the uniform 
particle distribution. We will now confirm that these 
observations are not coincidental, but have a rational 
basis and lead to important conclusions about phase be
havior for the Gaussian core system. 

Suppose that the particles, with positions rl .. . rN , 

form any regular array all of whose sites are eqUiva
lent. Then for this structure we have 

ifJ 1 N 
N =2~exp(-r~j) . (4.1) 

Introduce nearest-neighbor (Voronoi) polyhedra Pl· .. PN 

for the particles. 15 All of these polyhedra are equiva
lent, and each has volume V!N=1/p. Formally we can 
write 

(4.2) 

where each integral spans only one polyhedron. 

The random-distribution potential ifJoiN may be ex
pressed in analogous fashion: 

if N 1 ;=tp,£ exp(-lr- r lI 2)dr. 
j=l P j 

(4.3) 

Therefore we have 
N 

ifJQ;ifJ = t+tp'£ f [exp(- Ir -rlI Z) - exp(-I rj - rllZ] dr. 
J=l PJ 

(4.4) 
As the system is compressed isotropically, the 

polyhedra P shrink with linear dimensions proportional 
to p-1/3. In the high density limit we wish to show that 
the sum of integral terms in Eq. (4.4), including the 
multiplier p, vanishes. BaSically the summation rep
resents the error term in a three-dimensional general
ization of the "rectangle rule" for numerical quadrature 
and it must be established that this error vanishes more 
strongly than p-l. Unfortunately the theory of numerical 
approximation for multiple integrals is quite incom
plete, 16 and does not seem to offer the required dem
onstration. 

For each integrand in Eq. (4.4) we can invoke Tay
lor's expansion: 

exp(-I r -rlI2) -exp(-I r J -rlI2) 

= {(r - r j) . V j + t(r - r j)(r - r J) : V j V j + •.• } 

xexp(-lrj-rlI2) . (4.5) 

The Voronoi polyhedra for lattices listed in Table IT 
have symmetries such that insertion of expansion (4.5) 
into Eq. (4.4) will cause linear and cubic terms to in
tegrate to zero. Of those terms from Eq. (4.5) which 
survive the integration, it will suffice to keep only the 
quadratic and quartic terms; simple scaling arguments 
show that higher-order terms will lead to lower orders 
in p (as p diverges) than for those terms retained. 

Thus we examine the following reduced form for the 

J. Chern. Phys., Vol. 65, No.1 0, 15 November 1976 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Mon, 17 Nov 2014 23:23:38



3972 Frank H. Stillinger: Phase transitions in the Gaussian core system 

sum term R in Eq. (4.4): 

R=tp(Rz+R4) , 

Rz= ~t[.{(r -rj)(r -r j)dr] :V/v' j exp(-d) , 
J 

R4= ;4t [J, (r - r j)(r - r)(r - rJ)(r - r j) dr] 
J 

(4.6) 

Since each P j has linear dimensions proportional to 
p.lIS, the separate integrals in R4 will be proportional 
to p.7/S

• The summation in R4 can do no more than 
generate another factor p, considering the density of 
lattice pOints over the range of exp(-d). Consequently 

R4= O(p-4/S) , (4.7) 

and no corresponding contribution to R survives as p 
approaches infinity. 

All of the integrals appearing in Rz are identical. 
For the lattices under consideration (those in Table n:), 
the P j have sufficiently high degrees of symmetry that 
the integrals must be proportional to the unit dyad 1. 
Considering once again how the linear dimensions of the 
P j vary with p, we can write 

Kp-6 /S 1 (4.8) 

for each integral, where K is a suitable positive con
stant. Thus 

N 

R2=tKp-6/S Lv~exp(-rL) . 
J=l 

(4.9) 

The last sum may be written as a corresponding inte
gral plus an error term E2 : 

R2= t KP-6/S~ fv~exp(-rL)drJ+E2] • (4.10) 

Of course the integral vanishes. E2 may be readily 
estimated by repetition of the Taylor expansion method 
already used; the conclusion is that Ez is proportional 
to pl/S at most. Consequently 

R2= O(p-4/S) , (4.11) 

so that 

R = O(p ·1 IS) • 

This finally permits one to conclude that 

lim(~o -~)/N= t 

for the lattices considered in Table II. 

(4.12) 

(4.13) 

The geometric significance of result (4.13) is that 
when a partiCle is incorporated in a regular lattice, it 
is necessarily surrounded by a "correlation hole" of 
volume 1/ p from which other particles are excluded. 
Such correlation (and the resulting potential energy re
duction) obviously is not present in the random distri
bution. 

Although the corresponding generalized analysis is 
more elaborate, it is actually possible to prove that 

Eq. (4.13) is valid for any three-dimensional periodic 
array. It should also be stressed that a result of type 
(4.13) applies to any potential which, like the Gaussian 
cp(r), is differentiable at least four times, vanishes 
strongly enough at infinity to be integrable, and is + 1 
at the origin. 

Equation (4.13) has important consequences for the 
phase behavior of the Gaussian core model. It shows 
that the energetic advantage to the placing of particles 
in a regular lattice is bounded, compared to the random 
arrangement. That would be sufficient to ensure 
crystallinity at T = 0, as suggested in the preceding sec
tion. But when T > 0, the reqUirement that particles 
remain confined to a regular lattice as the spacing in 
that lattice goes to zero creates a diverging negative 
entropy that could only be offset by an unbounded ener
gy in the same limit. Since this is not the case, suf
ficient compression at any T > 0 will inevitably produce 
a noncrystalline thermodynamic state. Put in other 
terms, a crystal at nonzero temperature can always be 
made to melt by isothermal compression. 

v. DISCUSSION 

Because pair interactions in the Gaussian core model 
are bounded, at any given p they can only suffice to 
maintain crystalline order below some finite melting 
temperature T m(P). The results of Sec. II have verified 
the intuitively obvious result 

limTm(p)=O, 
p-o 

(5.1) 

while Sec. IV leads to the less obvious conclusion that 

limT m(P) = 0 . (5.2) 
p-oo 

Between these limits there must exist a density which 
maximizes T m(P). It is reasonable to suppose that this 
denSity is unique. We denote it by Pc. 

Without detailed numerical study of the Gaussian core 
model (as can be provided by molecular dynamics14) it 
is not possible to know the values of Pc or T m(Pc), or to 
know which crystal structure achieves this maximum 
melting temperature. Nevertheless we can anticipate 
that whatever values and crystal structure are involved, 
the general phase behavior near the maximum melting 
point should conform to that shown in Fig. 1. 

The melting temperature T .,(p) is represented in Fig. 
1 by the curve BCD, which achieves its maximum at 
point C. Along the low -density portion CD of this curve, 
the melting solid produces fluid of lower density, i. e., 
the volume of melting is positive. However, along the 
high density curve BC, the fluid is more dense at co
existence than the crystal (negative melting volume). 
In this high-density melting regime the Gaussian model 
thus behaves like the real substances Si, Ge, Bi, H20, 
and a variety of ill-V compounds17 which contract upon 
melting. However, the reason that it happens in the 
Gaussian core model is not obviously relevant to these 
other materials. 

At pOint C in Fig. 1 the crystal and its melt have the 
same density, and of course the same pressure. How-
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T 

FLUID 

C 

CRYSTAL 

1/Pc 1/P 

FIG. 1. Phase behavior near the point (C) of maximum melt
ing temperature for the Gaussian core model. Fluid and crys
tal coexist in the narrow regions between curves BCD and ACE. 

ever, the melting transition at C can still be thermo
dynamically first order, with nonvanishing latent heat, 
and sudden disappearance of crystalline long-range 
order. 

That equal-density phases should be in coexistence at 
C, suggests that relatively minor structural changes 
(particle displacements) are needed to transform one 
into the other. As a result the entropy of melting at C 
may be small, and in particular considerably smaller 
than the rigid-sphere value displayed in Eqs. (2.22). 
If only rather small structural changes are indeed re
quired at C, then spontaneous fluctuations in each phase 
should frequently form domains or clusters characteris
tic ofthe other phase. Possibly these fluctuations are 
large enough to create significant anomalies both in 
thermodynamic properties and in molecular distribu
tion functions in the neighborhood of C. 

It is even conceivable that structural fluctuations 
might be sufficiently strong to eliminate any distinction 
between the two phases at C. Then melting at C would 
be a continuous transition with no latent heat (.lS = 0), 
and with long-range crystalline order vanishing con
tinuously as C is approached from within the crystal 
region in Fig. 1. This behavior conflicts with the 
classic Landau theory of second-order phase 
change.12.18.19 Nevertheless, strong fluctuations could 
undermine the analyticity assumptions (of free energy 
in order parameters) that underlie Landau theory, just 
as diverging fluctuations at liquid-vapor critical pOints 
render inapplicable the naive theory of classical criti
cal exponents. 20 The unanswered questions about the 
precise nature of point C add extra importance to the 
study of the Gaussian core system by computer simula
tion. 

The Gaussian core model has been introduced in this 
paper largely on account of its pleasant mathematical 

properties. However, it must be stressed that at least 
some portions of the model's T, p phase plane can 
probably represent real materials with useful fidelity. 
The softness of interaction between close particle pairs 
[illustrated for example by effective exponent n* in Eq. 
(2.18) when r is small] can be realized by polyatomic 
molecules which, when pressed together, can mutually 
deform and rotate to fit "bumps" into "depression." 
As already mentioned in the Introduction, plastic crys
tals typically involve globular polyatomic molecules 
(such as camphene a,nd cyclohexane6

). It seems reason
able to suppose that detailed studies of phonon spectra, 
of defects, and of the self-diffusion process in crystal 
phases of the Gaussian core model will help to under
stand the peculiar properties of real plastic crystals. 

The suggestion that the present model might help to 
understand polyatomic materials has an interesting ex
tension to polymer solutions. When suspended in a 
"good" solvent, a randomly coiling linear polymer will 
be rather extended. If two such extended coils diffuse 
close together (compared to their radii of gyration), the 
steric hindrances between chains would cause loss of 
configurational entropy. On the average this would give 
rise to a repulsive force between the chains. For suit
ably chosen polymer and solvent pairs, the potential of 
mean force could be close to a Gaussian function of 
distance between the respective polymer coil centroids. 

This potential of mean force plays a central role in 
the McMillian-Mayer theory21 for osmotic properties 
of the polymer solution. The osmotic pressure of the 
solution might then be modelled by the pressure com
puted for our Gaussian core system. In particular it 
would be interesting to see if the phase behavior illus
trated in Fig. 1 could be produced experimentally in 
the osmotic behavior of polymer solutions. 

Finally, notice should be given to the observation of 
crystalline arrays of charged colloidal particles which, 
like the Gaussian core model crystals, owe their stabil
ity entirely to repulsive forces. 22 The relevance of the 
present type of model is reinforced by the fact that 
tranSitions between face-centered and body-centered 
cubic arrays have been observed for aqueous suspen
sions of polystyrene spheres. 23 
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