
Bound and Quasi-Bound States in the Continuum 

One-dimensional models of square-integrable states embedded in continua, first 
offered by von Neumann and Wigner, can stabilize ordinary resonance levels 
and have gained importance in connection with solid state heterostructure semi­
conductor devices. General continuum bound state theories for many-particle 
systems do not exist, but models for continuum crossings of bound states suggest 
possible long-lived states, including some double charged anions. Nonlinear varia­
tional calculations can provide estimates of resonance energies and of the rapid onset 
of instability in various atomic and molecular ionization phenomena, typifying 
results found in mathematical "catastrophe theory". 

One-Dimensional Models 
:Many years ago von Neumann and Wignerl pointed out that local potentials 
could have bound (i.e. square-integrable) eigenstates with positive energies. 
These states are embedded in the continuum of scattering states with the same 
symmetry, but nevertheless would fail to "ionize". Thus it would be proper to 
regard these continuum bound states as infinitely sharp resonances. 

The example offered by von Neumann and Wigner (subsequently corrected 
by Simon2) was one-dimensional, and involved an oscillatory potential V(x) 
which behaved essentially as (sin x)/x for large lxl. Likewise the square-integ­
rable wavefunction l/;(x) for the positive energy bound state was oscillatory but, 
owing to diffractive interference induced by V(x), the amplitude of l/1 was 
driven toward zero as lxl increased, so that particle binding resulted. The exist­
ence of this elementary example naturally raises questions about whether 
similar continuum bound states could exist in physically more realistic cases. 

There have been several subsequent extensions of the von Neumann-Wigner 
work. Weidmann3 constructed a family of discontinuous (but bounded) poten­
tials which produced continuum bound states. Furthermore. Moses and Tuan,4 
using Gel'fand-Levitan theory, have produced a local potential which not only 
has a positive energy eigenstate, but for which the scattering states have been 
explicitly calculated in closed form. Stillinger and Herrick5 have constructed 
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further examples, and in particular show that a potential can be analytically 
varied so as to carry a conventional bound state smoothly up into the continu­
um, to become an embedded bound state. At least with respect to one-dimen­
sional examples, it is easy to show that any V(x) which supports a continuum 
bound state must be oscillatory, and can drop off to zero with increasing lxl 
no faster than lxr1 . 

It has recently been pointed out6 that epitaxial heterostructure semicon­
ductor devices may offer a way to achieve potentials with continuum bound 
states. Using the technique of molecular beam epitaxy, alternating layers of GaAs 
and AlxGa 1-xAs, each several monolayers thick, can be grown by periodically 
varying the mole fraction of A I. 7 An electron moving across these heterolay-
ers sees an effective one-dimensional potential consisting of a sequence of 
rectangular barriers and wells, due to a mismatch of the conduction band edges 
of the doped and undoped regions, respectively. For multiple, evenly spaced 
barriers the heterostructure potential has the form of a one-dimensional periodic 
"superlattice" _8 The oscillations in the potential provide a means for constructing 
a bound state in the continuum as the number of barriers approaches infinity. If 
the potential is cut off at a finite range (i.e. V(x) = 0 for lxl > L), the initial 
continuum bound state is perturbed and decays to the adjacent continuum. 
This quasi-bound state appears as a sharp peak in the computed transmission 
spectrum for incident electrons. The resonance width can be made arbitrarily 
small by adding more barriers to the ends of the potential according to the 
theoretical prescription for continuum bound states. This behavior is evident 
even for potentials containing a few barriers, as shown in Figure 1. In this 
example the distance between individual barriers is held constant but the heights 
and widths vary as the number of barriers increases. For the case illustrated 
the resonance energy remains unshifted as more barriers are added, and is 
isolated much as a defect state for a periodic lattice is isolated within a band 
gap. On account of its isolation, the peak has a nearly perfect Breit-Wigner 
shape. The heights of subsequent barriers converge towards zero, and the over-
all transmission spectrum will deviate from that of a periodic lattice. Some 
model potentials having fewer than 100 barriers predict decay lifetimes as long 
as I second. Modifications of the theory which admit multiple, nondegenerate 
bound states have also been devised,9 and experiments making use of these 
theories may lead to laser applications. 

Many-Particle Systems: Continuum Crossings 

While the stability of the one-dimensional models is easily understood, con­
ditions for the formation of possible bound states in the continuum for many­
electron and molecules are unknown. ForE below the first ionization threshold, 
E 1 • the nonrelativistic electronic energy spectrum is discrete. The zero of energy 
corresponds to the removal of all electrons to infinity. It is easy to showlO, 11 

58 

0 

-c 
(!) 

(.) ••• '+--(!) 
0 
(.) 

c 
0 
c.n 0 c.n 

E 
c.n 
c 
0 
>-
I- ......... 

0~--~~------~----------~ 

Energy 

FIGURE 1. Transmission spectra for three symmetric "heterostructure" potentials for 
incident electron energies above the central barrier V0 . . Diffractive interference sharpens the 
peak at Eras more barriers are added according to continuum bound state theory. (The 
authors thank Mr. P. Wong for assistance in computing these spectra.) 

that no bound states exist forE> 0, since the virial theorem cannot be satisfied 

in this region. However, there is no analogous proof for the nonexistence of 
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bound states in the intermediate continuum regions, E 1 < E < 0. There are 
obvious examples of bound states above threshold (e.g. 2p2 3 P for He), but 
these lie in continua having different symmetry. 

It is possible th:Jt a continuum bound state might not have a simple descrip­
tion in terms ofthe usual atomic or molecular cont1gurations, owing to a deli­
cate balance of many-particle correlations. This circumstance would make even 
theoretical detection dift1cult by computational techniques involving electron 
orbitals and finite cont1guration interactions. Neglecting the occurrence of such 
an anomalous state, we consider instead a Hamiltonian H(A) which has a well­
defined discrete spectrum for some range of values of the parameter A. By 
varying A it is possible for an isolated bound state eigenvalue to enter a con­
tinuum of states. In Figure 2 a bound state E 0 lies below the threshold E1 for 
A< Ac, but rises up into the continuum for A> Ac, where it becomes a resonance 

state. 
The behavior of the continuum crossing for radial potentials having repulsive 

1/R 2 tails is well-understood, being central to ordinary resonance scattering 
theory _12 For instance, A might represent the rotational angular momentum 
barrier in a low energy atom-atom collision on an attractive potential energy 
curve. The resonance corresponds to a transient vibrational mode below the top 
of the centrifugal barrier for angular momentum J; dissociating via barrier 
tunneling. The identical states can be excited in electronic spectra of diatomics, 
although predissociation by rotation is significant primarily for hydrides. 13 From 
a bound state viewpoint each energy level (and wavefunction) below threshold 
can be analytically continued around a singularity at Ac to energies above thresh­
old, by continuously increasing the value of A. The resulting energies are com­
plex, £ 0 = Er ± i!'/2 due to a nonhermitian boundary condition for the analyt­
ically continued wavefunction. At Er- if/2 the wavefunction has the pure 
outgoing current associated with a decaying state, and for small r this state 
appears as a resonance (of width r) in the scattering cross section at energy Er. 
Similar analyses are possible for other barrier potentials, although the precise 
nature of the threshold singularity in terms of A may differ in each case. 

We have seen that appropriate oscillations in a one-dimensional potential 
V(x) can cause arbitrary increases in lifetime of what might otherwise be a 
simple tunneling resonance. Another phenomenon apparently exists as well 
which can also increase resonance state lifetimes, but it operates only in non­
separable multidimensional systems. That such an independent mechanism could 
exist was implied by a doubly excited He atom model proposed by Stillinger and 
Herrick,5 with suitable interaction between its electrons, which possessed 

infinite lifetime. 
This second mechanism has its origin in the striking nonergodic behavior 

that is known to exist for nonseparable classical dynamical systems. Systems of 
coupled oscillators, for example, can behave as though action-angle variables 
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continued to exist even when nonlinear perturbations are present.l4 The result is 
that the dynamical system fails to cover the full constant-energy surface that in 
principle is available to it. In the case of several interacting particles orbiting a 
center of attraction, this nonergodic behavior can have the effect of preventing 
the system from discovering a dissociation channel. Our own nine-planet solar 
system may provide an example of this behavior, for in spite of the fact 
that sufficient energy is available to eject one of the planets. indefinitely long­
term stability of the present bound configuration seems to prevail. 

Quantum mechanical implications of this nonergodicity are largely unexplored. 
Even the underlying classical theory is complicated and incomplete. IS Neverthe­
less we can reasonably expect that the lifetimes of planetary systems of electrons 
orbiting nuclei can be substantially increased under the proper conditions. It 
seems likely. therefore, that the width of a resonance state might be extremely 
small - or even vanish - for some values of A. 

Doubly Owrged Anions 

For atomic isoelectronic series one has A= 1 /Z, and the nonrelativistic bound 
state has a simple hydrogenic form in the limit A= 0. The He-like atoms have been 
studied extensively 16 for continuous values of A, although the continuum pene­
tration region lies outside the range of physical atomic species H-, He, Li+, ... 
However, anN-electron isoelectronic sequence having a bound negative ion at 
A= (N-1) -1 correlates with multiply charged anions at higher values of A. 
Specific examples of doubly-charged anion sequences include the ground states 
of (Ne, F-, 0 2-), (Ar, C1 -, S 2 -), and the corresponding states for Se 2 - and Te 2-. 

The 0 2 -level was predicted!? to lie 5.38 eV above the o- + e- threshold, with 
an estimated width of 1.3 eV. It is possible that doubly-charged anions which 
lie closer to threshold may have extremely narrow widths. 

The proposed stability for these resonances has a simple interpretation. 
The ejected electron sees a long-range Coulomb repulsion, whereas binding 
dominates closer to the nucleus. This combination can produce an extremely 
thick barrier which severely inhibits tunneling- more so than in the resonances 
involving repulsive centrifugal barriers. Extensive analyses of isoelectronic 
species in the light of the continuum penetration model may provide simple 
explanations for the wide variety of long-lived doubly-charged anions observed 
experimentally.l8-Zl As pointed out in Ref. 17, ordinary fitting formulas such as 
Ed len's for empirical isoelectronic energies do not account for the development 
of a tunneling width when A> A.c· 

The continuum crossing in Figure 2. is "hard" in the sense that E 0 enters 
the continuum sharply at Ac, and interacts with no other states. There is a 
second type of crossing, shown in Figure 3, which by comparison is "soft". 
Here a single level E 0 rises into .the continuum after passing through a Rydberg 
series of states which themselves represent a quasi-continuum. The "avoided 
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FIGURE 2. Schematic representation of a continuum crossing. Bound state Eo rises above 
threshold E 1 as a potential energy parameter A. is varied. 

crossings" below threshold produce a shift in the quantum defect for the Rydberg 
series. Above threshold (A.>;\) this shift corresponds to a resonant scattering 
phase shift for the continuum wavefunction. A crossing of this type occurs in the 
Be isoelectronic sequence, where the doubly-excited 2p 2 1 S state rises up through 
the single excitation series 2sns as A. increases. At Be (A.= 1/4) the 2p2 level is 
thought to lie less than 1 eV above the first ionization threshold. Z2,23 The 
higher 2pnp levels experience a similar fate. 

An analogous mechanism explains the correlation of doubly-excited 2s2p 1 P 
He from below the second ionization threshold [lie' .. (n=2) + e-J to the narrow 
shape resonance just above threshold at 10.22 eV in H-. 24 In this case the 
infinite series of states has a group theoretic "configuration mixing quantum 
number" K = + 1 as described by Herrick and Sinanoglu. 24•25 The 2s2p level, 

·on the other hand, has K = 0. As these examples indicate, the soft continuum 
crossings involve multichannel couplings. Examples of continuum bound states 
in systems of coupled Schrodinger equations (i.e., nonlocal potentials) were 
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FIGURE 3. A "soft" continuum crossing. Bound state £ 0 enters the continuum via a 
series of avoided crossings with a Rydberg series below threshold. The sharp crossing in 
Figure 2 is "hard" by comparison. 

described by Fonda and Newton.26 

Catastrophic Instabilities 

Although continuum crossings provide a means for the identification of states 
which might exhibit stability against ionization, there exists at present no firm 
evidence for an experimentally observable continuum bound state. Reinhardt,27 
using theories of dilation-analytic operators28,29 has argued that the occurrence 
of a zero-width bound state via a continuum crossing is unlikely. However, the 
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mathematical question about whether E 0 ('A) is singular precisely at encounter 
with the continuum (A.= A.c) in many cases may be exceedingly difficult to 
answer. At the same time, the exact answer may have little direct experimental 
significance. For any Stark (electric) field applied to the atom, for example, 
we know that a nonzero tunneling probability exists for electron escape. But 
for small field intensity F, the escape rate is unmeasurably small. As the field 
increases, a point F* is finally reached at which ionization rate rapidly enters 
the region of experimental observability. It is this point- the "critical ioniz· 
ation field'' - which needs to be predicted, and has importance for analysis of 
higl1ly excited Rydberg levels.30 

This situation is analogous to that of cooling a vapor slowly below its thermo· 
dynamic condensation temperature Tb. For any temperature T < Tb there is a 
positive nucleation rate. for transition to liquid, but small undercooling can 
correspond to geologically long lifetimes of the metastable vapor. Only as a 
critical under-cooling limit is approached with the homogeneous nucleation rate 
suddenly rise to the point of observability in the usual laboratory time scale. 3l 

It is the task of nucleation theory to predict this point at which the metastable 
vapor undergoes catastrophic and sudden condensation. 

Nonlinear variational calculations can serve a similar purpose for quantum 
mechanical problems for which catastrophic breakup of a bound system is 
involved (autoionization, rotational predissociation, field ionization, etc.). If a 
proper variational basis is used, the predicted energy £'0(A.) will exhibit a branch 
point at a characteristic value of the perturbation strength, A.*. As usual, the 
imaginary part of £ 0 CA.) beyond the branch point represents a measurable life­
time for the complex. Energy (and orbital parameter) bifurcation produced by 
the nonlinear variational calculation is indicative of results that appear generally 
in "catastrophe theory". 32 Using a simple nonlinear variational wavefunction, 
for instance, Herrick33 obtained analytic formulas for the critical ionization field 
for Rydberg levels of hydrogen in terms of the zero-field Stark quantum numbers. 
The important point is that the variational calculations can yield the critical field 
directly, without a supplementary computation of the ionization rate. 

By analogy, the critical value A.* >A.c predicted by calculationsl 6 for atomic 
isoelectronic series would also mark the onset of rapid ionization. A knowledge 
of A.* for a particular system would therefore be useful for predicting the stability 
of a given doubly-charged anion. 

Molecular Crossings 
There is considerably more freedom for continuum crossings in molecules. Here 
A. might represent a scaled nuclear charge for either the entire molecule or 
perhaps just a portion of it. More important is the case where A. represents a 
continuous transformation of the 3N-6 internal vibrational coordinates for an 
N-atom molecule. For diatomics the familiar "noncrossing rule" prevents t~o 
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Born-Oppenheimer potential energy curves of the same symmetry from inter­
secting. This rule does not prevent a level from entering a continuum of states. 
A frequently occurring system for a diatomic AB involves a repulsive energy 
curve which penetrates the ionization threshold for AB+ at a finite internuclear 
separation Rc. The (2pau) 2 1 ~; state of H2 , for instance, crosses the (1 sag)'!~~ 
state ofH;at Rc= 1.5 A. Interactions with molecular Rydberg levels just below 
this thresholdcan lead to production of high Rydberg levels in the separated 
atoms. 34 This crossing is clearly "soft", owing to the Rydberg levels. An 
example of a "hard" adiabatic diatomic crossing is evident in the process 

H-+H- ~ H+H-+e-. 

The ionization probability, f(l0, could be found by analytic continuation of the 
adiabatic hound state potential energy curve above threshold. 

Continuum crossings for polyatomi<:s are even more in,teresting, since the· 
threshold may be crossed in any number of ways. For adiabatic energy surfaces, 
however, the same resonance energy and width should be obtained for a given 
molecular geometry, independently of the direction of approach from below 
threshold. The elementary models of "catastrophe theory", 32 together with 
nonlint~.ar variation theory, offer the potential for a mathematical classification 
of the types of electronic breakup which can arise from large amplitude vibra-
tionally-induced continuum crossings. . 

One case ofrecent interest35 involves the potential energy surfaces for 
electron autodetachmertt from C02 -.In terms of the OCO bending angle a, 
the anion potential energy minimum lies below thre~hold at 135°. The anion is 
energetically less stable for higher angles and intersects the ionization threshold 
for C02 + e- near a= 150°. Presumably there exists a resonance state for 
ex > 150"', having both a maximum energy and width in the linear geometry. 
If the continuum crossing indicated by the calculations is accurate (i.e., has a 
nonzero intersection slope), then more. refined wavefunctions should yield a 
critical angle o:* above which thevariational energy is complex. Bruna et al.3S 
suggested that a low lying series of diffuse anion states may have greater import­
ance to vertical autt>detachment than does the valence state, which is thought 
to lie too high above threshold to explain experiment. However, it is possible 
that this series of states does not cross into the continuum but is tangent to it at 

0 
some a=F 180 , on account of a long-range attraction between the electron and 
the dipolar bent C02 . If the isoelectronic atomic calculationsl6 are also typical 
of energy behaviour near a*, then the outer otbitaLfor COi should becomerapidly 
mor.e diffuse as a nears a*. This instability would shift the resonance energy 
downward for a> a*. For instance, the predicted 02- resonancel7 energy was 
0.7 eV lower than the SCF value, due to continuum interactions. Similar behavior 
may occur for molecular states, and should not be overlooked in computations. 
A 2 nn shape resonance is known to exist at 3.8 eV.in the electron impact 
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spectrum of C02 . 36 

Conclusion 
The decay of a resonance state has traditionally been described in terms of a 
bound state wavefunction which interacts with an adjacent continuum. The 
theory of "bound states in the continuum" provides a means for constructing 
real. local potentials which can render the resonance state stable above thresh­
hold. The difference between this model potential and the exact physical potent­
ial is the "perturbation" by which the bound state decays. Although little is 
known about rigorous bound states in the continuum for many-particle systems. 
investigations of continuum crossing phenomena in the light of current know­
ledge may offer insight to unexpected stability in systems which might other­

wise be thought of as highly unstable. 

D. R. HERRICK 
Department of Chemistry and Institute of 17uoretical Science, 

University of Oregon, Eugene, Oregon 97403, USA 

F. H. STILLINGER 
Bell Laboratories, Murray Hill, 

New Jersey 07974, USA 

References 

l. 
2. 
3. 
4. 
5. 
6. 
7. 

8. 

9. 
10. 

11. 
12. 

13. 

14. 

15. 

66 

J. von Neumann and E. Wigner, Physik Z. 50.465 (1929). 
B. Simon, Commun. Pure Appl. \lath. 22,531 (1967). 
J. Weidmann, Math. Zeit. 98, 268 (196 7). 
H. E. Moses and S. F. Tuan, Nuovo Cimento 13, 197 (1959). 
F. H. Stillinger and D. R. Herrick, Phys. Rev. A 11.446 0975). 
D. R. Herrick (to be published). 
R. Dingle, in Festkorperprohleme XV, Advances in Solid State Physics (H.-J. 

Qucisser, Ed.) (Pergamon-Vieweg Braunschweig, 1976). 
L. Esaki and L. L. Chang, Phys. Rev. Lett. 33,495 (1974); L. Esaki. Rev. Mod. 

Phys. 46, 237 (1974). 
F. H. Stillinger. to be published. 
J. Weidmann, Commun. Pure Appl. Math. 19, 107 (1966); Bull. Amer. Math. Soc. 

73,452 (1967). 
B. Simon, Commun. Math. Phys. 27. 1 (1972). 
R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 

1966). 
G. Herzberg, Molecular Spectra and Molecular Structure: I. Spectra of Diatomic 
Molecules (Van Nostrand Reinhold, New York, 1950) p. 425. 
D. W. Noid and R. A. Marcus, J. Chern. Phys. 62,2119 (1975). 
J. Moser Stable and Random Motions in Dynamical Systems (Princeton Univ. 

Press, Princeton, 197 3). 

16. 

I 7. 
18. 

19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 

31. 

32. 
33. 
34. 
35. 
36. 

(a) F. H. Stillinger, 1. Chern. Phys. 45,3623 (1966); (bJ F. H. Stillinger and D. K. 
Stlllmger, Phys. Rev. A 10, 1109 (1974); (c) F. H. Stillinger and T. A. Weber, Phys. 
Rev. A 10, 1122 (1974 ); (d) D. R. Herrick and F. H. Stillinger Phys. Rev. A 11 4? 
(1975). ' ' -

D. R. Herrick and F. H. Stillinger, J. Chern. Phys. 62, 4360 ( 1975). 
H. Baumann, E. Heinicke, H. J. Kaiser, and K. Bethge, Nucl. Instrum. Methods 95 
389 (1971). ' 

W. K. Stuckey and R. W. Kiser, Nature 211, 963 (!966). 
1. G. Dillard. Chern. Revs. 73,589 (1973). 

R. Schnitzer and i\1. Anbar, 1. Chern. Phys. 64,2466 (1976). 
S_ Hontzeas,!. Martinson, P. Erman, and R. Buchta, Physica Scripta 6, 55 (1972). 
A. Htbbert, 1. Phys. B: Atom. Molec. Phys. 7, 1417 (1974). 
D. R. Herrick and 0. Sinanoglu, Phys. Rev. A 11,97 (! 975). 
D. R. Herrick, Phys. Rev. A 12, 413 (1975). 
L. Fonda and R. G. Newton, Ann. Phys. 10, 490 ( 1960). 
W. P. Reinhardt, private communication. 

E. Balslcv and 1. M. Combes, Commun. Math. Phys. 22, 280 (1971). 
B. Stmon, Ann. Math. 97, 24 7 (1973). 

(a) T. W. Ducas, M.G. Littman, R. R. Freeman, and D. Kleppner, Phys. Rev. Lett. 
35,366 p975); (b) M.G. Littman, M. L. Zimmerman, T. W. Ducas, R. R. Freeman, 
and D. Kleppner, Phys. Rev. Lett. 36, 788 (1976). 

F. F. Abraham, Homogeneous Nucleation Theory (Academic Press, 1974). 
E. C. Zeeman, '·Catastrophe Theory", Sci. Amer. 234, No.4, 65 (1976). 
D. R. Hernck, 1. Chern. Phys., to be published. 

J. A. Schiavone, K. C. Smyth, and R. S. Freund, J. Chern. Phys. 63, 1043 (1975). 
P. 1. Bruna, S.D. Peyerimhoff, and R. J. Buenker, Chern. Phys. Lett. 39, 211 (1976). 
M. 1. W. Boness and G. 1. Schulz, Phys. Rev. A 9, 1969 (1974 ). 

67 




