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Herrick has proposed using semiconductor epitaxial heterostructures to create continuum embedded eigenstates 
(infnitely sharp resonances) of the Wigner-von Neumann type. This paper presents a modification of Herrick's construction 
rules which should simplify fabrication and improve operation of those heterostructures. The modified procedure has also 
been generalized to produce for the first time a family of local potentials which simultaneously support two continuum- 
embedded bound states. Finally, it is pointed out that cases can be generated for which infinitely sharp resonances exist 
which do not correspond to normalizable bound states. 

1. Int roduct ion 

Following an original suggestion due to yon 
Neumann and Wigner [1] (corrected subsequently by 
Simon [2]) many quantum-mechanical examples of 
local potentials have been constructed which produce 
positive-energy eigenstates [3, 4]. These eigenstates 
are embedded in a dense continuum of  scattering states 
of the same symmetry,  and they may be regarded as 
infinitely narrow resonances. 

One-dimensional potentials V(x) having this 
property have invariably exhibited oscillations as 
x ~ -+~, and in doing so have dropped to zero ampli- 
tude no more rapidly than Ixl 1 It is known that  
potentials with shorter range than Ix1-1 cannot pro- 
duce these states; in those that do, the oscillations 
create a form of  diffractive interference that confers 
square-integrability on the wavefunction [5]. 

On account of  the oscillations in V(x), these one- 
dimensional examples had been regarded as mathe- 
matical curiosities with no direct physical relevance. 
However, Herrick has recently pointed out [6] that 

epitaxial GaAs-AlyGal_yAS heterostructures might 
provide a way to construct the V(x) to order, using 
the fact that band-edge energy varies with composit ion 
(y).  This suggestion was an outgrowth of  detailed 
experimental  observations on one-dimensional quan- 
tum states in such devices, for which Dingle has 

provided a convenient review [7]. Herrick proposed 
specific structures for production of the positive- 
energy states, generalizing a prior mathematical  model 
due to Weidmann [3]. 

The present paper offers two innovations. The first 
is largely technical, being concerned with modification 
of the Weidmann-Herr ick  models to simplify con- 
struction o f  relevant semiconductor heterostructures. 
The following section 2 explains this modification.  The 
second innovation involves construction for the first 
time of  potentials that simultaneously support  two 

distinct positive-energy eigenstates (section 3). If 
Herrick's proposal is valid, these two-state potentials 
could also be produced in semiconductor hetero- 
structure devices. 

2. Constant-width layer heterostructures 

We consider the x-direction motion of  a carrier 
with effective mass m. As a result of  lattice com- 
position variation along this direction, the energy of 
the relevant band edge will also vary, and may be 
denoted by V(x). The wavefunction ~(x) for carrier 
motion at energy E along the x direction will be 
assumed to satisfy the Schr6dinger wave equation: 

- v - v + ~ [ v ( x ) - E l  ~ ( x ) = 0 .  (2.1) 
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For the cases of principal concern here, lattice com- 
position will approach a fixed value as x ~ +0% and 
the zero of  energy will be chosen so that V(x) vanishes 
in these limits. 

The Weidmann-Herrick potentials which produce 
a single localized state at positive energy E, are con- 
stant across each of  an infinite sequence of  intervals. 
According to Herrick's prescription, these intervals 
would be fabricated each with a characteristic lattice 
composition to achieve the desired constant potential. 
The widths of  these intervals vary in a controlled 
manner across the heterostructure to induce the 
proper interference effects in ft. In all of the examples 
proposed by Weidmann [3] and by Herrick [6], an 
infinite number of  distinct interval widths is required. 

In view of  the fact that the semiconductor hetero- 
structures exist essentially in a fixed underlying lattice, 
it is desirable to have each interval width an integer 
multiple of  a basic length unit (a lattice period). 
Actually it is possible to have all intervals equal in 
width, as we now demonstrate. 

Our construction is based on the elementary 
two-layer "module",  for which 

V(x)=h (o_<x <a) 

= v  2 (a<-x<2a), 
(2.2) 

k26 = n - 2 k 2 a .  (2.6) 

The condition that ff be continuous at x = a pro- 
vides an expression for the amplitude modulation 
factor A: 

A = - c o s  (kla)/cos ( k z a ) .  (2.7) 

We will want 0 < A  < 1 so that the module effects a 
net amplitude decrease in ff in going from x = 0 to 
x = 2a. By placing such modules along the +x axis 
one after the other, and their mirror images along the 
- x  axis, ~ can be localized sufficiently to assure 
square-integrability. 

By requiring if' to be continuous at x = a, one finds 

(kla) t an (k la )=- (k2a ) tan  (k2a). ( 2 . 8 )  

This equation amounts to a relationship between V 1 
and V 2 that must be satisfied in order that ff have the 
postulated form. Thus we are left with a one-parameter 
family of  pairs (V 1, V2) out of  which the modules may 
be constructed. 

Figure 1 shows plots of  numerically calculated 
(V1,V2) pairs in terms of  the reduced values 

v~ = (ma2yh2)Vj (] = 1,2). (2.9) 

where V 1 and V 2 are suitable constants, and where a 
stands for the common layer width to be used 
throughout. We shall require that 

if'(0) = ff'(2a) = 0. (2.3) 

with a phase change of 7r between these two end- 
points, implying one wavefunction zero. 

In each of the two length-a intervals ff is a simple 
trigonometric function, so we write 

4.,(x) = cos  ( k ] x )  

= A cos [k2(x + 6)1 

(0 -<x <a )  

(a < x -< 2a). 
(2.4) 

Obviously we must have 

1 2 (m/~Z)(E 1 2 =  ~k 1 = - V1) , ik  2 ( m / ~ 2 ) ( E -  V2). (2.5) 

Furthermore the phase of  ~b(2a) determines 6: 
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Fig. 1. Relation between reduced potentials, o I and o2, and 
the amplitude modulation factor A(olL for the two-layer 
module discussed in section 2. 
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Included as well are the corresponding amplitude 
factors A. It is worth noting that the most effective 
amplitude reduction (i.e. smallest A value) occurs 
when: 

v 1=0.6168,  v 2 = - 1 . 6 1 6 7 ,  A=0 .60899 .  (2.10) 

In all cases, the energy eigenvalue is 

reduced values v(1 n) [see eq. (2.9)], one thus demands 

v~ ") ~ Kin  (n ~ o~), (2.1 5) 

where the constant K must be positive. Then i t  is easy 
to show f rom the second o f  eqs. ( 2 . ] 2 )  that asx  -*-+~,  

~)(x) ~ const. × Ix l  8K/'~2 cos (rrx/2a). (2.16) 

E = n2ti2/8ma 2. (2. l I ) 

Since V(x) must converge to zero at +0% formation 
of a potential supporting a positive energy eigenstate 
will utilize smaller and smaller values of V 1 and V 2 as 
these limits are approached. Therefore it is valuable to 
establish the exact limiting forms of  the relationships 
connecting V 1 to V 2 and to A. By carrying out the 
necessary series expansions in eqs. (2.7) and (2.8) one 
finds 

V 2 = --01 -- (12/n2) Vl 2 + ~(0~),  

A = l - (8/rr2)Ol +~(o21). 
(2.12) 

Define a modular potential Vm(xlVt) as follows: 

Vm(XlV t) = 0 (x < 0) 

= v  1 (0 <_x < a )  

= V  2 ( a - < x < 2 a )  

= 0 (2a < x) ,  (2.13) 

where V 2 is determined by V 1 as above. A symmetrical 
heterostructure potential V(x) may then be repre- 
sented as a sum of  modular units: 

n=0  

(n) [Vm(X- 2nalV~ (n)) + Vm(2na-xlV 1 )]. 

(2.14) 

Wide flexibility exists in choice of  the sequence Vlt°), 
VI(1), Vl(2) . . . .  to produce positive energy eigenstates. 
However, these quantities mus t  converge toward zero 
no faster than n -1 as n --* co, for otherwise t~ will not 
be square-integrable. In terms of  the corresponding 

In order that ~2 be integrable, it is necessary that 
the magnitude of  the exponent in eq. (2.16) be larger 

1 
than 2. Consequently, rule (2.15) requires 

K >  rr2/l 6 = 0.61685 . . . .  (2.17) 

Whereas the theory of  positive-energy eigenstates 
strictly requires an infinite number of  modular units 
in V(x), eq. (2.14), real heterostructure fabrication 
would necessarily be limited to a finite number. 
Consequently, it is important to identify experi- 
mentally feasible structures which efficiently approach 
the behavior of the infinitely extended V(x) with a 
modest finite number of  layers. Thus one seeks a 
simple arrangement which leads to a narrow resonance 
behavior, even in the absence of  strict wavefunction 
square-integrability. 

The parameters (2.10) are an obvious choice. If 
V(x) is constructed according to eq. (2.14), with N 
successive vl(n) values corresponding to that optimal 
choice (i.e. 2N modules), with V 1 =- 0 outside this 
truncated heterostructure region, then (0.60899) N 
becomes the wavefunction amplitude ratio for posi- 
tions outside the heterostructure, and at its middle. 
Even for relatively small N (say 30-50) ,  this obviously 
produces strong resonance confinement of  carriers. 
Additional modules, obeying eq. (2.15), might also be 
added if experimentally practical. 

Experimentally convenient compositions out of  
which a resonance heterostructure module could be 
constructed would be AI0.2Ga0.8As , and GaAs. 
Conduction electrons have effective mass 0.067 m 0 in 
these lattices. Furthermore, the valence band edge of  
the former lies 220 meV above that of  the latter [7]. 
Therefore one can use A10.2Ga0.8As to provide poten- 
tial V1, and GaAs to provide potential V 2 in the 
optimum case identified in eqs. (2.10). Assuming 
linear dependence of  band edge energy on composition, 
the bulk material to be used outside of  the sandwich 
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Fig. 2. Symmetrical heterostructure with a valence-band 
electron resonance level. Although only 2N = 12 modular 
units are shown for figure clarity, larger numbers of those 
units are desirable to sharpen the resonance. Each layer has 
width 33.98 A. 

region [corresponding to V(x) = 0 above] would have 
the composition: 

A10.1448Ga0.8552As. (2.18) 

From eqs. (2.9) and (2.11), one easily calculates the 
required layer width a, and the resonance energy 
position E [relative to the band edge for composition 
(2.18)], to have the following values: 

with two positive-energy localized states. In order to 
do so, we examine a prototypical module with three 
equal-width layers. Within the three-layer module, the 
potential will be: 

V(x) : vl (o -< x < a) 

: V  2 (a<-x<2a)  

= V  3 (2a g x < 3 a ) .  (3.1) 

As before, the ~ are constants whose relative magni- 
tudes must be carefully chosen to induce the desired 
effect. 

Let ff and ' I /denote  the two positive-energy eigen- 
functions, which are square-integrable solutions to the 
appropriate version of eq. (2.1). We shall require that 

and • respectively increase their phases by rr and by 
2n over the interval 0 -< x < 3a. Specifically, we can 
write 

~(x) : cos (klx) (0 ~ x  ~ a) 

: ; c o s  [k2(x + 82)1 (a -< x -< 2a) 

= g cos [k3(x + 63) ] (2a -< x -< 3a), (3.2) 

and 

a = 33.98A, E =  121.52 meV. (2.19) 

The resonance heterostructure is illustrated 
schematically in fig. 2. 

While still utilizing the advantageous reduced 
parameters (2.10), layer width a and resonance energy 
E could be varied by employing different layer com- 
positions. Generally, the greater the difference in A1 
concentrations in adjacent layers, the smaller will a 
and the larger will E become. 

It would be interesting not only to try to observe 
resonance behavior in the suggested heterostructure, 
but to look for sharpening of the resonance as the 
number 2N of modules increases. 

3. Potentials with two positive-energy eigenstates 

The procedure employed in the preceding section 
can be extended in such a way that it creates potentials 

* (x)  = cos (KIx) 

= F cos [K2(x + A2) l 

= a cos [K2(x + A3)] 

(0 -<x -< a) 

(a -< x -< 2a) 

(2a -< x -< 3a). 

Triplets (V1,V2,V3) must be chosen to cause 

(3.3) 

so that successive modules reduce amplitudes for both 
tk and q~ as Ixl -+ ~.  

The energies of  the states ff and ' I /can be deter- 
mined by setting V1, V2, and V 3 all'equal to zero, and 
imposing the cited phase increments. Thus one has: 

EOk) = n2g2/18ma2, E('4') = 2n2¢i2/9ma 2. (3.5) 

The wavevectors appearing in eqs. (3.2) and (3.3) for 

0 < g, G < 1, (3.4) 
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general V1, V2, and V 3 consequently will be ( / =  1,2,3): 

/~. = [(rr2/9) - 2v/]f/a, K~ = [(47r2/9)- 2v/]}/a, (3.6) 

where reduced potentials vi have been used following 
the earlier definition (2.9). 

The conditions that must be imposed on ~ and q, 
are ( l )  continuity at x = a and x = 2a; (2) continuity 
of  first derivatives at x = a and x = 2a; (3) vanishing of  
~' and q / a t  x = 3a. The resulting equations give, first, 
expressions for the amplitude modulation factors: 

g -  cos (kla) cos [k2(2a + 82) ] 

COS [k2(a + 82) 1 cos (k3a) ' 

been found, eqs. (3.8) allow 62 and k2 to be evaluated. 
Finally, the nrodulation factors g and G could then be 
obtained from eqs. (3.7) and checked against the 
requirement {3.4) for suitability in production of 
sinmltaneous positive-energy localized states. 

When V 2 < 0, we have been unable to find real 
solutions to the eqs. (3.9). However, such solutions do 
exist when V 2 > 0. Fig. 3 shows graphically how this 
comes about; holding v 2 fixed at 9.972 X 10 -2, the 
(Ul,V3) loci which respectively satisfy the two eqs. 
(3.9) are plotted and indeed intersect. The points of 
intersection, 

(Vl,V3) = (0.2189, -0 .4412) ,  (3.10a) 

cos (Kla) cos [K2(2a + A2) ] 
c = (3.7) 

cos [K2(a + A2) ] cos (K3a) " 

Second, the phase shifts 62 and A 2 may be regarded 
as determined by: 

= tan l [ (k la)  tan (kla)] k2(a + 6  2 ) ~2a) J '  (3.8) 

[ (Kla) tan (Kla)] 
K2(a + A2) = tan-1 l_ ( K ~ )  

1 

(with due account given to choice of branch for tan- 1). 
Third, one has two relations just among the wavevectors: 

(kla) tan (kla) 

(k2a tan (k2a) + (k3a) tan (k3a)]  
= - ( k 2 a )  ( k ~ - - - -  ( k ~ t a n  (k2a) tan (k3a)] '  

(3.9a) 

(Kt a) tan (Xla) 

[(K2a ) tan  (K2a) + (K3a) tan (K3a)] 

= - (K2a) L(K2 a) - (K3a) tan (K2a) tan (K3a)l" 

(3.9b) 

The last pair of eqs. (3.9) constitute two relations 
among the three quantities V1, I/2, and V 3, and can be 
expected to be satisfied only by a one-parameter 
family of  triplets (VI,V2,V3). Once such a triplet has 

(Vl,U3) = ( -0 .4412 ,  0,2189), (3.10b) 

form a conjugate pair differing only by interchange of 
v 1 and v 3. This interchange merely corresponds to 
reversing the direction of the module, which is always 
to be expected as a possibility with tire mathematical 
conditions that have been placed on the problem. For 
tile first intersection point (3.10a), we fortunately 
find that g and G are acceptable by criterion (3.4): 

g = 0 . 6 2 9 1 ,  G =0.9121.  (3.11) 

The reversed module (3.10b)natural ly would replace 
these last quantities by their reciprocals. 

Table I presents numerical results for several cases 
of tire type just given. Just as the information in fig. 1 
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Fig. 3. Relations between v 1 and v 3 implied by eqs. (3.9), for 
u 2 = 9.972 X 10 -2. The curves labelled a and b refer to (3.9a) 
and (3.9b), respectively. 
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Table I 
Representative parameter sets for three4ayer modules, to be 
used in generation of two simultaneous positive-energy 
eigenstates. 

v 1 v 2 v 3 g G 

0 0 0 1 1 
0.1771 0.0500 - 0 . 2 8 8 8  0.7236 0.9304 

0.2191 0.1000 - 0 . 4 4 2 0  0.6282 0.9120 

0.2503 0.2000 -0.6945 0.5045 0.9018 
0.2552 0.3000 -0.9197 0.4321 0.9093 
0.2489 0.4000 -1.1315 0.3754 0.9283 
0.2370 0.5000 -1.3336 0.3317 0.9566 

Vl=C)jl[2 +O(o2), v3=-col[2 +~(v2), (3.14) 

wherein the numerical constant has the value: 

C= 

L 

128n 2 + 8 4 n X / ~ -  135 = 1.041 148 156 . . . .  

(3.15) 

The existence of fractional powers in eq. (3.14) ex- 
plains the failure to find real solutions for v 2 < 0. 
Modulation factors g and G have the following leading- 
order terms: 

can in principle be used to generate a family of  poten- 
tials with one positive energy state, so can table I 
(with interpolation) be used for potentials supporting 
two positive energy states. In place of eq. (2.14)we 
now have the general modular representation of  V(x): 

o o  

V(x) : ~ [V3,m(X - 3nalV2 (n)) - VS,m(3na - xlv2(n)) ], 
n=0  

(3.12) 

where the three-layer module functions, 

V3,m(xlV2) = 0 (x < 0) 

=Vl (o_<x <a) 

= V  2 ( a - < x < 2 a )  (3.13) 

=V 3 (2a-<x<3a)  

= 0 (3a -< x), 

have been indexed according to the V 2 values that they 
incorporate, with V 1 and V 3 values thereby fixed. 

In accord with the preceding case, section 2, an 
infinite number of modular units would be necessary 
to produce localized (square-integrable) eigenstates 

(n) (n) (n and qJ, with (V 1 , V~ , V~ )) converging to (0,0,0) as 
n --> oo. Hence we have examined the small-V 2 behavior 
of the dependent quantities V b V 3, g, and G. Detailed 
analysis is complicated and uninformative, so only the 
final results will be presented. 

In terms of  the independent parameter v 2, one finds 
the leading-order result: 

1 

g = 1 -- (27C/27r2) v~2 + ¢~(v2), 

1 

G = 1 - (27C/8n2)v~ +d?(o2). 
(3.16) 

As before, the existence of normalizable wave- 
functions ~ and 'Is requires V(x) to diminish no more 
rapidly than Ix1-1 at infinity. In particular we can 
suppose the following: 

o(~)~CL/n, v(~)~L2/n 2, v (~)~-CL/n  (3.17) 

as n ~ 0% where L is a positive constant. Using the 
resutts in eq. (3.16) it is then straightforward to show 
that ff and '1/have these large - [x l  asymptotes: 

if(x) ~ const. × Ix1-27CL/2~2 cos (nx/3a), 

q~(x) ~ const. × Ix1-27CL/8~2 cos (2nx/3a). 
(3.18) 

In order that if2 be integrable it is necessary that 

L ~> n2/27C; (3.19) 

however, the demand that q~2 be integrable places a 
stronger condition on L: 

L > 47r2/27C. (3.20) 

4. Discussion 

By strict periodic repetition of a given module 
(with two or three layers), the wavefunction is forced 
to undergo exponential decay with increasing distance, 
as already noted in section 2. Such exponential wave- 
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function decay is symptomatic of  an energy in a band 
gap for the given periodic potential. In the case of  
three-layer modules in section 3, the energies (3.5) 
evidently both lie in band gaps since module repetition 
would cause both ~ and ,I, to decay exponentially 
with distance. 

Having selected fixed energies at which normal- 
izable positive-energy states are to be created by non- 
periodic potentials of  type (2.14) or (3.12), it is 
obvious that modules of all orders n cause wavefunction 
amplitude reduction precisely by this mechanism of 
causing those energies at every stage n to lie in band 
gaps. This is so even as n -+ ~ where the component 
potentials ~(n) converge toward zero; the associated 
band gap widths decrease to zero but have always 
been arranged just to enclose the selected eigenvalues. 

When viewed in this light, the general problem of 
constructing positive-energy bound states seems to 
have no limitation on the number of such states that 
can simultaneously exist with an appropriate local 
potential V(x). By using our modular approach, each 
of  the energy eigenvalues would lie within band gaps 
for the associated periodic arrays, and the parametric 
family of  modules would cause these band gaps all to 
shrink to zero width in the vanishing-potential limit. 
In order specifically to construct three simultaneous 
states, a four-layer module offers a simple possible 
solution. 

Inequality (2.17)has been noted as a requirement 
for square-integrability in the construction of section 
2. It is interesting to note as well that if instead 

0 "< K -< rr2/16, (4.1) 

the wavefunction is not normalizable but still con- 
verges to zero as Ixl ~ ~'. This leads to the interesting 
situation, apparently, of  an infinitely sharp resonance 
behavior at the given energy [eq. (2.11)] not  associated 
with a bound state in the conventional sense. It seems 
odd that this type of  scattering resonance, and its 
implications for analytic S-matrix theory [8], have 
not been examined before. 

Similar remarks apply to the inequalities (3.19) 
and (3.20) in connection with construction of  the 
two-state example in section 3. If 

0 < L -< 7r2/27C, (4.2) 

neither ¢~ nor q, are normalizable bound states, thougla 
both represent infinitely sharp resonances. If 

rr2/27C < L < 4rr2/27C, (4.3) 

then ~ is a proper bound state while • still is not. 
This distinction between the two types of infinitely 

sharp resonances is obviously not confined to one- 
dimensional problems, but could in principle appear 
in non-separable three-dimensional scattering problems 
as well. In all cases, interesting questions arise about 
how one could experimentally distinguish the two 
types. 

The calculations presented in sections 2 and 3 em- 
ployed vanishing derivative boundary conditions at the 
module endpoints. In principle, equally valid alterna- 
tive conditions would have been vanishing of  the 
wavefunctions themselves at the endpoints. But at least 
in the two-layer case of  section 2 it turns out that 
these alternative conditions produce far less efficient 
carrier confinement; the expression for A correspond- 
ing to the second of eqs. (2.12) has the linear u 1 term 
replaced by a cubic term, thus requiring a much 
longer-ranged V(x) to assure normalizability. 

Finally, it should be noted that continuum- 
embedded bound states have previously been con- 
structed in the presence of  electric fields [4]. No 
doubt such cases could be realized by semiconductor 
heterostructures along the lines advocated in the 
present paper. These resonance structures might have 
useful device applications. They would act as effective 
carrier-trapping structures only under specific elec- 
trical bias, and would lose that trapping ability as bias 
were changed, removed, or reversed. 
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