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Five structural axioms are proposed which generate a space 5 D with "dimension" D that is not restricted to 
the positive integers. Four of the axioms are topological; the fifth specifies an integration measure. When D 
is a positive integer, 5D behaves like a conventional Euclidean vector space, but nonvector character 
otherwise occurs. These 5 D conform to informal usage of continuously variable D in several recent physical 
contexts, but surprisingly the number of mutually perpendicular lines in 5D can exceed D. Integration rules 
for some classes of functions on 5 D are derived, and a generalized Laplacian operator is introduced. 
Rudiments are outlined for extension of Schrodinger wave mechanics and classical statistical mechanics to 
noninteger D. Finally, experimental measurement of D for the real world is discussed. 

I. INTRODUCTION 

Continuous variation in the number of dimensions D 
for space emerges as a useful concept in several areas 
of physics. It was first introduced, apparently, to aid 
in understanding critical phenomena exhibited by the 
binary fluid of "Gaussian molecules.,,1 More recently, 
expansions for critical exponents in terms of 4-D have 
been developed for a wide range of cooperative many­
body systems, 2,3 In addition, quantum field theory has 
been studied as a function of D, which then serves as a 
regularizing parameter, 4-6 Finally, atomic bound states 
(as described by the Schrodinger equation) have been 
studied for continuously variable D, 7 

In each of the cited examples, extending D from the 
positive integers to the real line (or complex plane) 
has been an obvious procedure advertised by the way 
that D occurs in certain key quantities, Typical such 
quantities would be the Gaussian integral 

jdrexp(-ail)=(1T/a)D/2, (1.1) 

or the radial Laplace operator 

d2 (D -1) d 
(£l + --r- dr ' (1, 2) 

wherein precisely the same form can be adopted for 
the extended D domain. Of course the extension is not 
unique, since one can always augment a given interpo­
lation formula with extra terms which vanish at the 
positive integers, But regardless of which forms for 
extension of the key quantities are selected, one must 
be concerned about their logical independence as as­
sumptions, or even about their logical compatibility, 

This paper presents a mathematically concrete reali­
zation of spaces with noninteger D. In fact, the formal­
ism shows that the specific expressions (1. 1) and (1, 2) 
as interpolations are indeed compatible, The broader 
aim is to provide systematic rules for computation in 
spaces with noninteger D, In the interests of future ap­
plication to physical theory, we indicate how 
Schrodinger wave mechanics and Gibbsian statistical 
mechanics transform into the general-D regime, 

The concrete realization offered here may encourage 
new results in the areas of physics which originally 
motivated it. The theory of critical phenomena seems 
to be a good candidate, In particular, convergence prop­
erties of critical-exponent expansions in 4-D are un-
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certain at present. But now that statistical mechanics 
takes more tangible form for noninteger D, it becomes 
clearer how one might formulate and attempt to prove 
perturbation convergence theorems for expansions in 
4-D, at least for some domain of positive values for 
this parameter. 

Even leaving aside trivial modifications [such as re­
placement of D by D + 0. 1 sin(1TD) in the interpolation 
formulas], the formalism offered here for noninteger 
D may not be unique. Nevertheless, it appears to com­
bine simplicity and utility in a way not easily chal­
lenged by alternative approaches. Furthermore, the 
present formalism is attractive on account of the rich 
opportunities it displays for pure mathematics; in par­
ticular the geometry of sphere pac kings for noninteger 
D becomes a valid area for inquiry. 8 

II. TOPOLOGICAL ASSUMPTIONS 

We let 5 D denote the space of interest. It contains 
points x, Y,"', and has topological structure speci­
fied by the following axioms: 

A1. 5 D is a metric space, 

A2, 5D is dense in itself. 

A3, 5 D is metrically unbounded, 

The distance between points x and y implied by A1. 
will be written as r(x, y), It must satisfy the conven­
tional criteria required of metrics9

: 

(a) r(x, y) "" 0, 

(b) r(x,y) =r(y, x), 

(c)r(x,x)=O, 

(d) if r(x, y) = 0, then x = y, 

(e) r(x, y) + r(x, z) "" r(y, z) (triangle inequality). 

(2,1) 

The existence of a metric for 5 D permits neighbor­
hoods of given positive radius to be constructed about 
each point. That 5 D is dense, Axiom A2., simply 
means that every such neighborhood about an arbitrary 
point XE SD contains at least one other point y, Axioms 
AI. and A2. together require that 5 D contain an infinite 
number of points. 
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FIG. 1. Definition of geometric quantities for triangles. 

Axiom A3, means that for every XE SD, and any 
R> 0, there exists a point y such that 

r(x, y) > R, (2,2) 

i. e., the space is infinite in extent. 

Real or complex-valued functions!(x) can be defined 
onSD' If we have (i=1,2,3,"') 

lim !(XI) = !(x) 
I ~~ 

for all sequences {XI} with the property 

lim r(x j , x) = 0, 
j~ ~ 

(2.3) 

(2.4) 

then! is continuous at x. Similar statements apply to 
continuity of functions of several variables. 

Since any three points x, y, and z define three dis­
tances obeying the triangle inequality, it will be con­
venient to adopt some familiar geometrical results for 
triangles (see Fig, 1). In particular, the angle 
o <s e (y, z I x) <s 1f subtended by y and z at x can be obtained 
from the "cosine law," 

(2.5) 

where 

r1 =' r(x, y), r2 =' r(x, z), r3 =' r(y, z), (2.6) 

This definition leads immediately to expressions for the 
"projection of z along (x, Y)," written p(z lx, y), as well 
as its orthogonal complement l(z Ix; y): 

( I) ) ( I) ;1+'1-r5 p z x,y ==r(x,z cose y,z x == 2 ' 
r1 

l(z I x, y) == 2~1 [2 (rt'1 +;1r5 + '1r5) - rf - ~ - r4J1/2 , 

r~=p2+12. 

In ordinary Euclidean spaces, vector addition is 
permitted, 

(2.7) 

(2.8) 

(2.9) 

u=ax+by, (2.10) 

and the result is again an element of the space. We 
must specifically reject (2.10) for noninteger D, since 
any vector space must have a finite integer, or infinite, 
number of basis vectors, 10 and that number inevitably 
becomes the space dimension. Hence 5 D normally 
will not be a vector space. 
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Again for Euclidean vector spaces, a triangle formed 
from three points as shown in Fig, 1 has sides (and 
altitude Z) which are themselves embedded in the space. 
This obviously follows from the fact that any point on 
a line can be expressed as a linear combination of the 
endpoints, in the form of Eq. (2.10), But for our non~ 
integer-D spaces, the available axioms AL, A2., and 
A3. are insufficient to ensure that any points of 5 D lie 
precisely between two triangle vertices, let alone an 
entire side, 

To rectify matters, it will be necessary to include 
a fourth axiom: 

A4. For any two points y,ZESD' and any e>O, there 
exists an XE 5 D such that: 

(a) r(x, y) + r(x, z) = r(y, z); 

(b) I r(x, y) - r(x, z) 1< er(y, z). 

Part (a) permits equality always to be achieved in the 
triangle inequality; an equivalent phrasing would be that 
e(y, z Ix) ==1f. Either way, it places an x directly between 
y and z. Part (b) permits x to be near the midpoinL 
The full implication of A4. is that any two pOints in 5 D 

are connected by a continuous line embedded in that 
space. 

III. INTEGRATION MEASURE 

The topological structure imposed on 5 D must now be 
supplemented with a statement of volume element size, 
so that a linear integration operation becomes possible. 
Considering the fact that, thus far, only points and dis­
tances exist for 5 D, we are obliged to introduce weights, 

(3.1) 

for a fixed set of points x1 ' , 'x", and distances r1 ' •• rn 
measured from them. If thin "spherical" shells (with 
inner and outer radii r1 and r1 + dr1' r2 and r2 + dr2, ",) 
are erected respectively about xt ' •• x", then Wn 
dr1 ., • drn gives the content of the mutual intersection 
of those shells, Once having the Wn in hand, it becomes 
possible to integrate functions h(r01 '" rOn) of the dis­
tances rOJ =' r(xo, xJ) over all Xo E 5 D by the simple ex­
pedient of using the rOJ as separate conventional inte­
gration variables, 

f dxo h(r01 ' "rOn) 

== 10''' dr01 '" fo~ drOn Wn(xt ' , • x" I r01 ' • 'rOn) 

X h(r01 000 rOn)' (3.2) 

Repeated application of this general procedure would 
permit evaluation of multiple integrals, over several 
x/s in a finite point set, of functions of distances in 
that set. 

In principle, explicit formulas could be provided for 
the Wn as functions of the tn(n + 1) distances rjJ 
(0 <s i <S j <S n), In practice, it is more efficient to define 
those functions implicitly by demanding that multiply­
rooted Gaussian integrals have preassigned values. 
Consequently, we now state the fifth axiom for 5 D: 
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A5. For any positive integer n, 

flXo exp (- Ii a j ~j ) 

(
1T)D/2 

= T exp (- ~ 
(3.3) 

This is the only point at which the dimension parameter 
D enters the present axiomatic formalism. It should be 
noted that (3.3) coincides with standard integral results 
when D is a positive integer. When n = 1, Eq. (3.3) 
agrees with Eq. (1.1). 

Axiom A5. confers overall uniformity on 5 D' The re­
sult produced by integrating any rooted Gaussian de­
pends only on distances between root points (which can 
be anywhere in 5 D), and not in any way on absolute 
position in 5 D' In this sense there are no distinguished 
points in 5 D' 

By combining Eqs. (3,2) and (3.3), along with the 
variable change 

tJ=~j, (3.4) 

one discovers the identities 

J~ J~ [W("'ltl/2 ... tl/2)] 
dt ••• dt " 1 n 

1 "2"(t ••• t )17 2 
o 0 1 n 

(3.5) 

Essentially, this provides the result of an n-fold Laplace 
transform on Wn• The weight itself can be computed 
from the appropriate transform inversion formulall 

dO' -(
1T) D/2 

n T 

(3.6) 

The simplest of the weights, Wl , allows integrals 
of radially symmetric functions to be computed: 

(3.7) 

The inverse Laplace transform needed to find Wi from 
Eq. (3.6) is a standard form. 12 The result is found to 
be 

21TD I 2 
Wl (r) = a(D) r D-1

, a(D) = r(D/2) • (3. B) 

When D is a positive integer this agrees precisely with 
the known spherical volume element for mutlidimen­
sional Euclidean spaces. 13 This is the central fact which 
justifies the claim that 5 D is a "space of D dimensions." 

The volume of the radius-R sphere in 5 D follows im­
mediately from Wl , 
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For any R> 0 this has the property 

lim V(R,D) = 1, 
D_O 

(3.9) 

(3.10) 

which in turn implies that Wl is a Dirac delta function 
in the same limit, 

lim Wl (r) = 1i(r - 0). 
D_O (3.11) 

Consequently, integration weight in 5 D collapses to 
zero extension, in spite of the fact that Axiom A3. still 
maintains a sparse set of widely separated pairs of 
points. For a continuous function I, 

lim J dX/(r) =1(0). 
D -0 

(3.12) 

Equation (3.6) may be used to derive a consistency 
property of the weights, 

IV. DENSITY OF MUTUALLY PERPENDICULAR 
LINES 

(3.13) 

Inverting the Laplace transforms, as required by 
Eq. (3.6) to obtain Wn, becomes an increasingly arduous 
task as n increases. But experience shows that no in­
superable difficulties arise-one needs recourse only to 
a small number of recurrent tabulated inverse- trans­
from types. 

One finds the following expression for the two-center 
weight (valid for all real D): 

W2(xt, ~ I rOl, r02) 

(4.1) 

where A is the area of the triangle having sides rOl' r02, 
and r12, 

A(Y01, r02, Y12) 

= H2(~1~2 + ~1~2 + ~2~2) - '001 - '002 - rt21l/2. (4.2) 

If no triangle can be formed, A must be set equal to 
zero. By setting D = 3, expression (4.1) reduces to a 
familiar weight for the nonorthogonal bipolar coordinate 
system, 

(4.3) 

A right triangle will be formed if rOl =r02 =R, 
r12=21/2R, with the right angle at vertex O. By insert­
ing these values in Wa we obtain a measure for the den­
sity of mutually perpendicular lines, 

W2(2112RIR,R)=22-D/21T(D-ll/2RD_2/r(D;1) • (4.4) 

This result is positive for all D> 10 It leads to the 
striking conclusion that the number of mutually perpen­
dicular lines can exceed the dimension of a space, 
specifically when 2> D > 10 

Strictly speaking, we have not proven that triplets 
of points xo, xt, ~ exist with connecting lines at exactly 
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a right angle. The result on a density being positive in 
the neighborhood of this configuration is a weaker 
statement. However the spaces 5 D are dense, so the 
distinction for most purposes is unimportant. 

The three-center weight has the following lengthy 
form (valid for all real D): 

Ws(xt, X-.! , x31 rot, r02, r03) 

= 27-2D a(D - 2) rotr02r03[~(r12' r13, r23»)3..D 

x {- ?t2?t3~3 + ?ot (?t2~S + ?t3~3 - t1s) 

+ ro2(?t2-ri3 + ?t3~3 - rfs) + -?os (?t2?t3 + ?t2~S - rf2) 

- r"ot~S - rt2?tS - rt3?t2 + ro1-?o2(?t3 + ~3 - r~2) 
+ rotroS(?t2 + ~s - -ris) + r202~3(?t2 +?t3 - ~s)}(D-4)/2 • 

(4.5) 

The density of mutually perpendicular lines in S D can 
be extracted from this formula upon setting r01 = r02 
=ros=R, and r12=r1S=r23 =21/2R. This yields 

W3(21/2R ••• IR ... ) = 27T(V-2)/ 2R D-S/3(D-S)/2 r (D;2) , 

(4.6) 

indicating a positive density for all D> 2. Analogous 
to the preceding case, we have found that the number of 
mutually perpendicular lines can exceed the dimension. 
The orthodox position that the maximal number of mutu­
ally perpendicular lines gives D is not valid in the 
present context. 

Careful study of the Wn, using Eq, (3.6), shows that 
they always consist of nonnegative factors divided by an 
uncompensated term r[i(D - n + 1)]. When sets of dis­
tances serving as arguments for Wn are chosen so that 
this weight does not vanish identically, then the incor­
porated term l/r[i(D - n + 1)] will cause sign alternation 
as a function of D when D < n - 1. In particular, one will 
have 

Wn < 0 (n - 4j - 3 < D < n - 4j -1), 

=0 (D=n-2j-1), (4.7) 

where j = 0,1,2,3, •• '. For all other values of D, Wn 
will be positive. The occurrence of negative integration 
weights for noninteger D indicates a complicated and 
unanticipated "geometric" structure for the S D' In fact 
with finite noninteger D an arbitrary number of mutually 
perpendicular lines can be erected, though the corre­
sponding weights Wn(21/2R 0 0 0 IR 0 0') will have indefinite 
signs. The possibility of continuously variable D evi­
dently has been bought at the expense of negative inte­
gration weights, which have no precedent in ordinary 
geometry. 

If M lines emanate from point Xo in 5 v, projection 
of any x along each of these lines can be computed by 
means of Eq. (2.7); they might be denoted by 

Pl(X), P2(X), ••• ,PM(X), (4.8) 

Provided that D is not an integer, the M lines can be 
chosen to be arbitrarily close to perpendicular to one 
another, regardless of how large M might be. These 
lines can then be regarded as a set of orthogonal axes 
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along which the "pseudocoordinates" Pl ,0 'PM are mea­
sured. There are several fundamental questions about 
these pseudocoordinates that deserve eventually to be in­
vestigated, such as: 

(a) If M?-D, and x "*y, are the sets of pseudocoordi­
nates for x and for y distinct? 

(b) Are straight lines in S v always representable as 
linear parametric expressions in terms of 
pseudoc oordinates? 

(c) Under what circumstances can pseudocoordinates 
serve as integration variables? 

(d) What is the content ("volume") of the region de­
fined by 0 < P j < L, if M?- D? 

(e) Can pseudocoordinates be used to carry the con­
cept of convex regions into the noninteger-D regime? 

(f) How do pseudocoordinates transform under the 
translation and rotation groups in S v? 

(g) How can the Pythagorean formula, which for 
M=D = integer has the form 

M 

[rex, y)]2 = 2:; [Pj(X) - Pj(Y) p, (4.9) 
J=l 

be generalized to arbitrary M and D? In particular, do 
D ~ M and D?- M require corresponding inequalities be­
tween the members of Eq. (4.9)? 

We shall not consider these open problems any further 
in the remainder of this exposition. 

V. CONVOLUTION THEOREM 

In Euclidean spaces (D = integer), integrals of the 
type 

(5.1) 

can be reduced to simpler quadratures by introdUcing 
Fourier transforms for the functions f and h. The gen­
eral reduction scheme is usually referred to as the 
"convolution theorem14", whose extension to noninteger 
D we now identify. 

To prepare the way for introduction of Fourier trans­
forms in S D, it will first be necessary to have an inte­
gration weight in terms of quantities P and l [Eqs. 
(2.7)-(2.9)]. This can be produced from the general 
doubly-rooted Gaussian integral, which we now write 
in the following manner: 

f dxo exp(- 01-?ol - ~2r112) 

= i:~ dp fo~ dl W(p, l) exp[ - a 1 p2 - a 2 (1'12 _ p)2 

- (a1 + ( 2) [2]. (5.2) 

Here the fixed pOints 1 and 2 are separated by r12, 
P '" p(xo Ixt,~) is the projection of (xt, xo) on (xt, ~), and 
l is its orthogonal complement. 

Since 5 D is uniform, W cannot depend on pOSition P 
measured along the arbitrary axis passing through xt 
and~. This fact permits the p integral in Eq. (5.2) 
to be carried out explicitly. Furthermore, A5. speci­
fies the value to be assigned to (5.2), so we have 
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This is equivalent to a Laplace transform, and the 
inversion operation leads to the result 

Comparing this result with Eqo (3.8), we see that 

(5.3) 

W(p, Z) is equivalent to a radial weight (with r = Z) for 
5 D_l 0 This confirms the expectation that a constant-p 
subspace in 5 D has dimension D - 1, and we note in 
passing that this subspace can be proved to have all 
other integration properties of the type embodied in A5. 

Now we are in a position to evaluate the "Fourier 
transform" of a Gaussian function in 5 D, 

G(k) = f dxexp[- O'r(x) +ikp(x)]. 

Here p{x) is the projection along a preselected axis 
through the origino Using Eqo (5 04) we have 

(5.5) 

G{k) = r~ dp exp{- O'p2 + ikp) r~ dZ a(D - 1) ZD-2 exp(- O'Z2) 
_00 Jo 

= (1T/0')D/2 exp{- k2/40'). 

(5.6) 

Identifying parameter k as a distance function k(x) in 
5 D, with p{x) the corresponding projection, we also 
derive 

g(r) = (21T)_D f dx G[k(x)] exp[ - irp(x)] 

= (41T0' )-D/2 f dx exp{- [k2(x)/40' ] - irp{x)} 

=exp{- Cl'r). (5.7) 

This constitutes the inverse to transform Eq. (5.5). 

Consider next the class of functions which consist of 
linear combinations of Gaussians, 

(5.8) 

Our generalized Fourier transformation is linear, so 
that 

m 

F(k) = 6 A j (1T/aj )D/2 exp{- k2/4aj ) 
J=1 

(5.9) 

is the corresponding transform functiono At least within 
this function class, the symbolic Fourier transform 
pair has the following appearance: 

F(k) = f dxj(r(x)] exp[ikp(x)], (5. lOa) 

I(r) = (21T)_D f dxF[k(x)] exp[ - irp{x)]o (50 lOb) 

Define the following two-center integral (fixed points 
1 and 2) in 5 D: 

(5.11) 

where bothf and h belong to the function class denoted 
by Eq. (5.8). Thus 
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by invoking A50 The remaining Gaussian factor may it­
self be written as an integral, 

exp [-(a:~b) ri2] 

=(~)D/2 
41Taj b l 

- ir12P(X)] 0 (5.13) 

Substituting and rearranging we have 

x{E 
x exp [- ~ (;j + :J k

2 
(X)] } 

=: (21T)-D f dx exp[ - ir12P(X)]F[k(X)]H[k(X)1, 

(5.14) 

This is the desired convolution theorem. Similarly to 
the case with integer D, it reduces the evaluation of 
doubly-rooted integrals to an integral of the product of 
Fourier transformso 

Aside from complex exponentials, integrals of the 
types (5010) and (50 14) inVOlve only functions of distance. 
Consequently they may be simplified. Starting with the 
prototype integral 

I=: f dx ¢ [r(x)] exp[ikp (x) J 

'" f: dp fo~ dl W(p, l) ¢(p2 + Z2) exp(ikp), (5.15) 

we introduce the change of variables 

Z=rsine, p=rcose (5016) 

[recall Eqso (2. 5)-{20 9)1, This allows one to express 
I as follows 

I=a(D-l) fo~ dr 10" de yD-1(sine)D-2 

x exp(ikr case) ¢(r), (5. 17) 

upon using Eqo (504) for W(p, Z). By expanding the 
exponential function, the e integral may be carried 
out explicitly (after recognizing the Bessel function 
series), 

1= (21T)D/2 fo~ dr (kr)(2-Dl/2 J(D_21/2(kr) ¢(r). (5.18) 

By employing result (5.18), we simplify the D-dimen­
sional Fourier transform pair (5.10) to 

F(k) = (2rr)D/2 fo~ dr (kr)(2-Dl/2 J W _21 /2(kr) fer), (5. 19a) 
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fer) = (21T)_DI2 ~'" dk (rk)(2-DJ/2 J(D_2J 12 (rk) F(k). (5. 19b) 

In analogous fashion, the convolution theorem (5.14) 
can be written 

T(r12) = (21T)-D/2 ~ .. dk (r12k)(2-DJ/2 J(D_2J/2(r12k) F(k) H(k), 

(5.20) 

for evaluation of the doubly-rooted integral (5.11). 

Equations (5.18)-(5.20) are Hankel transforms, 15 

with minor modifications. We see that they arise 
naturally in spaces with fractional dimension. Although 
we have derived (5.18)-(5.20) only for the limited 
class of functions shown in Eq. (5.8), consisting of 
finite sums of Gaussians, it should be clear that ex­
tension is possible to convergent sequences of such 
functions. The available general theory of Hankel 
transforms16 is relevant in this connection. 

VI. LAPLACE OPERATOR 

For the moment, we revert to the special case that 
D is a positive integer, so that S D can be treated as a 
conventional vector space. A form of the linear Laplace 
operator v2 will be constructed which will serve as a 
convenient device for extension to noninteger D. 

Introduce a "local weighting function" w(r) with the 
following properties: 

lim w(r) =0, 
T- .. 

J drw(r) =0, 

J dr rw(r) == W2 *- O. 

(6.1a) 

(6. Ib) 

(6.1c) 

Then for any function/(r) defined over the vector space, 
consider the integral (we assume it converges), 

L(r1,O=~D+2 Jdrw(~lr-ril)f(r), ~>O. (6.2) 

When ~ is large, the integrand will differ from zero 
only in the immediate neighborhood of the point r 1. Pre­
suming that / is at least twice differentiable, it would 
then suffice to represent this function in L by the lead­
ing terms in its multiple Taylor expansion about r 1 

L (rt, ~) = ~D+2 J dr w(~ I r - r11 Hf(r1) + (r - r i ) • V f(r1) 

+ i(r - r 1)(r - r1) : VV f(r1) + ' , , J. 
(6.3) 

In the limit; - + 00, the remainder beyond terms shown 
should be negligible, so we drop it. 

The leading term in Eq. (6.3) vanishes, due to condi­
tion (6. 1b). The next term (containing Vf) also vanishes 
by symmetry. Therefore, we need only examine the 
quadratic terms, which may now be written out 
explicitly, 

L(r1,;)=i;D+2 2:; a f(r i drw(~lr-ril) D 2 ) f 
I,J.1 axloxJ 

x (Xl - XI1)(xJ - XJ1) +. ". (6.4) 

Here the separate vector components have been denoted 
by Xl' etc. Only those integrals with i=j in (6.4) sur­
vive. Since 
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(6.5) 

we have 

W D a2/(r) 
L(r ~)=~ 2:; ~ +, .. 

1> 2D l=1 a~ 

(6.6) 

In the limit, one has the following identity: 

V2 f(r1) = 2D lim ;D+2 J dr w(~ I r - ril) f(r), (6.7) w
2 

~_ .. 

The right side of the last equation immediately sug­
gests the form in which a linear Laplace operator 
(which we continue to denote by V2) ought to be defined 
for noninteger D, 

where Eqs. (6. 1) are taken over to S D in the obvious 
way. We now explore some implications of this 
definition. 

One of the Simplest cases to which Eq. (6.8) can be 
applied is that in whichf depends only on radial dis­
tance r02 from some origin xo. For this case the 
Laplacian to be evaluated will depend only on distance 
r Oi , 

(6.9) 

On account of the (large) scale factor ~ that occurs in 
the variable for w, attention need only be focused on 
the region of small ri2' Referring to Fig. 2, we have 

r 02 =rOi { 1-2cose(~) + (~) 2 f/2 

=rOi{l-cose(~) + (i-icos2e)(~) 2 
+o[(~rJ} (6.10) 

This expansion may be used in conjunction with the 
Taylor expansion for / to yield the following: 

+~2 (~-tcos2e) /'(r01) +tcos2ef"(rot») 
r Oi 

+ O(r~2) ] • 

(6. 11) 

Equation (6.1b) causes the/(r01) term in this last ex­
pression to vanish; the following term (proportional to 

FIG. 2. Triangle used in evaluation of Eq. (6.9). 
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rt2) vanishes by symmetry. Furthermore the O(ri2) 
remainder will vanish in the indicated limit. Conse­
quently we are left with 

v2/(rot)= [ (COS29) !"(r01) +~ -(COS29 ))/';:01) J. 
(6. 12) 

where 

(cos29) = (!;D+2 /W2)j d~ ~2 cos29 w(!;r12). (6.13) 

It is natural to use r12 and 9 as integration variables 
for evaluation of this last average. The proper integra­
tion weight 

(6.14) 

was obtained earlier in connection with Eq. (5.17). 
Thus we find 

( 2> 1 (. 2 > f;(sin9)Dd9 l/D 
cos 9 = - sm e = !;(sin9)D-2d9 = . 

This converts Eq. (6.12) to the desired Laplacian 
formula, 

V2 fer) =!"(r) + [(D -l)/r]f'(r), 

(6.15) 

(6.16) 

where for simplicity the distance subscripts have been 
suppressed. Note that this confirms the compatibility 
of expressions (1. 1) and (1. 2) in the Introduction. 

It is only a bit more complicated to compute the 
Laplacian in 5 D for g(p, l), a function of a projection 
p and its orthogonal complement. From Eq. (6.8) we 
have 

v 2 g[p(~), 1(~)] = 2D lim !;D+2 rd~ w(!;r12) 
w2t-~ J~ 

xg[p(~), 1(~)]. 

Insert into the integrand the Taylor expansion of g 
through second order, 

g[p(~), 1(~)] =g[p(~), 1(~)] + ~; 6.p + ~f 6.1 

1 a2g 2 a2g 
+ "2 apr (6.p) + apaZ 6.p6.l 

+ ~ ~ (6.l)2 + . " , 

where 

(6.17) 

(6. 18) 

(6.19) 

The first, second, and fifth terms in (6.18) integrate to 
zero. The remaining three terms may be evaluated by 
the procedure used to derive the earlier result (6.16). 
One finally obtains 

[
02 02 D - 2 a] 

V2g(p, l) = apt + ar + -Z- 01 g(p, l). 

For many applications it may be convenient to 
transform .... ariables in g from p and Z to the polar 
variables r and e, 

p=rcose, l=rsine. 

(6.20) 

(6.21) 

The Laplacian in Eq. (6.20) may be transformed ac­
cording to the standard procedurel1 to yield 
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(6.22) 

VII. SCHRODINGER WAVE MECHANICS 

Using suitable reduced units, the quantum-mechani­
cal motion of a particle subject to potential U is de­
scribed by the time-dependent Schrodinger equation 

(7. 1) 

The general solution consists of a linear superposition 
of terms 

ljJ exp(- iEt), 

where the spatial wavefunctions ljJ obey the spatial 
wave equation 

[- iV2 + U - E] ljJ = O. 

(7.2) 

(7.3) 

In seeking solutions to Eq. (7. 3) relevant to unbounded 
space, both square-integrable eigenfunctions (bound 
states) and scattering solutions (asymptotic plane waves) 
normally are sought. 

In view of our generalized Laplace operator, Eq. 
(6.8), it is now possible to extend study of the 
Schrodinger wave equation to spaces with noninteger 
dimension. We examine several simple examples. 

Let U be restricted to central form, i. e., it will 
depend only on radial distance r from some chosen 
origin in 5 D. We then search for solutions to the gen­
eralized spatial equation (7.3) which have the form 
ljJ(r,9). Here angle 8 is measured relative to any axis 
in 5 D passing through the origin. Appealing to Eq. 
(6.22), we have 

[ 
1 ~ ~-1 ~ + 1 a sinD-28 ~ rzr;;r or or 1"2 sinD-28 0""9 08 

+ 2E - 2U(r)] ljJ(r, 8) == O. 

This equation is separable; set 

ljJ(r, 8) ==R(r) e(8). 

(7.4) 

(7.5) 

The resulting radial and angular differential equations 
are the following: 

[ 
d2 d J (j8Z +(D-2)cot8 d8 +A(A+D-2) 9(8)=0, (7.6) 

[
d2 D - 1 d A(A + D - 2) J fi? + -r- dr + 2E - 2U(r) - 1"2 R(r) = O. 

(7.7) 

The appropriate solutions to angular Eq. (7.6) are 
Gegenbauer polynomials in cos8 18: 

e(8) =C~D/2-1)(cos8), A = 0,1,2,3,' 0'. (7.8) 

These polynomials satisfy the following orthogonality 
relation: 

.( C~/2-1)(cos8) c~q/2-1l(cos8) sinD-28d8 = heAl o(A, A'), 

(7.9) 

where 
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heAl = A! (A + tD -1)[r<tD - 1)]2 • 

The first few Gegenbauer polynomials are 

C~/2-1)(Z) = 1, 

C~D/2-1)(z) = (D - 2)z, 

C~D/2-1) (z) = (tD - 1)(Dz2 -1). 

(7.10) 

(7.11) 

The nature of solutions to the radial equation natural­
ly depends on U. The simplest case is that for free­
particle motion, U:; 0. The radial solutions are then 
found to be expressible in terms of Bessel functions, 

R(r) = (kr)1-DI2JD/2+A_1{kr), k={2E)1/2. (7.12) 

Free particle motion can just as well be described by 
a "plane wave" Iji. In S D the appropriate form is 

Iji{x) = exp(ikp(x»), (7.13) 

where p(x) represents the projection of pOint x along 
the chosen polar axis. This polar axis is the direction 
of propagation. The "plane wave" may be expanded as 
follows (recall p{x) =r{x) cosO]: 

'" 
exp[ikp{x)] == 6 AA c}:'/2-1)(cosO)(kr)1-D/2 JD/2+A_l(kr), 

A=O 

AA == 2D/2-1GD + A - 1) r(tD -1) iA • 

By choosing 

U(r)==tKr 

(7.14) 

(7.15) 

we obtain an isotropic harmonic oscillator in S D' The 
corresponding discrete spectrum results from the re­
quirement that the radial function Rn(r) vanish at in­
finity. With this boundary condition the solutions involve 
generalized Laguerre polynomials, 18 

R{r) == exp(- h 2) SA L~DI2+A-1)(S2), 

s=xl/4r, n:=O,1,2,3,···. 

The corresponding energy eigenvalues are 

E :=xt/2{tD + A +2n). 

(7. 16) 

(7. 17) 

The lowest-order generalized Laguerre polynomials 
have the following explicit forms: 

L(~/2+A_1l(Z) = 1, LlD/ 2+A-1l(z):= tD + A - z, 

L~DI2+A_l)(z) =tz2 - (tD +A + l)z +t(tD +A)(tD+A + 1). 

(7. 18) 

The "Coulomb" problem in D dimensions for present 
purposes will refer to the inverse-distance potential 
(Z? 0) , 

U(r)==- Z/r. (7.19) 

[An alternative convention might have been adopted, of 
course, with U proportional to. the radial Green's func­
tion for our D-dimensional Laplacian. ) The correspond­
ing radial equation 

[
d2 D-l 

--;-?' +-­
dr- r 

!!.... +2E+ 2Z _ A(A+D-2») R(r)=O 
dr r :;::z 

(7.20) 
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has solutions regular at the origin which may be written 
in terms of the confluent hypergeometric function 
M(a, b, z).19 Setting 

(7.21) 

one finds, 

R(r) =0 exp(- Kr)M(A +tD - t- Z/K, 2A +D-l, 2Kr). 

(7.22) 

These radial functions are square-integrable only for 
discrete values of K, which in fact cause M to reduce to 
a polynomial in r. The criterion for this reduction is 
the following: 

A + tD - t - Z/K == 1 + A - n, 

n=A+l, A+2, A+3,"', 
(7.23) 

which introduces the principal quantum number n. Equa­
tion (7.23) may be written in terms of E to show the 
spectrum of bound- state energies, 

E=-Z2/2(n+tD-t)2. (7.24) 

It is noteworthy that orbital degeneracy continues to 
exist for D"* 3. 20 For each n, the eigenfunctions with 
A == 0, 1, .•. ,n - 1 all possess the same energy. 

Explicit polynomial forms for the M functions may 
easily be computed. Some of the simpler cases are now 
listed. 

n=l, A=O: M(O,D-l,z)=I, 

n =2, A=O: M(-l,D -1, z) = 1- z!(D-l), 

n=2, A=I: M{0,D+1,z)=1, 

2z z2 
n=3, A==O: M(-2,D-l,z)==1- D-1+ D(D-l)' 

z 
n==3, A==I: M(-l,D+l,z)==I- D+l' 

n==3, A=2: M(0,D+3,z)=L 

(7.25) 

When D is an integer, the set of solutions iJ!{r, 0), in­
cluding all possible polar axes, generates the full set 
of solutions to the spatial wave equation, by taking ap­
propriate linear combinations. Presumably the same is 
true for noninteger D, but a proof is presently lacking. 
More to the point, it is not yet clear how one can iden­
tify a complete orthogonal set of solutions. 

VIII. CLASSICAL PARTITION FUNCTION 

Consider N structureless particles of mass m, con­
fined to a region n with integer dimension D. Let 
vectors Rt ••• RN and P1 ••• PN denote the positions and 
momenta, respectively, and let 4)(Rt ••• RN ) be the 
interaction potential. The classical partition function 
has the folloWing form: 

ZN = (l/N!hDN
) 10 dRt .,. In dRN J dP1 ••• J dPN 

N 

Xexp(-(f3/2m)~ P~-f34)(Rt"'RN)]' (8.1) 
J=1 

Here h is Planck's constant, and f3 == l/kB T is the in­
verse temperature parameter. Contact between ZN and 
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thermodynamic properties for the system of particles 
is provided by the Helmholtz free energy F, 

f3F= -lnZN' (8.2) 

In the large system limit, with fixed temperature and 
density NIo" the free energy per particle FIN becomes 
independent of 0" provided that this region is such that 
most particles are far from its boundary. In this limit, 
any convenient shape for 0, can then be employed, such 
as the D-dimensional "sphere" of appropriate radius. 

In seeking to extend ZN to noninteger D, procedures 
must be indentified for carrying out both momentum 
and position integrations. The former provide no dif­
ficulty, since Axiom A5. immediately affords the 
result 

(8.3) 

where ~T is the mean thermal deBroglie wavelength, 

~ T == hi (27Tmk B T)1I2 • (8.4) 

However the position integration requires more detailed 
consideration. 

We can use the integration weights Wn introduced by 
Eq. (3.2), and treat the position integrations as a multi­
ple integral over all distances. The distances involved 
of course include the N(N - 1)/2 interparticle separa­
tions rl!' However we shall in fact treat 0, as a D­
dimensional "sphere" (with radius L), so that the N 
distances rOI of the particles from its center are also 
relevant. Without significant loss of generality, we can 
suppose that the potential energy ib is a function just 
of the rlJ. 

Under these circumstances, ZN can be put into the 
following form: 

Zn= (1/N1~~N) foL drOt Wt (Olrol) foL drQ2 

x fo2L drt2 W2(0, 11 rQ2, rt2) foL dr03 fo2L drt3 

x f02L dr23 W3(0, 1, 21 r03, rt3, r23) ••• fOL drON 

x fo2L drtN fo2L drN_t,N WN(O" 'NlroN" ·rN_t.N) 

(8.5) 

Strictly speaking, the upper limits 2L on the rl j 

(0 < i, j) integrals could be extended to infinity, since 
the affected weights would automatically vanish over 
the extension. 

Evaluation of ZN in form (8.5) represents no less a 
formidable challenge than its integer-D predecessor in 
Eq. (8.1). Nevertheless some of the standard tech­
niques in statistical mechanics can be carried over. In 
particular it is possible to develop the Ursell-Mayer 
cluster theory2t for nOninteger D. For this purpose we 
make the conventional simplification that ib consists of a 
sum of central pair potentials, 

(8.6) 

Then the Boltzmann factor exp(- f3ib) in the partition 
function may be developed into a sum of products of 
Mayer f functions, 
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N 
exp(-f3ib)= n [1+f(r,J)] 

1< Jet 

where 

N N 

=1 + :E j(rlJ) + :E [f(rIJ)f(rJk ) 
I{Jet I<J<kc1 

+ j(rlj)j(rl k) + j(rlk)j(rJk) 

+ f(rIJ)j(rlk)j(rJk)] + .. " (8.7) 

(8.8) 

At this stage one can essentially follow the usual 
cluster-theory procedure. 21 The only novel feature is 
the necessity to use contraction properties (3.13) for 
the weights Wn in the case of integrals containing sets 
of distances in only a trivial way. Finally one obtains 
the irreducible cluster expansion for the Helmholtz free 
energy; in the large-system limit the result has the 
following form: 

f3F =In (A¥N) _ E A (!!) k. (8.9) 
N en M k+1 0, 

The 13k are sums of irreducible cluster integrals for 
k + 1 particles, and may be expressed thus, 

13k = (1/kl) fo~ dr12 W1 (11 r12) • , , Jo~ dr1,k+1 ••• fo~ drk• k +1 

(8.10) 

Here Sk is the sum of those f-function products for the 
k + 1 particles which correspond to connected graphs 
without articulation points. 

The pressure p for the N-particle system may be 
obtained from F by the relation 

(8.11) 

Within the convergence radius of the cluster expansion 
(8.9) one therefore has 

j3po,=1_t~(!!)k (8.12) 
N k=t k + 1 0, , 

which is the usual virial expansion. 

The second virial coefficient in the pressure series 
(8.12) has the following explicit form: 

B2 == - ~f31 = - ~a(D) r dr-yD-1 j(r). (8.13) 

If the pair potential ¢ describes rigid "spheres" with 
collision diameters a, then 

j(r) = - 1 (0';; r';; a), 

=0 (a < r), 
(8.14) 

so that the general-D second virial coefficient becomes 

lT D/ 2aD 

B2 == Dr<n/2)' 

The third virial coefficient 

B3=-~j32 

involves a single cluster integral whose integrand 
contains the triangular j product, j(r12)j(rdj(r23)' 
SpeCifically, 
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• s 

FIG. 3. Hexahedral region (solid lines) over which the general­
ized third vidal coefficient integral (S.19) must be carried 
out. 

B3 = - t fo~ dr12 W1 (11 r12)j(r12)j~~ dr13 

X fo~ dr23 W2(1, 21 r 13' r23)/(r13)/(r23)' (8.17) 

Expressions for W1 and W2 were derived earlier, and 
allow B3 to be written as 

X f ~ dr23 /(r12)j(rd/(r23) r12r 13r 23 
o 

X [2(~2~3 + ~2~3 + ~3~3) - r12 - r13 - r1 3J(D.3)/2 

X TO(r12' r13, r23). 

(8.18) 

The function To is present only to ensure that r12' r13, 
and r23 can form a triangle, and if they can it is unity; 
otherwise To vanishes. This criterion precisely deter­
mines the region over which the quartic factor [0' oj in 
Eq. (8. 18) is positive. 

In the case of rigid "spheres," Eq. (8.18) simplifies 
somewhat, 

25-D1TD-1/2a2D 

B3 = 3r(D/2)r«(D -1)/2) 

x j1 dr /1 dsf1 dtrstTo(r,s,t)FD(r,s,t), 
DOD 

FD(r, s, t) == [2(y2 s2 + y2t2 + s2t2) - yi - S4 - t)(D.3)/2. (8.19) 

Figure 3 shows the region in r, s, f space over which 
the integral in Eq. (8.19) must be carried out; this 
hexahedral region is determined both by integration 
limits and by the condition that To be unity. The figure 
is useful in transforming expression (8.19) to the 
following form: 

_ 26-D1TD-1/2 a2D[fA(D) + IB (D)] 
B3 - 3r(D/2)r«D _ 1)/2) 
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IA(D) = ft~2 ds ~:s dt fs~t drrsf F D(r, s, f), 

I 1/2j1_t r .+t 
IB (D) = df dS) drrsl F D(r, s, t) 

o t s-t 

1T1/2 r«D - 1)/2) [ 1 1-DJ 
=4(D-2)2r(D!2) F(D-2,2-D;D-1;2")-2 , 

where F(a, b;c;z) is the hypergeometric function. 22 

Unfortunately fA does not simplify significantly unless 
D is an integer. However the form shown is suited for 
numerical evaluation, should the need arise, 

An alternative route to B3 would employ the convolu­
tion theorem discussed in Sec. V. 

Using the three-center weight in Eq. (4.5), explicit 
(though complicated) integrals can be worked out for 
the fourth virial coefficient B4 = - %133 , 

IX. DISCUSSION 

The preceding exposition implicitly raises a funda­
mental physical question. Specifically, should we 
regard the dimension D of the space in which we live as 
a possibly noninteger quantity that is locally subject 
to experimental determination? No one can seriously 
doubt that our world is locally close to three-dimen~ 
sional. But how close? Results in Sec. IV above show 
that it does not help much to exhibit three mutually 
perpendicular lines, since this provides neither a nec~ 
essary nor a sufficient condition for D to equal 3. 

Probably the most direct experimental approach to 
determination of D would be the measurement of mass 
content of a series of homogeneous spherical bodies. 
The expected result for D = 3 of course is that this mass 
would be strictly proportional to the radius (or diam­
eter) cubed. However, accumulated errors in weighing, 
in size and shape measurement, and in density varia~ 
tions (due to composition and temperature inhomogen­
eity, and to body stresses) would likely limit the precis~ 
sion in determination of the exponent D to about 1 part 
in lOG. By this means one presumably would conclude 
that D was 3 ± 10-G in our terrestrial locale. 

In seeking alternative procedures with greater pre~ 
cision, it might be valuable to examine mathematically 
how spheres pack when D departs slightly from 3. With 
D = 3 exactly, spheres can be fitted together in infinite­
ly extended close packings (f. c, c., h. c. p., or hybrids 
of the two) with each sphere touching twelve neighbors. 
If D were slightly larger than 3, attempts to build a 
known D = 3 packing outward from a central sphere 
would begin to produce gaps, eventually allowing extra 
sphere insertions. By contrast, the case with D slight­
ly less than three would not permit a full complement 
of spheres to pack properly in the successive shells 
expected for D = 3; in terms of material spheres forced 
into those shells, an accumulation of elastic stress 
would result. Proper interpretation of the physical con~ 
struction of large sphere packings thus might help to 
place tight bounds on our ambient dimension. 

In any case, experiments designed to determine D to 
1 part in 109 or better would likely require the utmost 
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sophistication in concept and perserverence in 
execution. 

In general relativity, gravitational fields are under­
stood to be geometric perturbations (curvatures) in our 
spacetime,23 rather than entities residing within a flat 
spacetime. The concept that physical force fields 
generally might be related to purely geometric distor­
tions in space is appealing, and leads one to inquire if 
dimension D itself might not play an important role as a 
field variable. The preceding development has consid­
ered only uniform spaces 5 D for which D had a fixed 
value. However a more general class of spaces can 
also be generated within which D varies continuously 
from point to point (integration weights Wn would exhibit 
the change explicitly). Under the assumption that gen­
eral relativity is an incomplete description of reality, 
it might be appropriate to ask if regions of strong 
gravitational field display perturbed dimension. More 
generally, local space dimension may provide geome­
tric field variables in addition to those of general rela­
tivity, that would have a place in a unified description 
of all the forces in nature. 

Finally, mention should be made of a paper by 
Wilson,24 which also offers an axiomatic description 
of spaces with noninteger dimension. While most of 
Wilson's results on integrals appear to be consistent 
with those deduced here, it is not at all clear that the 
mathematical spaces generated in the two approaches 
are isomorphic. In particular, Wilson permits vector 
addition, and requires an infinite number of vector 
components when D is not an integer; in the present 
case vector addition [Eq. (2.10)] has explicitly been ex­
cluded, and we have seen that negative integration 
weights inevitably occur. 
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