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I. Introduction and Survey 

A. MOLECULAR NATURE OF PURE WATER 

Frank H. Stillinger 

Undoubtedly the most important solvent in chemistry and chemical tech­
nology is water. Furthermore, this substance plays an active and indispens­
able role in biology. Chemical reactions that take place in water exhibit 
enormous diversity and frequently possess great industrial, geological, and 
medical significance. Under these circumstances, then, it is natural to devote 
serious attention to specific study of chemical reactions in water at the 
molecular level. 

Among all possible chemical reactions that occur in water, the most fun­
damental is the reversible dissociation reaction 

k, 

H 20 ;::===:! H+ + OH-. (1.1) 
k, 

Examination of the theory describing forward and reverse rates, and of the 
nature of the solvated ions formed, constitutes a major objective in this 
chapter. In addition, we shall broaden the scope to include other aqueous­
medium reactions involving proton transfer. 

Basic to the understanding of proton transfer reactions and kinetics in 
water is an understanding of the molecular nature of water itself. Both 
experimental and theoretical research on water has recently been intense, 
and as a result of those activities a reasonably complete picture has begun to 
emerge (Stillinger, 1975, 1977). 

In large measure, the structure and properties of water can be explained 
by the shape of the individual molecules, and by the tendency of those 
molecules to hydrogen bond to one another. The ground state of the isolated 
water molecule displays C 2 v symmetry; the OH bond lengths are 0.9576 A, 
and form angle 104.48° at the oxygen nucleus (Benedict et al., 1956). The 
hydrogen bonds that hold together the condensed phases of water are in 
undistorted form essentially linear, with an OH covalent bond of one 
molecule (the proton donor) pointing toward the back side of a neighbor 
molecule's oxygen atom (the proton acceptor). Participant molecules in a 
hydrogen bond normally are little distorted from their isolated geometries. 
Well-formed hydrogen bonds between water molecules have oxygen-oxygen 
lengths in the range 2.7-3.0 A, and strength about 5 kcaljmole (Hankins et 
al., 1970; Popkie et al., 1973). 

Hydrogen bonding between neighboring water molecules achieves its 
greatest extent in the crystal structure of ordinary hexagonal ice (Fletcher, 
1970). There, each molecule participates in precisely four hydrogen bonds to 
nearest neighbors 2.76 A away. Toward two of these neighbors the central 
molecule acts as proton donor, while from the other two it accepts protons. 
The spatial arrangement of these four bonds is the same as four lines radiat-
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ing outward from the center of a regular tetrahedron toward its vertices. The 
existence of this tetrahedral coordination with 109.45° between successive 
bonds is doubtless encouraged by the fact that the isolated-molecule HOH 
angle is close to that ideally required for strictly linear hydrogen bonds in 
the crystal. 

The hydrogen bonds in hexagonal ice form a space-filling network in 
which the bonds are locally arranged in hexagons. These hexagons exist in 
both "chair" and "boat" conformations, analogous to those adopted by the 
hydrocarbon cyclohexane (Wiberg, 1964}. The low temperature cubic 
modification of ice is similar, but contains only chair hexagons. 

The propensity for water molecules to retain tetrahedral coordination 
through hydrogen bonds to neighbors, with modest angular deformation, is 
obvious from examination of the structures of the high pressure ices II-IX 
(Fletcher, 1970). In each case, space-filling networks of hydrogen bonds 
exist, but the polygons locally produced include quadrilaterals, pentagons, 
hexagons, and octagons. Even this rich geometric diversity is further 
broadened by consideration of water networks in clathrate hydrates; in the 
case of tert-butylamine hydrate the unit cell contains a heptagon of 
hydrogen bonds (Jeffrey et al., 1967}. 

Evidently the tendency for water to engage in tetrahedral hydrogen bond­
ing extends beyond the melting point of ice into liquid water. X-Ray and 
neutron diffraction studies of the liquid strongly suggest this qualitative 
behavior, but with a significant degree of disruption (Narten, 1972}. As 
would be expected, increasing temperature measurably increases the extent 
of that disruption (Narten and Levy, 1971}. 

Computer simulation studies have recently been carried out for liquid 
water. They include both the Monte Carlo (Lie and Clementi, 1975) and 
molecular dynamics (Stillinger and Rahman, 1974} techniques. These simu­
lations provide confirmation for conclusions drawn from the diffraction 
experiments about local tetrahedral order in the liquid. They also provide a 
wealth of additional geometric information about molecular order and 
hydrogen bond arrangements that is unavailable from any conceivable ex­
periment (Rahman and Stillinger, 1973}. 

The conclusion that can be drawn from experimental and theoretical 
studies is that liquid water consists of a random hydrogen bond network, 
including strained and broken bonds. Furthermore, hydrogen-bond poly­
gons of all sizes larger than triangles are present, with no marked preference 
for even or for odd numbers of sides (Rahman and Stillinger, 1973 ). This 
random network is labile, with bonds breaking and reforming nearby so as 
to permit diffusion and fluid flow. There is no compelling evidence to suggest 
that the random network is broken up into patches or regions unconnected 
to the remainder, but instead a rather uniform degree of hydrogen bond 
connectivity obtains throughout. 
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Compared to most other liquids, water has a high static dielectric con­
stant e0 • At atmospheric pressure, e0 is 87.74 at 0°C, but drops to 55.72 at 
100°C (Malmberg and Maryott, 1956). To a large degree these high values 
reflect the polar nature of the water molecule, which in isolation possesses 
static dipole moment 

f.1 = 1.855 x 10- 18 esu em (1.2) 

(Dyke and Muenter, 1973). It is a simple matter to show that locally uncor­
related dipoles would alone produce a static dielectric constant determined 
by the formula 

(eo - 1 )(2e0 + 1) 4npf.12 

e0 kB T ' 
(1.3) 

where pis the molecular number density, kB is Boltzmann's constant, and T 
is the absolute temperature. By inserting the f.1 value shown in Eq. (1.2), and 
the appropriate p values, one finds that Eq. (1.3) predicts 

e0 = 19.70 (0°C), 

(1.4) 

That the measured e0 values are substantially larger stems from the failure 
of naive formula (1.3') to incorporate thre,~ important phenomena. 

1. The molecules can polarize in an externally applied electric field, due to 
both nuclear deformation and polarization of the electronic distribution. 

2. Even in the absence of an external field, interactions between neighbor 
molecules in the random network tend on the average to increase the 
molecular dipole moment to a value Ji substantially exceeding f.l· 

3. Nearby pairs of molecules tend to have their dipole directions biased 
toward parallelism. The total local moment near a given molecule is 
frequently denoted by 9K ji, where 9K is the Kirkwood orientational correla­
tion factor (Kirkwood, 1939). 

Unfortunately there is no fully satisfactory theory for e0 in water that 
accounts for all of these effects quantitatively. Nevertheless, rough estimates 
both for Ji and for gK have often been proposed (Eisenberg and Kauzmann, 
1969) with 

9K ~ 2.6, 

Ji ~ 2.4 x 10- 18 esu em (1.5) 

for water around room temperature, and with both quantities exhibiting 
negative temperature coefficients. 

The rate at which the random hydrogen-bond network in water spontan­
eously restructures itself can be monitored by measurements of self-diffusion 
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constants (Mills, 1973), viscosity (Stokes and Mills, 1965), and dielectric 
relaxation times (Collie et al., 1948). Each of these exhibits strong tempera­
ture dependence. The respective Arrhenius plots are distinctly curved, with 
inferred energies of activation increasing as T declines (Eisenberg and Kauz­
mann, 1969). These increases are particularly noticeable if data for super­
cooled water are included, and they surely reflect the energy required for 
thermal disruption of the random hydrogen-bond network. It is interesting 
to note in this regard that as water at ooc freezes to hexagonal ice, the 
self-diffusion constant decreases discontinuously by a factor of about w- 5, 

while the dielectric relaxation time increases by about 106 . 

Even without further knowledge, one would reasonably expect other rate 
processes in water, involving proton transfer, to display similar temperature 
effects. We will see how that expectation is in fact realized. 

B. DISSOCIATION AND ELECTRICAL CONDUCTION MEASUREMENTS 

The conventional definition of pH for a solution containing H+ ions is 

(1.6) 

where aH+ is the activity of those ions referred to the hypothetical standard 
state of unit molar concentration in pure water. Of course, single ion activi­
ties are unmeasurable by the normal procedures of solution physical chem­
istry, so evaluation of pH would seem to require auxilliary assumptions or 
theoretical calculations. 

Under ordinary temperature and pressure conditions, the extent. of disso­
ciation in pure water is sufficiently small that the resulting solution of H + 
and OH- ions is essentially ideal. In that case aH+ in Eq. ( 1.6) may validly be 
replaced by the molar concentration of H+ ions, CH+. Under other condi­
tions leading to high degree of dissociation, or if concentrated solutes are 
present, this replacement is unjustified. 

The dissociation constant for water Kw is given by the ratio of rate con­
stants in Eq. (1.1): 

(1.7) 

where of course in the last form shown a consistent set of standard states 
must be used for the activities a;. A closely related constant K'w can be 
measured electrochemically, by observing emf's for cells without liquid junc­
tions. Specifically 

(1.8) 

where aH+ and aoH- refer to thehypothetical1 M standard state, and where 
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aH:20 refers to the standard state of pure water ( ~ 55.5 moles/liter). In view of 
the small extent of dissociation under the usual conditions, K'w undergoes an 
important simplification to 

(1.9) 

from which pH may then be determined. 
In the temperature range oa-60°C, values determined electrochemically 

for K~ have been listed by Robinson and Stokes (1959). These results are 
well represented by the formula 

I 4471.33 ( ) -log1o Kw = T -6.0846 + 0.017053T. 1.10 

Table I reports concentrations of H+ and OH- ions produced by dissocia­
tion in pure water that have been determined through K'w . 

Table I 

ION CONCENTRATIONS RESULTING FROM DISSOCIATION OF PURE WATER 

AT VARIOUS TEMPERATURES" 

t(OC) CH + =CoH- (10- 7moles/1) 

0 0.337 
5 0.430 

10 0.540 
15 0.671 
20 0.825 
25 1.004 
30 1.212 
35 1.445 
40 1.708 
45 2.004 
50 2.340 
55 2.701 
60 3.101 

• From Robinson and Stokes (1959). 

By differentiating log10 K'w with respect to temperature, standard ther­
modynamic changes in enthalpy, entropy, and heat capacity may be 
determined for the dissociation process. The currently preferred values at 
298aK for these quantities, respectively, are the following (Hepler and Wool­
ley, 1973): 

AH0 = 13.34 kcaljmole, 

AS0 = -19.31 caljmole deg, 

AC~ = - 53.5 caljmole deg. 

(1.11) 
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The standard-state volume change for the reaction can either be 
determined from pressure variation of K'w, or from dilatometric measure­
ments of dilute acid-base neutralizations. The preferred value at 298oK is 
(Hepler and Wooley, 1973) 

L\VO = -22.13 cm3/mole. (1.12) 

This result quantitatively summarizes the tendency for increasing pressure 
to shift equilibrium in Eq. (1.1) toward greater dissociation (Hamann, 1963). 
It also suggests that significant electrostriction occurs around the solvated 
H+ and OH- ions, although the manner in which the random hydrogen­
bond network reorganizes to accommodate that electrostriction must be 
determined by other means. 

The galvanic cell method is not useful for study of dissociation in water 
under extreme temperature and pressure conditions. Instead, K'w and the 
ionic concentrations may be obtained from the specific conductance and the 
limiting equivalent conductance of water. Todheide (1972) reviews the pre­
sent status of these measurements and their implications. It is interesting to 
note that K'w reaches w- 2 at about 1000°C and 100 kbar, with no diminu­
tion of the trend toward even greater dissociation as T and p continue to 
rise. Indeed a very recent report (Vereschagin, et al., 1975) seems to indicate 
that pressure of about 1 Mbar may suffice to produce nearly complete ionic 
dissociation. 

The limiting equivalent conductances A.~+ and A.~H- are far larger than the 
same quantities for any other ions. Table II provides values in the range 
0°-100°C, at 1 atm. Included for comparison are results for Na + and Cl- in 
water, which can be regarded as "typical" monovalent ions. 

Table II 

LIMITING EQUIVALENT CONDUCTANCES FOR IONS IN WATER"·• 

tCC) ;_~+ A~w A~a+ ;.~,- '12~+ '7A~H- '7JNa+ '1X~,-

0 225 105 26.5 41.0 402 188 47.4 73.3 
5 250.1 30.3 47.5 379 45.9 72.0 

15 300.6 165.9 39.7 61.4 342 189 45.1 69.8 
18 315 175.8 42.8 66.0 332 185 45.1 69.5 
25 349.8 199.1 50.10 76.35 311 177 44.6 68.0 
35 397.0 233.0 61.5 92.2 286 168 44.2 66.3 
45 441.4 267.2 73.7 108.9 263 159 43.9 64.9 
55 483.1 301.4 86.8 126.4 243 152 43.7 63.7 

100 630 450 145 212 178 127 41.0 60.0 

"From Robinson and Stokes (1959), p. 465. 
• "-?in cm 2johm equiv., '1 in centipoise. 
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For ions that move as spheres in a structureless, viscous solvent, the 
product A.?11 should be constant (11 =solvent viscosity). Table II shows this is 
not quite the case even for "typical" ions. Instead, the product declines 
somewhat with rising temperature. However, the corresponding decline is 
significantly greater for OH- and quite dramatic indeed for H+. Once again 
H+ and oH- act anomalously. 

The explanation offered years ago by Bernal and Fowler (1933) (following 
Grottius and Hiickel) for the anomalous mobilities of H+ and oH- is still 
regarded as essentially correct. It rests upon the existence of connected 

Fig. 1. Electrical conduction of protons in water, by successive hydrogen shifts along a chain 
of hydrogen bonds. 

hydrogen-bond pathways within water and is relevant both to ice and to the 
liquid. An excess proton at one end of a chain of hydrogen bonds can cause a 
sequence of proton shifts, each along its own hydrogen bond, whose net 
result amounts to transfer of the excess proton to the other end of the chain. 
Similarly, a chain of hydrogen bonds terminating at OH- (a "missing" 
proton, or proton "hole") can effectively cause transfer of that ion to its 
other end by proton shifts in the opposite direction. Figure 1 schematically 
illustrates the first, and Fig. 2 the second, of these sequential shifts. 

Although present knowledge of H+ and OH- mobilities in ice is rather 
imprecise, it appears that freezing water causes both ions to move with 
greater difficulty. Presently available results for ice (Onsager, 1973) suggest 
that the H+ mobility discontinuously drops by a factor of about two, and 
that of OH- by roughly a factor of ten, as a result of freezing. At first this 
seems paradoxica~ since hydrogen bond chains are obviously more perfect 
and more extended in ice than in the liquid. However, one must realize that 
the rigid ice lattice is largely inconsistent with the negative volume change 
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H H 
I I 
o"- ..... o" 

H.. r/ H. 
'-..;.· .. /H ~· .. -

·o o 
I I 
H H 

H j H 

I I 
Q.. /o .. 

•••• • •• H •• •• 
H ••• H....._0 "o·· 

h ~ 
Fig. 2. Mechanism for hydroxide anion mobility in water. The proton "hole" moves by 

successive hydrogen shifts akin to those shown ill Fig. 1. 

that normally accompanies dissociation in the liquid. Consequently, the 
structure around H+ and oH- in ice should differ significantly from the 
corresponding liquid structure, in particular as regards hydrogen-bond 
lengths. The constraints imposed by the surrounding ice crystal thus appear 
to retard ionic mobility. 

The structural studies of hydrated H+ and OH- covered in Sections II,B 
and C below support this conclusion in a general way, and suggest new 
details of the ionic transport process. In particular, the thermally induced 
rate of hydrogen-bond network restructuring must play a fundamental role 
in explaining the increase in H+ and OH- mobilities in the liquid as 
temperature rises. 

C. IsoTOPE EFFECTS 

Substitution of deuterium (D) or tritium (T) for hydrogen in water causes 
important chemical and physical changes. These changes encompass both 
equilibrium and kinetic properties. Table III provides comparisons between 
H 20, 0 20, and T 20 for a short list of properties. 

The increase shown in Table III for triple point temperature T; and 
maximum-density temperature Tm, as hydrogen isotopic mass increases, 
clearly indicates an increasing hydrogen bond strength. The same bond­
strength phenomenon is also illustrated by decrease in vapor pressure at 
20°C, with hydrogen mass increase. However, note that the temperature 
shifts for T; are proportionally different than those for Tm, so that the "law of 
corresponding states" does not apply. Consequently, the isotope effects are 
more complex than could be explained by mere change in potential energy 
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Table III 

COMPARISON OF PROPERTIES FOR ISOTOPICALLY SUBSTITUTED WATERS 

Property 

Triple point temperature, J;(oC) 
Maximum-density temperature, Tm(oC) 
Critical temperature, I;,(oC) 
Static dielectric constant, e0 

(at 20oC) 
Dielectric relaxation time, rd 

(psec, at 20°C) 
Self-diffusion constant, D 

(Io- 5 cm 2 /sec, at 25°C) 
Dissociation constant, K'., 

(Io- 14 moles2/1 2, at 20°C) 
Shear viscosity, '1 (centipoise, 

at 30°C) 
Vapor pressure (torr at 20oC) 
Second virial coefficient, B 

(cm 3/mole, at 250oC) 
Hydrogen ion limiting equivalent 

conductance, A? 
(cm 2/ohm equiv., at 25°) 

a Eisenberg and Kauzmann (1969). 
b Jones (1952). 
'Vidulich eta/. (1967). 
a Mills (1973). 
e Robinson and Stokes (1959). 
f Covington et a/. ( 1966 ). 
• Weast (1975). 
h Jones (1968). 
' Kell et a/. ( 1968 ). 
j Kotowski (1964). 

H 20 

0.01" 
3.98" 

374.15" 
80.20' 

9.55" 

2.299d 

0.681e 

0.7975" 

17.535" 
-159.6' 

349.8e 

D 20 

3.83" 
11.19" 

370.9" 
79.89' 

12.3" 

1.872d 

0.13Sf 

0.969" 

15.100h 
-160.7' 

242.4j 

4.49b 
13.40" 

14.553h 

coupling strengths in an otherwise classical statistical mechanical descrip­
tion. Indeed, the critical temperatures 4 (at which most hydrogen bonds 
may be broken) exhibit a reversed trend. 

Quantum-mechanical zero-point motion in water-molecule vibrational 
modes is important at room temperature owing to the small masses of 
hydrogen isotopes. Similarly, there are significant quantum effects in rota­
tional motion. The observed differences in thermodynamic properties of 
H 20, D 20, and T 20 stem from the differing extent to which quantum 
corrections to classical vibration and (hindered) rotation apply to these 
substances. 

The influences of vibrational and rotational quantum corrections to 
hydrogen bond strength are opposite. For the high-frequency OH stretch 
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modes in water, hydrogen bonding causes a decrease in frequency (Eisen­
berg and Kauzmann, 1969). The resulting energy reduction upon formation 
of a hydrogen bond is greater for H than for D, and least fo'r T. Thus if only 
these stretch-mode vibrational zero-point shifts were at issue, H 20 would 
tend to have stronger hydrogen bonds than D 20, and those in T 20 would 
be weakest of all. The symmetrical bend mode probably shifts in the oppo­
site direction upon bonding (to higher frequency), but it bears relatively little 
zero-point energy, since. it is much the lowest frequency of the three normal 
modes and so will exert relatively little influence. 

Formation of hydrogen bonds turns free rotational motion into libra­
tiona! motion. In ice Ih formed from H 20 these librations fall in the 
frequency range around 840 em- 1 (Eisenberg and Kauzmann, 1969). Con­
version of rotation to libration confines angular motion considerably, and 
must be accompanied by substantial zero-point motion which will destabi­
lize the bonded structure. This bond destabilization evidently must be more 
influential the lighter the hydrogen isotope involved. 

In view of the experimental observations, it is clear that librational and 
bend-mode destabilizations more than compensate for stretch-mode stabili­
zation effects on hydrogen bonding at room temperature. 

All rate processes slow down in pure water as hydrogen isotopic mass 
increases. For the most part these changes are larger in magnitude than 
those observed for static thermodynamic properties (although K'w provides 
an obvious exception). In subsequent sections we shall seek a description of 
H+ and OH- solvation and kinetics which is fully consistent with these 
facts. 

D. CHEMICAL REACTIONS INVOLVING PROTON TRANSFER 

The number of known chemical reactions that involve proton transfer is 
vast. An exhaustive survey of these reactions would be inappropriate for this 
article. Instead, it will suffice to illustrate the major classes of proton transfer 
reactions in water with. a few concrete examples, indicating relevant exper­
imental techniques along the way. 

The fundamental reaction (1.1) for water itself is known to be charac­
terized by an extremely high association rate constant ka. Special relaxation 
methods are required to study such high rates; Eigen and DeMaeyer {1958) 
employed a rapid electrical pulse technique to study the dissociation field 
effect (Wien effect for weak electrolytes). They calculated that 

ka = {1.4 ± 0.2) x 1011 ljmole sec (1.13) 

at 25°C. As they themselves stress, this result implies that a sudden mixture 
of 1 M solutions of strong base and strong acid would be followed by 
substantially complete neutralization within w- 11 sec or so. This extreme 
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speed is consistent only with diffusion-limited rates, i.e., the excess H+ and 
OH- particles need only to find each other to react. No transition state or 
obvious barrier to reaction exists. 

By combining the ka and K'w values through Eq. (1.7) (along with the 
assumption aH2o ~ 55.5 moles/liter), one concludes that 

kd=2.5 X 10- 5/SeC (1.14) 

at 25°C. This implies that a given intact water molecule will on the average 
take about 11 hours to dissociate spontaneously. 

The strong electric fields that exist in the neighborhood of inorganic ions 
can severely perturb the dissociation equilibrium of neighboring water 
molecules. An extreme example is provided by the forced ionization of water 
molecules comprising the first shell of solvent molecules around an ion. A 
suitable example would be hydrolysis of the solvated ferric ion: 

(1.15) 

It is obvious here that the high positive charge on Fe3 + encourages the 
proton to leave the vicinity, thus effectively reducing the local cationic 
charge by one unit. The extent of such hydrolysis reactions can be studied 
effectively by measuring the pH of dilute solutions of the metal salts of 
interest. 

Dissociation of weak acids in water is analogous to reaction (1.1). The 
homologous series of carboxylic acids (formic, acetic, propionic, butyric, ... ) 
offers a classical family of examples: 

R-COOH R-Coo- +H+, (1.16) 

whose dissociation constants (acidity constants) 

K. [R~~~~~+] (1.17) 
can be determined by any convenient pH measurement technique in dilute 
solution. Members of this series are all stronger acids than water by far, with 
Ka values clustering around 1.5 x w- 5 mole/liter at 25oC (Fieser and 
Fieser, 1956) as the organic R-group increases in size. Changes in acidity 
upon substitution in the alkane chains is an important phenomenon whose 
explanation resides primarily in modification of the chemical nature of the 
dissociating molecule itself, rather than in perturbation of the surrounding 
solvent. As an example, we cite the case of the successively fluorinated acetic 
acids at 25°C (Chambers, 1973): 

CH3COOH: K. = 1.75 X w-s mole/liter 

CH2FCOOH: K. = 1.75 X 10- 3 mole/liter 

CHF2COOH: K. = 3.5 x 10- 2 mole/liter 

CF3COOH: K. = 1.8 mole/liter. (1.18) 
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Just as inorganic ions affect the dissociation of solvating water, so too can 
ionized groups in a large molecule affect dissociation of other ionizable 
groups in the same molecule. The dicarboxylic acid sequence (oxalic, 
malonic, succinic, glutaric, ... ), 

HOOC - (CH 2)"- GOOH (n = 0, I, 2, 3, ... ) (1.19) 

exhibits distinct acidity constants for its first and second proton losses. As n 
increases, the unfavorable electrostatic interaction between charged ends 
decreases, so in fact the two ionization constants approach one another. 

Conjugate to acid dissociation in water would be association of protons 
with bases such as primary amines: 

(1.20) 

Amino acids offer the possibility of both types of reaction occurring in the 
same molecule, with formation of" zwitterions" with large dipole moments; 
in the case of the simplest amino acid, glycine, one finds that the intra­
molecular proton transfer 

(1.21) 

is virtually complete at the isoelectric point (pH = 6.064). 
A degenerate form of internal proton transfer exists in a-aminobenzoic 

acid, in which the proton of the acid group can geometrically hydrogen­
bond to the neighboring nitrogen atom without the necessity for 
dissociation: 

( 1.22) 

This possibility does not exist for the meta and para forms. Thus the ortho 
acid is stabilized in its undissociated form, and has the smallest K •. At 25°C, 

ortho: K. = 1.07 x 10- 7 mole/liter 

meta: 

para: 

K. = 1.67 X w- 5 mole/liter 

K. = 1.2 X w- 5 mole/liter. (1.23) 

Dissociation of organic acids can be accompanied by substantial shifts in 
their electronic excitation spectra. This fact, of course, permits optical spec­
troscopy to be used to monitor the dissociation degree under various solu­
tion conditions, It also leads to the possibility of using strongly absorbing 
and fluorescing dyes in low concentration as colorimetric pH indicators. 
Standard indicators are available for use in the pH range 0--14 (Weast, 1975). 
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Nuclear magnetic resonance (NMR), especially for protons, has also been 
widely applied to determine acid dissociation in water. The technique has 
been particularly useful for the study of strong acids such as HCI. In view of 
the rapidity of proton exchange for such acid solutions, these nuclei give a 
single resonance signal which is characteristic of the time-averaged environ­
ment in which they reside. In these studies, it has been traditional to suppose 
that dissociation invariably leads to formation of the hydronium ion H 30+ 
(Pople et al., 1959): 

(1.24) 

We shall examine the validity of this solvation assumption later (Sections II 
and III). 

It should also be noted that Raman scattering measurements can be used 
to observe dissociation of strong acids in concentrated solutions (Young et 
al., 1959). Discrepancies between NMR and Raman results are occasionally 
observed and may reflect inadequacy of the proton-solvation hypothesis 
underlying Eq. ( 1.24 ). 

, In those cases for which proton resonance frequencies in NMR experi­
ments are comparable to their exchange frequencies, lineshapes and posi­
tions can be used to determine those exchange rates. Grunwald et al. (1957) 
have exploited this possibility to study the protolysis kinetics of aqueous 
methylammonium chloride solutions. In the pH range 3-5, they inferred that 
the proton exchange process 

(1.25) 

proceeded through two parallel paths, with roughly equal probability. One 
path was the direct proton transfer between amines; the other utilized an 
intervening water molecule or chain of water molecules. Transport of the 
excess proton thus seems frequently to employ the same basic mechanism 
that is important in electi:ochemical transport of protons. 

Many chemical reactions in water are specifically catalyzed by hydrogen 
ions. The hydrolysis of P-propriolactone offers a good example (Long and 
Purchase, 1950): 

c~2-? +W 
CH 2 -C=O 

CH -oH+ 
~ 12 1 CH,T-o 

H,O CH2-0H 
-I 

CH 2 -C=O 
+ 

(1.26) 
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In this case, ring opening precedes addition of the water molecule, perhaps 
because of ring strain. But with y-butyrolactone the corresponding proton­
catalyzed hydrolysis appears to involve water complexation before ring 
opening (Long et al., 1951 ). 

Rates of hydrolysis reactions that are specifically catalyzed by hydrogen 
ions may themselves be used to measure the strengths of acids. Having 
established the relevant rate constants by prior studies, the degree of disso­
ciation of a given acid in water can be determined by its catalytic power; the 
stronger the acid, the greater its catalytic action. 

Biochemistry provides a large number of important proton transfer reac­
tions. The enzyme carbonic anhydrase, which catalyzes hydration of C0 2 

and dehydration of HC03 (or H 2C03 ) offers a prominent example. It 
contains a zinc atom at its active site, to which a water molecule is strongly 
bound. It has been proposed that this water molecule and others neighbor­
ing it from a chain of hydrogen bonds along which rapid proton transfer 
occurs in the course of the catalyzed reactions. Finney (1977) has reviewed 
this and related proposals for the action of other hydrolytic enzymes. 

The photochemical action of bacteriorhodopsin involves proton transfer 
(Stoeckenilis, 1976). This purple pigment, found in Halobacterium halobium, 
is a membrane-bound protein. Under illumination, it pumps protons across 
the membrane to create a potential gradient. The resultant stored energy 
eventually is used to synthesize the energy-rich molecule A TP that is central 
to the organism's metabolism. 

Finally it should be mentioned that tautomeric proton transfer in nucleo­
tide bases, leading to anomalous base pairing in DNA, has been proposed as 
a mechanism for spontaneous and induced mutation (Dogonadze et al., 
1976). 

II. Potential Energy Surfaces 

A. BOND BREAKAGE 

We now examine in detail the elementary process of dissociation for a 
single water molecule. Specifically, we inquire into the change in electronic 
ground state energy of the isolated water molecule as the length r of one of 
its OH bonds adiabatically elongates to infinity. This process is illustrated in 
Fig. 3. The bond stretch will be carried out with the other OH bond length 
and the bond angle held fixed at their equilibrium values (0.9584 A, 104.45°). 

The fragments produced in vacuum by the bond stretch are the H atom 
and OH radical, rather than H+ and OH- ions. The OH radical has equili­
brium bond length equal to 0.9699 A (Herzberg, 1950), so in fact the one 
produced by the process shown in Fig. 3 is slightly compressed. 
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Fig. 3. Water molecule dissociation by single bond stretch. The HOH bond angle and the 
undeformed bond length retain their equilibrium values, 104.45° and 0.9.584 A, respectively. 

Let E0 (r) be the bond stretch energy, which vanishes at re = 0.9584 A. For 
r near re an expansion in powers of r- re is appropriate: 

There is no reason to doubt that this series has a nonzero radius of conver­
gence. Spectroscopic values are known for the first three coefficients (Smith 
and Overend, 1972): 

K 2 = 4.218 x 105 dyn/cm 

K 3 = -9.57 x 1013 dyn/cm2 

K 4 = 15 x 1021 dyn/cm3 • (2.2) 

Extraction of higher order terms from either experiment or theory becomes 
increasingly difficult as the order increases. 

As r decreases toward zero, the movable hydrogen nucleus begins to form 
a "united atom" with the oxygen nucleus. In this limit 

E0(r) = (8e2/r)- C0 + O(r), (2.3) 

where the constant C0 is related to the ground state energy of a hydrogen 
fluoride molecule with bond length r e • 

The recommended experimental value for the bond dissociation energy in 
the gas phase process (at 0°K) 

(2.4) 

is 118.0 kcaljmole (Darwent, 1970). This energy includes zero-point vibra­
tional contributions from both H 20 and OH. These latter energies are 
known to be 13.25 kcal/mole for H 20 (Eisenberg and Kauzmann, 1969) and 
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5.29 kcaljmole for OH (Chamberlain and Roesler, 1955). Combining these 
values we conclude that 

E0 ( oo) = 125.96 kcaljmole 

= 8.7474 X 10- 12 erg/molecule 

= 5.4601 eV. (2.5) 

Since uncharged fragments are involved, one should expect this limiting 
value to be approached rapidly with increasing r, probably with exponential 
order. Ab initio quantum-mechanical calculations have not been very suc­
cessful in attempts to reproduce result (2.5) (Peterson and Pfeiffer, 1972). 

The ground electronic state of the water molecule is not the only state that 
gives unexcited H and OH fragments in the infinite-r limit. Two other 
excited states of H20, a singlet and triplet, will adiabatically produce the 
same fragments. The corresponding curves of course all lie above E0 (r) for 
all finite values of r. 

The ionization potential of the H atom is 13.530 eV, while the electron 
affinity ofOH is 1.83 ± 0.04 eV (Berry, 1969). Consequently 11.70 ± 0.04 eV 
(269.9 ± 0.9 kcaljmole) is required to transform the isolated particles Hand 
OH, to H+ and OH- by electron transfer. These ionic fragments represent 
the infinite-r fragments for yet another set of electronic energy curves. From 
Eq. (2.5) we see that about 

5.46 + 11.70 = 17.16 eV 

= 395.9 kcaljmole (2.6) 

is the amount of energy that must be expended to produce ionic dissociation 
of a single water molecule in vacuum. The calorimetric heat of (ionic) disso­
ciation displayed earlier in Eq. ( 1.11) is far smaller, owing to the very large 
negative energy of solvating H+ and OH- ions in water. Indeed it is this 
solvation energy that causes dissociation in water to proceed exclusively to 
ionic products rather than H and OH. 

Dipole derivative information (obtained from microwave spectra) helps 
elucidate the charge redistribution in the water molecule at the beginning of 
the bond stretch shown in Fig. 3. Clough (1976) provides values for deriva­
tives at the equilibrium geometry that can be resolved into contributions 
parallel (II) and perpendicular (.l) to the dipole axis of the undeformed 
molecule: 

(oJLjor)u = 0.1568 X 10- 10 eSU, 

(OJL/Or}J. = 0.7021 X w- 10 esu. (2.7) 



194 Frank H. Stillinger 

One should expect substantially larger values for these effective charges 
when other water molecules are present to solvate the fragments. 

We turn next to an examination of the specific solvation structures 
produced in water around the ionic H+ and OH- dissociation fragments. 

B. HYDRATED PROTON 

In order to understand the solvation state of H + in liquid water, it is 
logical first to examine the properties of small hydrate clusters H+(H20}". 
These clusters can be generated experimentally in the gas phase, and their 
thermodynamic properties can be measured (Kebarle et al., 1967). Further­
more, for small n at least, it is possible to carry out reasonably accurate 
quantum~mechanical calculations to determine structures {Newton and 
Ehrenson, 1971). 

The singly hydrated proton (n = 1} is isoelectronic with the ammonia 
molecule. Therefore it is not surprising that the resulting hydronium ion 
H 30+ is pyramidal, and has C 3 v symmetry, just as NH3 does. Kollman and 
Bender (1973) have carried out ab initio quantulii-mechanical calculations 
on the ground electronic state of H30 +,with an accuracy claimed to be near 
the Hartree-Fock limit. The stable C3 v structure obtained in their investiga­
tion has OH bond lengths equal to 0.963 A, and HOH angles equal to 
112.5°. In comparison with the water molecule geometry, these parameters 
suggest an enhanced effect of proton-proton repulsion, as might well have 
been expected in a cationic complex. 

Kollman and Bender's study indicates that the inversion barrier {for the 
C3v--+ D3h--+ C3 v transformation) in H 30+ lies in the range 2-3 kcal/mole. 
This is substantially lower than the corresponding barrier height 
5.78 kcal/mole in the ammonia molecule (Swalen and Ibers, 1962}. Kollman 
and Bender present energy results calculated for several configurations near 
the indicated stable point, from which an approximate potential surface 
could partially be reconstructed. 

After accounting for the energy of zero-point nuclear motion, Kollman 
and Bender estimate from their calculations that the proton affinity of H 20 
is 167.5 kcaljmole, and that the deuteron affinity of D 20 (to form D 30+) is 
170 kcaljmole. The former agrees moderately well with van Raalte and 
Harrison's value {151 ± 3 kcal/mole) obtained experimentally by gas phase 
mass spectrometry (van Raalte and Harrison, 1963). The D 20 value is 
significantly smaller than the estimate 184 ± 7 kcaljmole proposed. by 
DePas et al. (1968} also on the basis of mass spectrometry. 

The H30+ grouping has been identified in several hydrate crystals. 
Needless to say, one expects its structure to be subject to significant geome­
tric distortions due to crystal forces. Nevertheless the available crystal data 
seem to indicate a preference to adhere to the cited pyramidal C 3 v shape, 
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thereby confirming the conclusions based on quantum-mechanical calcula­
tions. Some of the relevant crystal information has been critically discussed 
by Almlof and Wahlgren (1973). 

The doubly hydrated proton, H50i, has been examined theoretically by 
Newton and Ehrenson (1971) and by Kraemer and Diercksen (1970). Both 
groups utilized approximate Hartree-Fock solutions to the electronic wave 
equation. These independent studies agree that H 50i consists of two water 
molecules (with antiparallel dipole directions and perpendicular molecular 
planes) connected by a short symmetrical hydrogen bond. The structure has 
symmetry D2d and is illustrated in Fig. 4. Owing to a difference in the 

H 
\ /H 
0---H--- 0 
;~.~'H 

H 2.39 X 
Fig. 4. Stable structure inferred for H50; from ab initio quantum-mechanical calculations. 

The terminal water molecules reside in mutually perpendicular planes, both of which contain 
the central bridging hydrogen. 

respective sets of basis functions, the short 0-0 bond lengths are slightly 
different in the two studies; Newton and Ehrenson find 2.36 A, while 
Kraemer and Diercksen obtain 2.39 A. There seems to be little doubt that 
the bridging hydrogen is the one still to be regarded as "the hydrogen ion," 
since unlike the four other hydrogens it is significantly farther from either 
oxygen than the normal OH covalent bond length in the water molecule. 

The short symmetrical hydrogen bond in H 50i is closely analogous to 
the one that exists in the isoelectronic bifluoride anion, FHF-. At least in 
the former, Kraemer and Diercksen point out that the bridging proton 
moves in a very flat potential well along the 0-0 axis, which no doubt must 
be relevant to ease of H+ transport in an extended aqueous medium. 

In addition to displacement of the bridging hydrogen, certain other distor­
tions of the H 50! structure shown in Fig. 4 can occur at relatively low 
energy cost. In particular, it is easy to rotate one of the terminal H20 units 
about its oxygen so as to produce a pyramidal arrangement with the central 
hydrogen. Thus one readily converts the symmetrical structure shown to an 
asymmetrical (H30+)H20, a singly hydrated pyramidal hydronium ion. 

The energy of addition of a second water molecule to H 30+ to form 
H 50i is far less than the energy of the first hydrl.!tion of H+ quoted above. 
Kraemer and Diercksen find this second binding energy to be 
32.24 kcaljmole, compared to the experimental value 35.4 kcaljmole (Keb­
arle et al., 1967). 

The crystal structures of several acid hydrates reveal the presence of 
H 50i. Perchloric acid dihydrate offers a good example (Olovsson, 1968). In 
this crystal the bridged oxygen-oxygen distance is observed to be 2.424 A. 
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Interactions of the H50i ions within the solid distort them from the D24 

symmetry presumed to obtain for the isolated species. H 50t ions with 
different distortions (but similar short 0-0 distances) occur in the di- and 
trihydrate crystals of HCl (Lundgren and Olovsson, 1967). 

The most systematic quantum-mechanical study ofhigher hydrates ofH+ 
has been carried out by Newton and Ehren son ( 1971 ). They were able to 
perform geometry searches, in varying degrees of completeness, for ions up 
to H+(H 20)5 . The complexes studied tended always to exhibit shorter 
hydrogen bonds than would exist in the corresponding uncharged clusters of 
water molecules without the extra proton. 

In the case of H+(H20h (i.e., H 70j) Newton and Ehrenson concluded 
that the most stable structure is "open," not "cyclic." It can best be 
described as a flattened H 30+, two protons of which form hydrogen bonds 
to pendant H20's. The resulting complex has C2 v symmetry, and its two 
equivalent 0-0 distances are found to be 2.46 A. Although subject to the 
distortive effect of crystal forces, these open H 70j cations have also been 
observed in solid hydrates (Almlof, 1972). 

The symmetrically hydrated hydronium ion H 30+(H20h (or H90t)has 
been prominently advocated as an important chemical species in liquid 
water (Eigen and DeMaeyer, 1958). The original suggestions indicated that 
this species ought to be pyramidal, following the presumed shape of H30+. 
However, Newton and Ehrenson find that the stable isolated H 90t has 
incorporated a flattened H 30+ unit to yield symmetry D3h. Figure 5 shows 
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Fig. 5. Lowest energy configuration for H90; (Newton and Ehrenson, 1971). The three 

terminal water molecules are each perpendicular to the plane of the flattened central H30 +. 

its structure. The three equivalent 0-0 distances are found to be 2.54 A. No 
doubt the flattening present in H90t must be due to repulsions between the 
pendant H 20's; nevertheless, the energy required to reintroduce pyramidal 
distortion of significant magnitude is probably small. 

The grouping H 90t is found in crystals of hydrogen bromide tetrahy-
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drate (Lundgren and Olovsson, 1968), along with H 70j. The former com­
plex has 0-0 distances 2.496 A, 2.587 A, and 2.588 A, and exhibits 
pyramidal distortion. 

Insufficient quantum-mechanical information is available at present to 
draw any firm conclusions about the minimum-energy structure of 
H+(H 20)5 (i.e., H 110t}. This cationic unit has not been identified yet in 
hydrate crystals, although it has been observed in irradiated water vapor 
(Kebarle et al., 1967). 

The largest proton hydrate unit that has thus far been identified in the 
solid state is H 130t. This cation is formed when the cage compound 
((C9 H 18h(NHhCJtCl- is crystallized from hydrochloric acid solution 
(Bell et al., 1975). The H 130t structure displays a very short central 
hydrogen bond (2.39 A between oxygens) along which a bridging proton is 
presumed to be symmetrically placed. The outer 0-0 hydrogen bonds are 
2.52 A long. The best description of the cation is that it consists of an H50~ 
unit, with each of the four pendant hydrogens bonded to single water 
molecules. No doubt the H 130t observed in the crystal is considerably 
distorted from its optimal gas-phase geometry. 

Probably the two major conclusions to be drawn from the information 
cited are (a) the extra proton in water clusters tends to produce substantially 
shortened hydrogen bonds, and (b) the cationic complexes are easily 
distorted from their most stable configurations. Extrapolating to the limit of 
infinite solvation degree (n-+ oo ), we can expect these two conclusions to 
apply to excess protons in bulk liquid water. In order for the position of the 
excess proton to change substantially, the region of shortened hydrogen 
bonding must likewise shift; these concerted positional shifts are aided by 
ease of structural distortion induced by presence of the excess proton. 

C. HYDRATED HYDROXIDE 

We turn now to consideration of the anionic complexes OH-(H20}n· 
Unfortunately, these seem to be rather difficult to generate in the gas phase, 
so virtually no experimental information is presently available for these 
species. 

As a point of reference, note that the equilibrium bond length for the 
isolated OH- is close to the bond length in H 20. Janoschek et al. (1967) 
report 0.963 A for an accurate Hartree-Fock calculation for OH-. 

Once again, the most systematic quantum-mechanical study of the 
hydrated ions is due to Newton and Ehrenson (1971}. Their optimized struc­
ture for the monohydrate species H 302 is illustrated in Fig. 6. This anion is 
found to be planar, with a relatively short 0-0 distance, 2.45 A. However 
the hydrogen bond is asymmetric, with two equivalent positions for the 
central proton, separated by 0.23 A. The double-well potential in which the 
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Fig. 6. Optimal structure for H 302, according to Newton and Ehrenson (1971). The 
bonding central proton resides at one of the minima in a double-well potential. 

proton moves has a predicted barrier height of about 0.13 kcaljmole. 
The energy of single hydration of oH- is calculated to be 40.73 kcaljmole. 

It is instructive to compare the H 302 structure with the analogous cation 
H 50i. Although both incorporate short hydrogen bonds, the anion has 
apparently a significantly longer one (by 0.09 A in the Newton-Ehrenson 
study). This lengthening may explain the existence of a double-minimum 
potential for the bridging proton in the anion, compared to the very flat 
potential in the cation. This distinction also may be relevant to the mobility 
difference between H+ and OH- in liquid water that appears in Table II, 
since it suggests that proton transfers near an excess proton are less 
frequently retarded by potential barriers than proton transfers near a mis­
sing proton ("protonic hole"). 

The optimized structure found for H 503 by Newton and Ehrenson is 
planar, with symmetry C2". The OH- acts as proton acceptor for both 
hydrating water molecules, with equivalent 0-0 bond lengths of 2.53 A. 
Once again this anion length is significantly greater than that found in the 
same study for the corresponding cation H 70;, namely 2.46 A. 

The trihydrate species H 704 in the Newton-Ehrenson study achieves 
greatest stability in a branched structure with each of the water molecules 
contributing a proton in a hydrogen bond to the central OH-. The specific 
configuration of this type studied had c3v symmetry, with the three 
hydrogen bonds forming a pyramidal shape (with vertex angles for oxygen 
equal to 110°). The 0-0 distances were optimized at 2.61 A, again larger 
than the 2.54 A found for the corresponding H 90t (Fig. 5).It would even­
tually be desirable to study the change in energy of this branched structure 
with respect to flattening of the pyramid to see how readily external pertur­
bations could induce such shape changes. 

Newton and Ehrenson also carried out preliminary study of the tetrahy­
drate H 905 but without sufficient detail and flexibility in configurational 
options to permit firm conclusions to be drawn. 

Overall, the hydrated OH- complexes seem to involve longer hydrogen 
bonds and more inflexibility toward rearrangement than the analogous 
hydrated H+ complexes. The tendency toward greater bond lengths seems 
to be supported by crystallographic data, when the previously cited acid 
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hydrates are compared with substances such as sodium hydroxide hydrates 
(Beurskens and Jeffrey, 1964) and tetramethylammonium hydroxide pen­
tahydrate (McMullan et al. 1966). 

III. General Theory of Association-Dissociation Reactions 

A. DEFINITION OF CHEMICAL SPECIES 

Results presented in the preceding section suggest that solvated H+ and 
OH- may exist in water with considerable diversity in local structure. 
Therefore, it may be quite misleading to describe the solution behavior of 
these ions in terms of discrete chemical entities, such as the frequently men­
tioned hydronium ion H30 +. To avoid unnecessary committment to 
specific chemical structures, we will now develop a general procedure for 
description of the dissociation and solvation processes in water. Some ele­
ments of this formalism have been advanced previously (Stillinger, 1975). 

The central problem is this: Given a set of nuclear positions, r 1 · · · rN for 
oxygens, rN + 1 · · · r 3N for hydrogens, attribute all of these nuclei uniquely to 
H 20, OH-, and H+ species. [We disregard the possible existence of 0 2 -, 

produced by double dissociation, on physical grounds.] The attribution will 
be based on the set of oxygen-hydrogen distances produced by r 1 · · · r 3N. 

The only element of arbitrariness to be introduced concerns the choice of 
a bond dissociation distance L, such that any oxygen-hydrogen pair whose 
distance exceeds Lis never regarded as bonded, either in an H 20 or an OR­
species. A reasonable choice for L seems to be 

L = 1.375 A. (3.1) 

This is half the distance between neighboring oxygen nuclei in ice at ooK and 
zero pressure and would surely be the natural distance choice for proton 
assignment to oxygens in that crystal. Note that use of the first three terms in 
formula (2.1) presented earlier for bond stretching indicates that about 
70 kcal/mole are required to increase the normal OH bond in water to 
length L Of course this is relevant only for the absence of all other water 
molecules; their presence would normally reduce the energy needed for 
bond stretch. 

The number of OH pairs of any distance is exactly 2N2 • We will denote 
these distances by l(i, j), where i and j are running indices referring, respec­
tively, to oxygens and hydrogens, 

1 ~ i ~ N, 

N+l~j~3N. (3.2) 
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Except in the event of zero-probability coincidences, the distances may be 
ordered in an ascending sequence: 

(3.3) 

Of course each i appears 2N times in this sequence, and each j appears N 
times. The order of appearance depends on the set of positions r 1 · • · r JN • In 
a macroscopic system with a relatively uniform matter. distribution, the 
majority of distances appearing in the sequence (3.3) will have macroscopic 
magnitudes. 

We will be concerned only with the subset of distances obeying the 
inequality 

(3.4) 

These distances might correspond to chemical bonds within the species H 20 
and OH-, but they need not. We shall employ the following "bonding" 
algorithm for the ordered distance subset obeying (3.4). 

1. Bond the two nuclei that provide the minimum distance in the subset 
list. 

2. Remove from the list all distances that involve hydrogens previously 
bonded and/or involve oxygens bonded twice previously. 

3. Return to step 1 ifany distances remain in the list. 
After this algorithm has exhausted the distance list, the resulting "bonds" 

will have formed H 20 molecules (2 OH bonds), OH- ions (1 OH bond), 
and a certain number of H + ions will be left over. Notice that the algorithm 
does not permit any oxygen to bond to more than two hydrogens, nor does 
it permit any hydrogen to bond simultaneously to more than a single 
oxygen. Unbonded H+ ions may actually be closer to oxygens than the 
broken bond distance L, but for them to have remained unbonded it is 
necessary that those oxygens be bonded to pairs of even closer hydrogens. 

As time proceeds, the nuclear positions r 1 • • · r3N naturally will change. 
This will affect OH distances, and consequently the result of the bonding 
convention will differ .. In particular, the number Nw of intact water 
molecules, of hydroxide anions N _,and of hydrogen ions N + will fluctuate 
with time t. Of course at all times we have 

Nw(t) = N- N +(t), 

N _(t) = N +(t). (3.5) 

There is a variety of ways that bond exchanges can occur (i.e., exchanges 
of hydrogens between oxygens) without any net change in Nw, N +,or N _. 
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The simplest possibility consists of close approach of H+ to a water 
molecule. If this H + moves closer to the oxygen atom of the molecule than 
the larger of its two initial OH bond lengths, then the bonding algorithm 
requires the new OH distance to be identified as one of the intramolecular 
bonds. At the same time, the furthest hydrogen of the three loses its bond to 
the oxygen, and by definition now becomes the unbonded H +. This trans­
formation is illustrated in Fig. 7. 

(a) (b) 

Fig. 7. Bond exchange process for proton approach to a water molecule. (a) The proton at 
the left is farther from the oxygen than either intramolecular OH bond length. (b) Motion has 
reduced the initially large distance to a value smaller than one of the original OH bond lengths, 
thereby requiring re-identification of bonded pairs. 

A somewhat more complex bond exchange, involving two water 
molecules, is shown in Fig. 8. The two molecules possess four internal (intra­
molecular) bonds; there are in addition four intermolecular OH distances. 
For any set of bonds assigned by our algorithm, the largest of the first four 
must be smaller than the smallest of the latter four. If this were not so, the 
bonding algorithm would have identified the bonds differently. As shown in 
Fig. 8, a close collision between the two water molecules can require change 
in bonding, so as to restore compliance with the stated inequality between 
four intramolecular and four intermolecular distances. As in the preceding 
simpler case, the new bonding scheme may or may not persist for a substan­
tial length of time, depending on the subsequent motions of the nuclei. 

It must also be stressed that under the bonding algorithm, processes exist 
which involve cooperative bond shifts along a sequence of molecules, which 
are not themselves required to move to cause these shifts. Figure 9 shows 
how this can occur; H+ "attacks" one end of a water molecule chain (along 
which OH distances increase), and by forcing redrawing of OH bonds, it 

(a) 

Fig. 8. Simultaneous exchange of hydrogens between two water molecules in a close 
collision. 
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succeeds in "freeing" H + at the other end. Needless to say, a version of the 
shift presented in Fig. 9 exists for an excess hydroxide ion, rather than the 
case shown of an excess proton. One recognizes that the more molecules 
participating, the rarer will be the configurational circumstances required. 

Especially when examining a cooperative shift such as that indicated in 
Fig. 9, it is important to realize that charge is not discontinuously tran­
sported at the instant of rebonding. Of course, electrostatic charge density in 

H+ H7 
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Fig. 9. Cooperative bond transfer along a sequence of molecules, resulting in a different 
location for the excess proton. 

the system is a continuous function of nuclear positions. Under most cir­
cumstances we expect excess charge to be localized at or near the ion 
identified by the bonding algorithm; however, the special molecular arran­
gements and distortions required by Fig. 9 may tend to delocalize charge 
over several molecules. 

The sequential charge transport illustrated earlier in Fig. 1 stands in dist­
inction to the rate process of Fig. 9. The former requires all intervening 
protons to move, which in turn causes occurrence of a sequence of simple 
formal bond shifts. 

In addition to the formal exchange processes which conserve N w, N + , 
and N _ , there is a variety of association and dissociation processes encom­
passed within our bonding scheme which change these species numbers. Just 
as before, these can be simple, or they can require the cooperative involve­
ment of several intervening molecules. We shall consider these association 
and dissociation reactions at some length in Section III,C below. 
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B. MOLECULAR DISTRIBUTION FUNCTIONS 

Having now introduced an unambiguous identification procedure for 
intact water molecules and ionic H+ and OH- fragments, we next outline a 
molecular distribution function formalism to describe these species in the 
liquid phase. The desirability for having such a formalism stems primarily 
from the inevitable variability in solvation structures around the ions, and 
from the importance of that variability in affecting kinetics of transport and 
reaction of those ions. For simplicity of presentation we shall initially use 
classical statistical mechanics. With particles as light as protons it is of 
course necessary really to use quantum statistical mechanics, so at the end of 
this development the procedure for effecting the necessary modifications will 
be indicated. 

In order to describe the instantaneous configuration of a given water 
molecule ex, we shall use a nine-vector x~. This comprises full specification of 
the three nuclear positions. For each of the unbonded protons, only three­
vectors are necessary, to be denoted by Sp. Six-vectors t1 will be employed for 
the hydroxide ions. 

The statistical-mechanical theory can be most conveniently developed for 
the grand ensemble {Hill, 1956). The appropriate generating function is the 
grand parition function Z0 . We shall initially treat the concentrations of 
each of H 20, H+, and OH- as independent and therefore we introduce the 
respective absolute activities Yw, y +, and y _ as independent parameters. 
This strategem implies an ability to block attainment of the usual 
association-dissociation equilibrium between the three species. However, 
that does not mean we forego knowledge about that equilibrium, because at 
some later stage we can simply look for a maximum in the grand potential 
subject to the constraint 

{3.6) 

and then identify the concentrations as those appropriate to equilibrium. 
The grand partition function has the following form: 

00 ~wy~+~-
ZG = I _{_2_ ltwN IN IN I 

Nw.N+.N-=0 • w· +· -· 

x I dx · · · I dt exp[- f3<1>{x · · · x I s · · · s I t · · · t )] 1 N- 1 Nw 1 N+ 1 N- ' 

{3.7) 

Here <I> represents the potential energy (i.e., the ground-electronic state 
energy hypersurface) for the nuclear configuration specified by x 1 · · · tN_. 

The denominator factor (2 !tw in Eq. (3.7) must be inserted to account for 
proton indistinguishability in each water molecule. Integrations must be 
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restricted to that portion of configuration space which corresponds to bond­
ing of nuclei into the given numbers of molecules and ions, according to the 
foregoing bonding algorithm. 

The connection between ZG and thermodynamic properties (at least when 
the system is essentially electrically neutral), is provided by the identification 

In ZG = f3pV, (3.8) 

where pis the pressure and Vis the volume. From Eq. (3.7) it is easy to see 
that the average numbers of each of the three species present can be obtained 
from activity derivatives of In ZG: 

(Nw) = (~ 1~ ZG) ' 
Yw p. Y+. Y-

(N +) = (~ ~ ZG) ' 
Y+ p, Yw. Y-

(N ) = (o In ZG) 
- O }n y- p, Yw. Y+ • 

(3.9) 

In particular, the functional relation between hydrogen ion concentration 
and the activity y + provided by these identities constitutes a formal way to 
determine pH in the liquid. 

Next we introduce molecular distribution functions p<nw. n +. n ->, to describe 
the occurrence probabilities in the system of sets comprising nw water 
molecules, n+ hydrogen cations, and n_ hydroxide anions, in specified 
configurations. The formal definition of these quantities in the grand en­
semble is as follows: 

p<nw.n+.n->(xl ... Xnw!sl ... Sn+ltl ... tn_) 

(3.10) 

The singlet distribution function p<0 • 1• 0 >(s) is equal to the hydrogen ion 
concentration at position s. In the case of the corresponding hydroxide 
function p10• 0 · 0 (t), t specifies not only position, but orientation and bond 
length as well, so that this function specifies local density of anions of given 
orientation and degree of bond stretch. Only after integration over these two 
internal degrees of freedom will p10• 0 • 1>(t) yield the local concentration of 
oH-. Similarly the singlet water molecule distribution function p< 1• 0 • 0 >(x) 
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specifies local density of molecules with given position, orientation, and 
deformation. In liquid water, rotational and translational symmetry applies 
to the three singlet distribution functions, except possibly near perturbing 
boundaries. 

In the general case of arbitrary (nonnegative) nw, n+, and n_, the molecu­
lar distribution function p<nw. n+. n-) will reduce to a product of singlet func­
tions if all of the nw + n+ + n_ particles are widely separated from one 
another: 

p<nw. n+. n-l(xl ... tn_) ~ [.fi: p<l. 0, Ol(x;)] 
•= 1 

X (}jp(O,l,O)(sj)J 

X [JJ/0, 0. ll(tk) J. (3.11) 

This asymptotic factorization remains true even if the water is crystalline, for 
which spatially periodic singlet functions obtain. 

The pair molecular distribution functions convey fundamental informa­
tion about structure in the liquid, and about the nature of H+ and OR­
solvation. For subsequent purposes it will be most convenient to consider 
these distribution functions only in the infinite-system-size limit, so that 
boundary effects do not appear. There exists an obvious set of exact rela­
tions, the "local electroneutrality conditions," which must be satisfied by the 
pair distribution functions. These conditions state that because a partially 
dissociated liquid is electrically conducting, any charge within the liquid is 
exactly neutralized (shielded) by an average diffuse accumulation of local 
charge of opposite sign. In particular this must be true for an H + ion, and 
the resulting identity is 

I ds [p(O, 2, O)(s12)- p(O, 1, 0)] 
2 p(O, 1,0) 

- f dt [p(O, 1, 1l(s1, t1)- p<O, 0, 1l(t )] = -1 (3.12) 
1 p(O, 1, 0) 1 · 

The corresponding statement for the shielding of an hydroxide ion (with 
fixed configuration t 1 ) is 

Ids [p(O, 1, 1l(sl, t1)- p(O, 1, O)J 
1 p(O, 0, 1)(tt) 

-I dt [p<O, o, 2>(t1, t2)- p<O, o, 1>(t )] = 1. (3.13) 
2 p(O, 0, 1)(t1) 2 



206 Frank H. Stillinger 

Finally, we have a third relation which states that no net ionic charge will 
accumulate in the vicinity of a water molecule with fixed configuration x 1, 

since it is uncharged: 

f ds [p<L 1. O>(x1, s1) p<o. 1. o>] 
, 1 p(l.O.O)(x1) -

- f dt1 [p<l. o. 1l(x1~_!J- p<o. o. 1>(t1)] = 0. (3.14) 
. p<1. o. o>(xt) 

These local electroneutrality conditions can be generalized to provide 
exact constraints on higher order distribution functions. These generaliza­
tions are based on shielding of the total charge of any fixed set of H 20, H +, 
and OH- particles by the surrounding conductive medium. For present 
purposes it is unnecessary to dwell upon these generalizations. 

In addition to local electroneutrality conditions, the pair distribution 
functions in a conducting medium are obliged to obey a "second moment 
condition" (Stillinger and Lovett, 1968). This condition owes its existence to 
the fact that Coulomb interactions drop off only as inverse distance with 
increasing separation. We state the second moment condition without 
proof: 

I dr12ri2{ p<O. 2' 0>(r 12)- 2 I dr: 2p<0· 1' l)(r1, t 2) 

+I dr:1 dr:2p<0·0· 2>(t1, t2)} = -12C/K2. (3.15) 

Here C stands for the common concentration ofH+ and ofOH- ions, and K 

is the Debye parameter for the ionic solution: 

(3.16) 

eo stands for the static dielectric constant of the liquid. 
The distance r 12 appearing in Eq. (3.15) is a distance between two ions. 

For hydrogen ions there is no ambiguity; this is simply the distance between 
the hydrogen nuclei. But for hydroxide ions, it is necessary to make a con­
sistent choice of position in that diatomic species for definition of distance. 
In fact, Eq. (3.15) remains valid whatever convention is chosen (whether it is 
the 0 nucleus, or some intermediate point); but in any case the hydroxide 
six-vector t must then be resolved into a direct sum of three-vectors: 

t =rEB r:, (3.17) 

with r giving the position of the "center" of the hydroxide, and r: specifying 
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orientation and OH bond length. Note that these latter degrees of freedom 
are integrated in the second moment condition (3.15). 

Owing to the small extent of dissociation in water around room tempera­
ture and one atmosphere pressure, the solvated H+ and OH- ions consti­
tute a very dilute electrolyte. Consequently, the ionic distribution functions 
(except at small distances) will accurately be described by the linear 
Debye-Hiickel form (Resibois, 1968): 

p<O. 2 • 0) "' p<0• O, 2 ) "' C2 [1 - e2 exp(- Kr 12)/ks Teo r 12], 

p<0 • 1• 1)"' C2 [1 + e2 exp( -Kr12)1kB Teor12]. (3.18) 

For water at 20°C, the Debye distance 1/K is equal to 10,600 A, which is 
considerably larger than c- 113 , the mean separation between like ions, 
which equals 2720 A under the same conditions. 

The ion-water and water-water pair distribution functions will approach 
their long-range limits [described by Eq. (3.11) above] more rapidly than 
those functions shown in Eq. (3.18); the specific forms involved will exhibit 
Debye shielding provided the distance is some substantial fraction of 1/K. 

Details about H+ and OH- solvation are primarily contained in the pair 
functions p< 1• 1• O) and p< 1• 0 • 1>. The form of the first of these bears directly on 
validity of the assumption that solvated protons are predominately present 
in water as pyramidal hydronium units H30+ (Eigen, 1964). Similarly, the 
second function would indicate predominance of an analogous pyramidal 
OH- (H20 h, if such were indeed an apt description of primary hydroxide 
solvation. 

If the primary hydration structure for H + in water is principally the 
pyramidal H 30+, then p<1•1•0> should be strongly peaked near the 
configuration shown in Fig. lOa. In particular, this would involve a rather 
sharp distribution of the H+ · · · 0 distance at about 0.96 A, and a second 

Pyramidal primary hydration 

(a) 

""o.s6 X 

"fo~~<H 
H ""1.6 X 

Symmetrically diffuse H+ bridge 

(b) 

Fig. 10. Primary hydration structures for H+ in water. The pyramidal "hydronium" in (a) 
has been advocated by Eigen (1964). Alternative (b) represents a deformable class of proton 
bridges, with the proton diffusely, but more or less symmetrically, distributed between the 
participating oxygens. 
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distinguishable maximum in H+ · · · 0 distances at about 1.6 A to be con­
sistent with a secondary hydration shell (Eigen, 1964). Furthermore the 
postulated nonplanarity of the basic H 30+ implies that the H+ is preferen­
tially located about 1.6 A from the two H's of the water, when this 
molecule's oxygen is near the cited 0.96 A distance from H+. 

On the other hand, we have noted in Section II,B that the solvated proton 
can be (and often is, in crystals) located symmetrically and diffusely along 
short hydrogen bonds between two essentially equivalent water molecules 
[Fig. lOb]. If indeed this is the more appropriate description, then p< 1• 1• 0 > 

would have to convey a broad single distribution of H + · · · 0 distances over 
the range 0.96-1.60 A, without any marked preference for sharply defined 
H+ · · · H distances. 

The water-hydroxide pair distribution function p< 1• 0 • 1> should possess a 
strong maximum when the two oxygen atoms are about 2.5 A apart. Since 
this represents a strong, short hydrogen bond with the water acting as 
proton donor, p< 1• 0 • 1> should achieve its largest value in this distance range 
in the two equivalent molecular orientations that point covalent OH bonds 
toward the hydroxide hydrogen. Furthermore, since the hydroxide has no 
tendency itself to act as proton donor, no significant water molecule probab­
ility should be manifest in p< 1• 0 • 1>, along the hydroxide OH bond, at 0 · · · 0 
distances in the range 2.5-3.0 A. 

Under those temperature and pressure conditions which lead to small 
degree of water dissociation, separate partial molar volumes V'! and V~ 
may be attributed to H+ and to oH- which reflect the solvation of these 
individual ions by pure undissociated water. The result (1.12) quoted earlier 
for the volume of dissociation is essentially composed of the sum of these 
quantities, both of which are probably negative. Expressions can be written 
for V'! and V~ in terms of singlet and pair distribution functions. For H+ 
one derives the following expression: 

- V J [p<1, 1, O>(x Is) ] 
~ = ku TKT- (Nw) dx p<o,1,0l(s) - p<1,0,0>(x) ' (3.19) 

wherein KT stands for isothermal compressibility of water. An exactly analo­
gous expression gives v~. 

The quantum-mechanical extension of the distribution function forma­
lism requires first that one introduce a suitable complete orthonormal set of 
eigenfunctions. This complete set is necessary to describe motion of all 
oxygen and hydrogen nuclei on the ground electronic state hypersurface (the 
Born-Oppenheimer separation of nuclear and electronic motion should be 
an accurate description). Then the quantum-mechanical grand partition 
function has the form of an operator trace: 

Zo = Tr exp[- /3( .ff - J.lo· f'0 - fJ.u .AI' u)]. (3.20) 
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Here ff is the nuclear-motion Hamiltonian,< V0 and< fH are number opera­
tors for 0 and H nuclei, respectively, and Jlo and JlH are the corresponding 
nuclear chemical potentials. 

The bonding algorithm advocated above (Section III,A) partitions multi­
dimensional nuclear configuration space into regions corresponding to the 
fixed numbers Nw, N +, N _ of intact molecules, H+ ions, and OH- ions. 
This geometric partitioning effectively defines number operators < f'~, < V+ , 
and< V_ for the respective species, so that the averages <Nw), <N +),and 
<N _) may be obtained quantum-mechanically as suitable traces: 

<Na) = Z(} 1 Tr{A'~ exp[- P( ff- Jlo" f'0 - JlwfH)]}, 

rx=w, +, -,. {3.21) 

The quantum-mechanical distribution functions corresponding to the 
classical quantities defined earlier in Eq. {3.10) may also be represented as 
operator traces. Alternatively, one can consider the full density matrix for 
the operator 

exp[- P( ff- Jlo< f'0 - JlH" f H)] 

in coordinate representation, and then produce reduced density matrices by 
integration. Note, however, that our bonding algorithm requires that the 
integrations be carried out over rather complicated multidimensional 
regions. 

The passage from classical statistical mechanics to quantum statistical 
mechanics engenders two basic changes in the molecular description of 
water. The first concerns zero-point motion, primarily of the light 
hydrogens, which tends to broaden distribution function maxima (i.e., par­
ticles will be somewhat delocalized). Needless to say, this effect will be 
greatest for the lightest isotopes. The other effect is obvious from Table III, 
namely, that light-hydrogen-mass quantum effects tend to displace the 
association-dissociation equilibrium toward ionic products. The implica­
tion for singlet distribution functions is obvious, and these in tum affect the 
higher order distribution functions. 

C. LINEAR RESPONSE THEORY OF REACTION FOR PURE WATER 

Our next task is derivation of a fluctuation-dissipation theorem for the 
dissociation process in liquid water. Although autocorrelation functions for 
chemical reaction rates have previously been deduced (Kutz et al., 1974), the 
emphasis and details of the present distinct approach seem to reveal the 
un,derlying dynamics more clearly than ever before. We shall develop 
the purely classical theory first, then we indicate how the quantum­
mechanical version can be achieved. 
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For simplicity, suppose that the system contains precisely N oxygen nuclei 
and 2N hydrogen nuclei. Furthermore let r and p, respectively, comprise all 
configuration and momentum coordinates for the 3N nuclei. The bonding 
algorithm presented in Section III, A provides a definition for N +(r), the 
number of hydrogen ions to be identified as fragments of dissociated water 
molecules, for any given r. As stated earlier [Eq. (3.5)], N + is the number of 
hydroxides as well, and N - N + is the number of undissociated molecules. 

Denote by O(N +)that portion of the full 3N-dimensional r-space which 
corresponds to the existence of precisely N + hydrogen ions in the liquid. The 
probability P(N +) that indeed this is exactly the number of H + ions present 
may be expressed in terms of configuration space integrals in the following 
obvious way: 

Owing to the usual behavior of large numbers, this probability can be 
adequately represented by a normalized Gaussian distribution: 

P(N +) = (K/2n) 112 exp[ --!K(N + - <N +) )2). (3.23) 

The quadratic fluctuation is then trivial to calculate: 

(3.24) 

It is convenient now to introduce a mathematical device for manipulating 
the average number of hydrogen ions. This device takes the form of a weak 
external potential U(r) which is applied to the system, with the specific form 
~N +(r). ~is a small coupling constant. Obviously this external potential is 
constant across each of the regions O(N + ), but possesses discontinuities of 
integer multiples of ~ at their boundaries. 

In the presence of the external potential, Eq. (3.22) obviously generalizes 
to the following: 

P(N + , e) = I J dr exp[- f3<D(r) - f3~N + (r )]}/ 
\ Q(N +) 

The corresponding change in the Gaussian form (3.23) may easily be shown 
to be 

P(N +, ~) = (Kj2n) 112 exp[ --!K(N +- <N +>o + ~/K)2], (3.26) 

where <N +>o denotes the average when ~ = 0. One immediately sees that 
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the (linear) effect of external potential U(r) on (N +>will be 

(N +> = (N +>o- (~/K). (3.27) 

The quantity K- 1 is a susceptibility conjugate to external potential strength 
~. Comparing Eqs. (3.24) and (3.27), one reaches a familiar type of conclu­
sion, namely, that large quadratic fluctuations go hand in hand with large 
susceptibility to external potential. 

We note in passing that the dissociation susceptibility K- 1 may be ex­
pressed in terms of the hydrogen-ion pair distribution function p<0 • 2 • 0 >. 
Specifically, one calculates 

1/ K = (N +) + J dsl J ds2[p<o. 2, Ol(st, s2)- p<o. 1, O>(st)p<o. 1, O>(s2)], 

(3.28) 

wherein the distribution functions are those appropriate for the infinite 
system-size limit. 

Equation (3.27) shows how variation in the strength ~ of the external 
potential U(r) permits one in principle to manipulate the ion concentration 
in the water sample. If ~ changes from one steady value to another, the 
degree of dissociation will shift to accommodate that change. The rate at 
which the system relaxes to the new point of equilibrium is· determined by 
kinetics of the dissociation process and its reverse. We will examine that 
relaxation process carefully and by doing so will be able to deduce a molecu­
lar expression for the chemical reaction rates. 

First we need to examine the phenomenological kinetics implied by the 
fundamental reaction with which this article was opened:· 

The first-order rate equation implied by (1.1) is 

!: (N+) =k (N-(N+)) -k (<N+)) 2 

dt V d V a V · 

(1.1) 

(3.29) 

Equation (3.27) shows that the final change in hydrogen-ion concentration 
caused by a sudden small change b~ in external potential will be -b~/VK; 
kinetic equation (3.29) requires that the approach to this change will be 
exponential in time. If the cited change b~ occurs at time t0 , the subsequent 
change in hydrogen ion concentration will be given by 

( (N +>) b~ b -V- = VK {exp[ -kr(t- t0 )] -· 1} (t ;;::: t0 ). (3.30) 

In this expression, the relaxation rate kr is 

kr = kd + 2((N+)o/V)ka. (3.31) 
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The response to any small, but otherwise arbitrary, time-varying ~ may 
easily be synthesized from exponential lags of type (3.30 ). By invoking linear­
ity of response, one obtains the general phenomenological result: 

(3.32) 

In studying relaxation processes such as this it is important to observe 
response to perturbations of different frequencies, so we can set 

(3.33) 

where w must have a negative imaginary part to ensure convergence. In~ert 
this ~(t) into Eq. (3.32) to find 

d (N+) 
---= 
dt v 

iw~0 k. exp(iwt) 

VK(k. + iw) . 
(3.34) 

This is the phenomenological expression whose comparison with microsco­
pic theory generates a new expression for k •. 

Chronological evolution of the system of 3N nuclei may be described by 
the phase space probability function f(r, p, t). This function satisfies the 
Liouville equation 

oflot = i!R(t )! ; (3.35) 

!l' is the Liouville operator 

3N [ 1 J !R(t) = i L: -pj · v.j +FAt)· vPj . 
j=l mj 

(3.36) 

The force Fj(t) acting on nucleusj consists of two parts. The first, F~0 >, is due 
simply to internal forces within the system (including wall forces): 

F~0> = - v.j<I>, (3.37) 

and has no explicit dependence on time t. The other part, F~1 >(t), is the 
external force on nucleus j due to U = ~N +: 

F~ll(t) = -~0 exp(iwt)V.iN +(r). (3.38) 

Notice that these latter forces act impulsively; in the 9N-dimensional 
configuration space the vector V N + (r) vanishes except at the boundaries of 
the region O.(N + ), and at these boundaries it has normal orientation from 
smaller to larger N + . 

We can split the Liouville operator !l' into an unperturbed part !1'0 , and 
the equilibrium-shifting perturbation !l' 1 ( t): 

!l'(t) = !l'o + !l'1(t), 

3N 

!l'l(t) = i L F~1 >(t). VPj" (3.39) 
j= 1 
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Under the assumption thatfwas the equilibrium distribution functionfeq in 
the remote past, and that subsequently !£' 1 (t) was sufficiently weak that only 
linear response need be considered, then the perturbed distribution function 
at time t may be displayed in the following form: 

t 

f(r, p, t) =feq(r, p)- ~oP I ds exp(i(t- s)!£'0 ] 
-ao 

3N 

X exp(iws).f.q(r', p') I v./N +(r'). (pj/mj)• (3.40) 
j= 1 

Here r', p' stand for phase-space coordinates which unperturbed motion 
over interval t - s carries into r, p. The quantity 

3N 

J +(r, p) = I v.jN +(r). (p)m) 
j= 1 

(3.41) 

represents the total normal current (in the increasing N +direction) crossing 
the Q boundaries in the 9N-dimensional configuration space. Hence we can 
write for the linear approximation: 

t 

f(r, p, t) = feq(r, p)- ~oP I ds exp(iws)J +(r', p')feq(r', p'). (3.42) 
-ao 

The expected rate of change of N + at time t likewise can be expressed in 
terms of the current J +: 

d(N +(t)) I I dt = dr dpf(r, p, t)J +(r, p). (3.43) 

Of course feq produces no average rate of change for N + , but the perturbed 
part off does. Using expression (3.42) in Eq. (3.43), one finds 

dd (N +(t)) = - ~oP I dr I dp ( ds exp(iws) 
t V V - 00 

x J +(r, p)J +(r', p')f.q(r', p'), (3.44) 

or more succinctly, 

d(N+) ~oP (" )Io < () () (") dt -V- = - V exp zwt _"' ds J + 0 J + s ) exp zws , (3.45) 

where < · · ·) represents an average taken at equilibrium. 
At least within the regime of classical dynamics, Eq. (3.45) represents the 

exact linear response to the arbitrary-frequency perturbation ~(t)N +(r) that 
we have used to disturb the equilibrium. It must now be compared to the 
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phenomenological expression {3.34). Owing to the elementary stochastic 
assumptions upon which {3.34) is based, we cannot possibly expect the two 
expressions to agree precisely. In particular, the full molecular dynamics 
involves detailed high-frequency motions (e.g., vibrations and librations) 
that play no explicit part in phenomenological chemical kinetics. Never­
theless we can demand agreement between Eqs. {3.34) and (3.45) for small w. 
This can be accomplished by expanding both in formal power series in w, 
and demanding equality in corresponding orders. In fact it is consistent to 
make this demand only in the first three orders, and upon doing so one 
obtains the three relations: 

0 I ds (J +(O)J +{s)) = 0, 
-oo 

0 I ds s(J +(O)J +{s)) = 1/KfJ, 
-oo 

(3.46) 

0 I dss2 (J+(O)J+(s)) = -(2/fJKk,). 
-oo 

Consequently we have a microscopic expression for the chemical equili­
brium relaxation time k,- 1 strictly in terms of current autocorrelation func­
tion integrals: 

Here we have used the fact that the current autocorrelation average must be 
an even function of s, because of dynamical reversibility. Equation (3.47) is 
the major result of this section. 

It may be of some pedagogic interest to inquire what form the current 
autocorrelation function would need to be in order to give the phenomeno­
logical result (3.34) exactly. In other words, 

iwk Io 
K(k -~) = p ds (J +{O)J +(s)) exp{iws). 

r+lw -oo 
{3.48) 

The one-sided Fourier transform may easily be inverted to find 

(3.49) 

The meaning of these two terms is very simple. The first, with infinitesimal 
duration, represents thermally driven "noise" inN+, associated with stoch­
astic crossing of the O.(N +) boundaries in configuration space. These fluctu­
ations create small deviations from the equilibrium value of N + appropriate 
for the prevailing temperature and pressure conditions. Consequently, relax-
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ation back to equilibrium ensues, which is described by the second term in 
Eq. (3.49). 

The exact autocorrelation function can be expected to differ in several 
important ways from the" model function" (3.49). Although the existence of 
discrete jumps in N + will necessarily give rise to a delta-function contribu­
tion proportional to absolute temperature, the corresponding multiplier is 
not given correctly by Eq. (3.49). Instead, the correct expression requires an 
integral over the entire set of O.(N +) boundaries. 

Vibrational and librational motions can also be expected to cause devia­
tions from form (3.49) at short (but nonzero) times. These oscillatory mo-

t 
-"' 
~ 

+ .., 
~ 
+ 
~ 

~Delta-function 

contribution 

0 s 

Fig. 11. Current autocorrelation function for the chemical relaxation rate in Eq. (3.47). This 
is only a schematic representation. 

tions will frequently cause the boundaries in configuration space to be 
crossed back and forth in rapid succession. This will tend to give a strongly 
negative bias to the autocorrelation at very small times, followed by damped 
oscillations. The qualitative appearance of (J + (O)J +(s)) is shown in Fig. 11. 

If we were dealing with a slow relaxation process, much slower than 
vibrational and librational periods in the liquid, then it is plausible that the 
long-time autocorrelation behavior of J + would be nearly a single exponen­
tial. However the association-dissociation relaxation in pure water is in­
herently so fast that such a clean separation of time scales does not always 
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obtain. In particular, one might find important departures from exponential 
behavior in hot compressed water where the equilibrium ion concentration 
is high. However, in water at 25°C at 1 atm, the measured relaxation time 
k; 1 is 3.5 x w- 5 seconds (Eigen and DeMaeyer, 1958), which should 
indeed lead to nearly exponential behavior over most of the correlation time. 

Debye has developed a theory for reaction rates between ionic species in 
solution (Debye, 1942). With suitable reinterpretation, this theory provides a 
description of the neutralization reaction between H+ and OH- in water, 
i.e., a description of the processes which determine ka in Eq. ( 1.1 ). The neces­
sary reinterpretation has been advanced by Eigen an-d DeMaeyer (1958). 
They conclude that the following expression is valid: 

(3.50) 

Here D + and D _ are the apparent self-diffusion constants for the ions, and a 
is a "reaction distance" such that one assumes that whenever an H+ and 
OH- approach each other this closely they inevitably and quickly react. 
Using experimental values for ka, e0 , and ion mobilities at room tempera­
ture, Eigen and DeMaeyer conclude that 

a= 7.5 ± 2 A. (3.51) 

This distance should probably be interpreted as the point of contact between 
ion solvation regions containing foreshortened hydrogen bonds. Consider­
ing the polarization of respective H+ and OH- containing regions, such 
contact would produce a complete chain of such short bonds along which 
immediate charge transport would occur to produce the neutralization reac­
tion. In this way, Eq. (3.50) provides an important link to the quantum­
mechanical (and crystallographic) studies of H+ and OH- solvation 
structures. 

This last result is also important in achieving the proper interpretation of 
the general rate constant expression (3.47). In particular, it suggests that the 
type of hypersurface crossing illustrated in Fig. 9 (involving formal hopping 
of H+ simultaneously over several molecules) may indeed be quite impor­
tant in water. By dynamical reversibility, the spontaneous dissociation reac­
tion must also involve sudden charge separation by at least distance a, which 
likewise may frequently proceed by the concerted process of Fig. 9. 

Providing that a suitable Hamiltonian model can be constructed to 
describe dissociating water, the molecular dynamics simulation technique 
could offer basic insights into the relative contributions to the various types 
of hypersurface crossings to the reaction rates. 
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D. QUANTUM-MECHANICAL EXTENSION 

Just as it was necessary earlier to indicate how molecular distribution 
functions must be calculated in the quantum-mechanical regime, so too 
must we examine the corresponding changes for the theory of reaction rates. 
In a convenient review article, Zwanzig has stated the general relationship 
between classical and quantum-mechanical expressions for transport and 
rate constants in current correlation function form (Zwanzig, 1965). This, of 
course, is the form in which the relaxation rate kr has been displayed in 
Eq. (3.47) above. Consequently we can immediately adapt Zwanzig's exposi­
tion to the water problem. 

The quantum-mechanical extension requires first that the currents J + 
appearing in Eq. (3.47) be replaced by the appropriate operators, and then 
that the thermal average (" ") be carried out as a trace with the quantum­
mechanical density matrix for the system, exp(- f3 .Yt). 

First note that in the classical regime, 

J +(t) = (djdt)N +(t); (3.52) 

N +(t) is the number ofH+ ions in the system defined by the algorithm stated 
earlier. We associate with N +the quantum-mechanical operator .Y+ which, 
in the position representation, multiplies any given wave function for the 
system by the appropriate number N + for the configuration of interest. The 
time derivative of .'V+ satisfies Heisenberg's equation of motion: 

(3.53) 

where [,] stands for the commutator. The formal solution to Eq. (3.53) is 

.,v+(t) = exp(it.Yt/h~V+(O) exp( -it.Yf/h). (3.54) 

In order to display the correct quantum-mechanical generalization, one 
must use the "Kubo transform" .k'<_f>(t) for the operator% +(t): 

fl 
.k'<_f>(t) = p- 1 J d.A exp(.A..tt')% + (t) exp(- .A..tt'). (3.55) 

0 

We thus have the following quantum version of Eq. (3.47): 

~r = [(' ds s2(% (_fl(O)% +(s)) ]/ [(' ds s(.k'<_f>(o)% +(s))]. (3.56) 

This last result should be central in any discussion of kinetic isotope 
effects on the association-dissociation relaxation in water. In some small 
degree, the isotopic difference in structure between H 20 and D 20 would 
affect this relaxation rate. But more important probably are (1) the relative 
rates of network restructuring, and (2) the influence of tunnelling on H+ or 
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D + motion. The first of these can roughly e correlated with comparison of 
dielectric relaxation times and self-diffusi n constants for H 20 and D 20 
(see Table III). The second should be refle ted in a diminished a value for 
D 20 compared to H 20, when the Debye e uation (3.50) is used to infer an 
effective reaction distance. 

An obvious need exists at present to easure relaxation rates and ion 
mobilities accurately in D 20 over an ext nded density and temperature 
range, to permit quantitative comparison ith the corresponding H 20 re­
sults. The comparison should help to as ess the magnitude of quantum 
corrections to kinetic properties in liquid 

E. REACTIONS INVOLVING OTHER SPECIES 

The association-dissociation reaction (1. ), of course, is always present in 
water, even when it acts as a host solvent for other chemical reactions. If 
these latter reactions themselves involve H or OH-, there arises a strong 
coupling between solvent and solute reacti ns. We shall illustrate the way 
that theory describes this coupling by exa ining the specific case of acid 
dissociation in water. This example serves to clarify concepts required for 
describing other aqueous reactions of the t pe mentioned in Section I,D. 

The competing reactions to be considere involve four phenomenological 
rate constants: 

k, 

H 20 H+ + OH-
k, 

K, 

HA ~H++A-. 
K, 

(3.57) 

In the dilute solution limit ka and kd may, f course, be taken as the rates 
appropriate for pure water, but in general a, kd, Ka, and Kd will depend 
upon composition of the binary solution. 

First we need to know the relaxation spe trum implied by Eqs. (3.57) for 
sufficiently small deviations from equilibriu that time-dependent composi­
tion variations of ka · · · Ka may be neglect d. Let C0 {v) denote the equili­
brium concentration of species v. Starti g from some initial state of 
disturbed equilibrium, we can represent the time-dependent concentrations 
of the five species as follows: 

H 20: C0 (H20)- x t) 

HA: C0 (HA)- y(t 

OH- : C0 {0H-) + (t) 

A- : C0{A-) + y(t 

H+: C0 (H+) + x(t + y(t). (3.58) 
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The corresponding linear first-order differential equations are easily found 
to be 

-x(t) = kdx + ka[C0 (H+) + C0 (0H-)]x + k8 C0 (0H-)y, 

- y(t) = Kdy + Ka[Co(H+) + Co(A -)]y + KaC0 (A -)x. (3.59) 

The general solution to Eqs. (3.59) consists of linear combinations of two 
exponentially decaying function pairs of the type 

x(t) = exp( -at), 

y(t) = y(O) exp( -at). 

Substituting this form into Eqs. (3.59) yields 

and 

where 

(O) = KaCo(A-) 
y s ' a-

s = kd + ka[Co(H+) + Co(OH-)], 

S = Kd + Ka[Co(H+) + Co(A -)]. 

(3.60) 

(3.61) 

(3.63) 

Were it not for the last term in the left member of Eq. (3.62), the roots for 
the decay constant a would be precisely s and S. However, this last term, 
since it is negative, causes the upper root to rise above max(s, S) and the 
lower root to sink below min(s, S). 

a±= !{s + S ± [(s- S)2 + 4kaKaC0(0H-)C0 (A -)]112}. (3.64) 

Although conditions in the binary solution may be such that s = S, notice 
that the two roots a+ and a_ always remain distinct. For the larger root, y(O) 
is positive, and this more rapid of the two relaxation modes has the water 
and the acid associating (or dissociating) together. The slower relaxation 
mode has negative y(O), so one of the molecular constituents associates while 
the other dissociates. 

In order to establish contact between the phenomenological equations 
(3.57) and the microscopic theory, we must once again articulate a 
procedure for dividing configuration space into regions that correspond to 
fixed numbers of the five chemical species. Obviously, we want the 
procedure to reduce to that already advocated for pure water when the 
constituent HA has zero concentration. Indeed, we shall follow the same 
bonding algorithm as before, after introducing a suitable prescription for 
formation of the H-A molecular bond. 
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In general, the geometric criterion of when an A- particle and an avail­
able H+ ought properly to be considered bonded should rest upon the 
nature of the relevant potential energy surface. If A- were monoatomic (i.e., 
a halide anion), the spherical symmetry demands that a critical bond forma­
tion radius L be identified [analogous to L for water, Eq. (3.1)). This radius 
might best be defined as the outer surface at which the adiabatic H-A 
potential energy displays some fixed fraction, say one-half, of the maximum 
possible bond energy. For polyatomic anions, of course, the resulting bind­
ing criterion would have to be more complicated. Thus for a long-chain fatty 
acid, the criterion must assure that the bound proton resides in an appro­
priate region at the carboxylate end of the molecule. Tautomeric substances 
such as acetylacetone (CH 3COCH2COCH3 ) will in fact exhibit discon­
nected regions for H+ attachment. 

Assume now that the bonding criterion for H-A has been established. The 
algorithm for identifying H 20, HA, OH-, A-, and H+ particles in the 
solution, given the full set of nuclear coordinates, must proceed as follows. 

1. Form a list of all distances between hydrogen nuclei and base-atom 
nuclei (0 for water, and whatever atom or atoms act as points of H+ 
attachment in HA). Arrange these distances in ascending order. Coinciden­
tal equalities have vanishing probability and may be disregarded. 

2. Eliminate all distances that exceed the maximum permissible bond 
lengths either for water (L) or HA(L). 

3. Bond the two nuclei that provide the minimum distance in the remain­
ing list (in the case of HA we additionally may demand that angular require­
ments be met as well). 

4. Remove from the list all distances that involve hydrogens previously 
bonded and/or involve base atoms bonded the maximum permissible 
number of times previously (twice for water oxygens, once for base atoms in 
A-). 

5. Proceed to the next larger distance remaining in the list, and bond the 
two nuclei involved if appropriate. 

By processing the entire list of distances this way the hydrogens are at 
least partially assigned to the oxygen and A- particles so as to identify 
uniquely H 20 and HA molecules, and OH-, A-, and H+ ions. Notice that 
no hydrogen can simultaneously serve as part of more than just a single 
H 20, HA, or oH- entity. [This procedure consistently neglects hydrogens 
that may be part of the stable (nonexchangeable) structure of A-; in the case 
of some tautomeric substances this simplifying assumption may require 
revision.] 

The binary aqueous solution under consideration may be regarded as 
having originally been prepared from a fixed number N 1 of undissociated 
water molecules mixed together with N 11 originally undissociated HA 
molecules. After mixing, there will be fluctuating numbers Nw(t), NHA(t), 
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N oH(t), N A(t), and N +(t) of the species H 20, HA, OH-, A-, and H+, 
respectively. The fluctuations represent only two statistical degrees of 
freedom, since we have the conservation conditions 

Nw(t) + NOH(t) = Nl, 

NHA(t) + N A(t) = Nn, 

N oH(t) + N A(t) = N + (t). (3.65) 

The anion numbers NoH and NA offer a convenient pair of independent 
variables. These discrete variables completely partition the multidimen­
sional configuration space for the system into distinct regions Q(N oH, N A) 
that yield the indicated numbers of particles through the stated bonding 
algorithm. 

Next we must calculate the linear response of the system to application of 
a weak external perturbation potential of the type 

(3.66) 

Here ~0 and ~ 1 are small constants, possibly complex. The frequency w 
should be given a small negative imaginary part to ensure convergence. 
Obviously U is constant across each region Q(N OH, N A)· 

As was the case with pure water, the linear response may be computed 
from the Liouville equation, assuming that classical mechanics applies. This 
response may be expressed in terms of correlation functions of currents: 

JA = dNAjdt, 

which measure crossings of Q(N oH, N A) boundaries. There is no need to 
reproduce the derivation, which merely parallels that ofthe earlier case. One 
obtains the following results: 

where 

<1> 1 (w) = (' ds exp( -iws)(J0 H(O)J0 H(s)), 
0 

00 

<1>2(w)= f dsexp(-iws)<JA(O)JA(s)), 
0 0 

(3.67) 

(3.68) 
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There will exist two characteristic values of the ratio~ t!~o, each of which 
will induce a value for the response ratio (N A(t))/(N 08(t)) numerically 
equal to that ~t!~o ratio itself. From Eqs. (3.67) one easily finds that these 
characteristic ratios are 

Of courseR+ and R_ in principle depend on w, but they should approach 
limiting values as w- 0, with leading-order corrections that are quadratic in 
w. 

Consider now the case of small w, and suppose ~t!~o in U(r, t) is chosen 
to be one of the values R±(O). Then the system responds by slowly shifting its 
equilibrium to accommodate the slowly varying external field. The extent to 
which the system can follow the field depends on the relaxation time in­
volved, and one such time belongs to each of R+ and R_. These relaxation 
times must be identified with the phenomenological times tX± 1, from 
Eq. (3.64). It is clear, furthermore, that the R± (0) should be identified with 
the coefficient y(O) in Eq. (3.60). 

To state the situation in other terms, the two linear combinations of 
concentration fluctuations 

(3.70) 

are just those that should exhibit single relaxation behavior. The corre­
sponding combination of Eqs. (3.67), 

:t (Non) + VR± (N A) = - p exp~wt)~o {<l>t(w) + 2R± <1>3(w) + Ri <1>2(w)} 

(3.71) 

should therefore manifest a right member with w dependence close to that 
for simple relaxation behavior (K± > 0): 

-iWtX± r~O exp(icot)]. 
K±(tX± + iw) V 

(3.72) 

In order to produce expressions for the relaxation times in terms of cur­
rent correlation functions, it is necessary to expand both (3. 71) and (3. 72) 
through quadratic order in w, and then compare corresponding terms. To 
the extent that separate relaxation times are indeed identifiable, w depen­
dence of R± should be negligible. Under that assumption we find the follow-
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ing molecular expressions for the chemical relaxation times: 

_ 1 _ Cl>\2> + 2R±(O}CI>~2> + R~(O)cl>~2> • 

a± - 2(CI>\1> + 2R± (O)C1>~1 > + Ri{O)CI>~1 > ' 
(3.73) 

we have introduced the correlation function moment quantities 

Cl>~l = f 00 .ds S'(J A(O)J A(s)), 
0 

(3.74) 

The procedure outlined in Section III,D can readily be adapted to provide 
the quantum-mechanical version of expression (3.73). 

If the molecular dynamics described by Eqs. (3.67) were precisely charac­
teristic of a two-relaxation-process situation, then each of the Fourier trans­
forms Cl>1(w), Cl>2(w), and Cl>3(w) would possess simple poles in the complex w 
plane at ia+ and ia_. As we shall see in Section IV, however, this simple 
meromorphic character may not actually apply to the real aqueous solution 
case. Consequently, it is safer to rely on moment equations such as (3.73) to 
identify chemical relaxation rates. 

It is important to keep in mind that rate coupling between the reactions 
(3.57) does not occur merely because both involve the same constituent H +. 

The presence of HA and/or A- in high concentration generally will affect the 
hydrogen-bond connectivity of the water network, and that in turn will 
affect the ability of the network to transport protons. 

IV. Electrical Response 

A. FREQUENCY-DEPENDENT DIELECTRIC FUNCTION 

Consider a region of empty space, for example that between parallel 
capacitor plates, which has an electrical field Eap varying harmonically with 
time: 

Eap(t) = E0 exp(iwt). (4.1) 

If the region is then filled with homogeneous and isotropic matter (such as 
water or an aqueous solution), that matter then develops a polarization P 
which, in the linear response regime, may be related to Eap through the 
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frequency-dependent dielectric function e(w H 

4nP(t) = [ 1- e(~)]~ap(t). (4.2) 
I 

This polarization density causes the actu~l mean electrical field in the 
sample to be i 

j 

E(t) = Eap(t)/e(~). (4.3) 

In general e(w) will be complex, and contentionally it is written in the 
following form: ! 

I 

e(w) = e'(w)- ie"~w). (4.4) 

The imaginary part -e" represents dissipatJ·'on. At very low frequency th~ 
dissipation in water and its solutions will b due to electrical conduction; 
this conductivity causes e" to diverge at w =\ 0: 

e"(w) = (4nu/w) +1(1), (4.5) 

where u is the (low frequency) conductivity. As w increases, absorbing re­
gions of frequency are encountered which c rrespond in turn to molecular 
rotational relaxation ( ~ 10 em- 1 ), to vibrational relaxation ( ~ 103 em- 1 ), 

and finally to electronic excitation ( ~ 105 et11- 1 ). 

The real and imaginary parts of e(w) are not independent, but are related 
to each other by the Kramers-Kronig equations (Kittel, 1958): 

2 oo ue"(u) 
e'(w)- e'(oo) =- J 2 . 2 du, (4.6) 

n 0 u -w 

"( ) __ 2w Joo e'(u)- e'(oo)d e w - 2 2 u. 
n 0 u -w 

(4.7) 

Cauchy principal values for these integrals are to be taken at the integrand 
singularities. These Kramers-Kronig relations are simply a mathematical 
statement of causality, following from the requirement that medium re­
sponse not precede the external perturbatio~. 

The conductivity pole in e" at w = 0, shown in Eq. (4.5), necessarily affects 
e' through Eq. (4.6). One easily demonstrates that near w = 0, e' has to 
diverge to infinity as well. This merely reflects the ability of a conductor to 
shield completely any static electric field impressed upon it. However, pure 
water at least is a rather poor COnductor (0.04 X 10- 6 Q- 1 em - 1 at 18°C), 
and so a convenient range of relatively low ft1equencies ( ~ 105 Hz) is avail- -
able over which a "static dielectric constant" e0 can experimentally be 
identified (as an attribute of water as a polar ;liquid consisting essentially of 
intact molecules) without significant interference from conductivity. 
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A satisfactory, completely genera~ theory of s(w) does not exist, which 
accounts for molecular motions, interactions, and polarizability. However 
some insight into the time-dependent dielectric behavior of water is possible 
through the theory restricted to rigid polar (but nonpolarizable) molecules. 
In this latter regime, s(m) may be calculated according to the following 
formula (Titulaer and Deutch, 1974): 

[s(m)-1][2s(m)+ 1]s0 _ -Jao d (-· )d4J(t) 
(s0 - 1)(2s0 + 1)e(m) - 0 t exp lWt dt · (4.8) 

In this expression, 4J(t) stands for the normalized autocorrelation function of 
the moment m of a microscopically large, but macroscopically small, sphere 
of the substance, embedded in an infinite sea of its own kind. 

4J(t) = (m(O) · m(t))/(m2 ). (4.9) 

The simplest reasonable form that one might expect for 4J(t)is that for single 
exponential decay 

4J(t) = exp(- tjr:) (t ;?: 0). 

By inserting this form into Eq. (4.8) one concludes 

s(w) = 2s~ + imr:s0 - 1 + [Q(s0 , w )] 112 

480 (1 + imr:) 

Q(so, w) = 4sri + 4imr:s6 + (4 + 16iwr: - 9m2r: 2)s~ 

- 2imr:s0 + 1. 

(4.10) 

(4.11) 

Although this s(m) as a function of the complex variable w is analytic in the 
neighborhood of the origin, it possesses characteristic singularities off the 
real axis. In particular, a simple pole resides at 

w = ijr:, ' (4.12) 

and a pair of square-root branch points exist at the roots of Q(s0 , w): 

w = -9 i {2s~ + 8s0 - 1 ± 2[sri + 8s6 + &~- 13s0 - 2]112}. (4.13) 
sor: 

Thus we see that a simple 4J(t) can give rise to a relatively complicated 
dielectric function. 

Expression (4.11) for s(m) should be compared with the elementary 
"single relaxation" form that is often quoted (Frohlich, 1949): 

( ) s0 + iwr: 
s w = ---,----

1+iwr:' 
(4.14) 
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which exhibits only the simple pole at i/r. Obviously Eq. (4.14) requires a 
more elaborate c/J(t) than the one shown in Eq. (4.10). 

Considerable theoretical interest has recently been devoted to "hydrody­
namic tails " in correlation functions that determine transport and kinetic 
properties (Alder and Wainwright, 1970). In the case of angular momentum 
for a single molecule, local vorticity created by that molecule in its surround­
ings causes the autocorrelation function to display a C 5' 2 tail at long time t 
(Ailawadi and Berne, 1971). Likewise, the rank-one orientational correlation 
functions for a single molecule decay to zero at long time as t- 7; 2 (Garisto 
and Kapral, 1974). We take these facts as evidence that <f>(t) in Eq. (4.9) also 
should display a long-time inverse-power tail since, after all, the local 
moment m(t) is additively composed of separate molecular contributions. In 
particular, we would expect C 7' 2 to be the relevant behavior for <f>(t). Then 
the Fourier transform quantity on the right side of the e(w) formula (4.8) 
would possess branch-point character at the origin of the complex w plane, 

· associated with occurrence of w 712 in a small-w expansion. Evidently e(w) 
itself will have a branch point at w = 0. 

Obviously liquid water as a dielectric substance is much more com­
plicated than the assumptions behind Eq. (4.8) would permit. Nevertheless, 
the same features apply in water that cause one to conclude from Eq. (4.8) 
that e(w) contains a branch-point singularity at the origin. The resulting 
dielectric behavior is obviously relevant to the motion of ions in water, 
particularly H+ and oH-. 

B. ELECTRICAL CONDUCTION 

The time-correlation function expression for the electrical conductivity a 
has the following form (Zwanzig, 1965): 

(4.15) 

J x is the x-component of the total electrical current flowing in the system. 
This formula refers specifically to a system with unit volume subject to 
periodic boundary conditions. In the case of pure water, J x obviously com­
prises contributions both from H+ and OH-; aqueous solutions may con­
tain other charge carriers as well. 

We have noted earlier that the high static dielectric constant e0 aids in 
production of carriers in water, owing to the negative solvation free energy 
ofH+ and OH-. At the same time the frequency dependence in e(w) causes a 
retardation of the motion of these ions, since local polarization has difficulty 
in following ion drift. Temporal persistence of spontaneous current fluctua­
tions at equilibrium is therefore damped somewhat, and the correlation 
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function expression (4.15) reflects that fact by yielding a correspondingly 
reduced a value. 

One special aspect of the dynamics of local polarization as it follows H + 

and oH- motion is clear from Figs. 1 and 2. The sequential proton ex­
changes along hydrogen-bond chains (which produce high apparent mobili­
ties) automatically switch the orientation of water molecules in a favorable 
way, without the necessity for real molecular rotation. The polarization lag 
that retards forward motion will therefore largely reside in regions to the 
side of the conductive chain. 

In the case of a spherical ion of radius b moving through a fluid dielectric 
continuum, Zwanzig has calculated the dielectric friction (Zwanzig, 1970). 
His calculation assumed that the dielectric dispersion could be represented 
by a single relaxation time rd. The result for the dielectric friction constant 'd was the following: 

' _ Kq2(eo - eoo)Ld 
d - b3s0 (2s0 + 1) 

(4.16) 

Here q stands for the charge on the moving ion, and the constant K depends 
on the hydrodynamic boundary conditions applied at the surface of the ion: 

K= 3/8 

= 3/4 

(sticking) 

(slipping). (4.17) 

Although it may seem paradoxical that slipping conditions produce greater 
dielectric friction than sticking conditions, it should be realized that the 
former permits nearby liquid to flow faster around the moving ion, thereby 
creating a greater polarization lag. 

Obviously, there are grave difficulties in attempting to apply Zwanzig's 
result (4.16) to H+ or OH- in water, because of the exchange character of 
motion for these ions. Furthermore, it is unclear what an appropriate choice 
for the radius b would be for these species. However the fact that 'd is 
essentially proportional to rd/s0 is suggestive, and perhaps not far from the 
truth for H+ and oH- in water. This ratio declines monotonically between 
oa and 75°C by a factor of about 3.9. No doubt a substantial part of the 
rising mobilities (equivalent conductances) with increasing temperature of 
H+ and oH- shown in Table II can be attributed to this declining dielectric 
friction. 

Another important ingredient in understanding temperature varia:tions of 
H+ and OH- mobilities is the topological nature of hydrogen-bond connec­
tions between molecules, and the rate at which such connections break and 
reform in new patterns. Eigen's description of proton conduction and diffu­
sion in water (Eigen, 1964) seems to demand the interpretation that the 
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liquid consists of disconnected finite (i.e., independent of system size) 
clusters of bonded water molecules, with stochastic repositioning of nearby 
water molecules to attach to the edge of a cluster acting as rate-determining 

. events. However, recent molecular dynamics simulations (Geiger et al., 
1977) show instead that an extended space-filling network picture for liquid 
water is clearly preferable, when an energy definition of" hydrogen bond" is 
chosen which conforms to a wide range of other physical and chemical 
measurements and properties. To reconcile the apparent contradition, 
Eigen's hydrogen bonds would have to be restricted to greater binding 
energy and/or shorter 0-0 separation than required otherwise. 

Figure 12 shows that even if the hydrogen bonds involved are strong 

y H H H 

/0" ':0: .. ) ... 
H + H.. .•·•• •·.•. ..H ' 

'• H" .H .· 
·····o/ "-o·· 

I 1 I H H 

Blocking molecules 

y ~ ¥ 
Q....... /o........_ •.• o" 

,H H •• •• H., 
·.H"""- •. ·•• •••• .•• /H '• 

o· ·o 
I I 
H H 

Fig. 12. Interrupted exchange pathways. Sequential proton jumps along a hydrogen-bond 
path for H+ and OH- transport can be blocked by a water molecule acting, respectively, as 
double proton acceptor (top) or double proton donor (bottom). 

enough, a chain of bonds is not sufficient to guarantee the possibility of 
transport. All ofthese bonds must in fact be properly oriented beforehand. 
H + motion along a chain can effectively be blocked if a water molecule 
acting as a double proton acceptor is incorporated in that chain (Fig. 12, 
top). Likewise, a water molecule which acts as a double donor in a chain can 
effectively block passage of OH- (Fig. 12, bottom). Evidently both forma­
tion and destruction of strong hydrogen bonds, as well as reorientations to 
shift "blocking molecules" are important in electrical conduction and ionic 
diffusion of H+ and OH- in water. 

It is inherent in the crystallographic structure of ice that each molecule 
has many hydrogen bond paths passing through it. Considering any 
molecule and pairs of its four bonded neighbors, one sees that the chosen 
molecule simultaneously serves once as double proton donor, once as 
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double proton acceptor, and four times as a nonblocking molecule (Hankins 
et al., 1970). The multiplicity of hydrogen-bond pathways in the crystal thus 
can permit blockages to be bypassed. Set against this topological advantage 
is the rigidity of the crystal that would inhibit formation of those very short 
and strong hydrogen bonds necessary for charge transport. Evidently, this 
latter feature dominates, for mobilities ofH+ and OH- are less in ice than in 
liquid water, as noted earlier (Section I,B ). 

Owing to the relative magnitudes ofthree-molecule nonadditivity in water­
molecule interactions, incorporation of" double donor" and" double accep­
tor" molecules in hydrogen bond chains is energetically unfavorable 
(Hankins et al., 1970). Of these two, the double donor is the configuration 
more costly in energy. Unlike ice, the incompletely bonded liquid has a 
choice in how many blocking sites exist; therefore relatively fewer double 
donor occurrences than double acceptor occurrences are expected (the non­
additivity energy difference between them is approximately 0.5 kcaljmole.) 
Thus, blockage should more frequently occur for H+ motion than for OR­
motion. Obviously, then, the fact exhibited in Table II that H+ is more 
mobile than OH- must stem from yet another feature; and indeed this 
feature must be sufficiently potent more than just to overcome the occur­
rence probabilities for blocking molecules. 

The limiting equivalent conductances (Table II) imply the following acti­
vation energies for electrical charge transport at 20°C: 

2.59 kcaljmole (H + ), 

3.11 kcaljmole (OH-). (4.18) 

It was stressed earlier in Sections II,B and C that hydrogen bonds in the 
immediate vicinity of a solvated H+ tend to be stronger and shorter than 
those for a solvated oH-. The difference in activation energies (4.18) indi­
cates greater difficulty for OH- compared to H+ in reaching a "transition 
state" between successive" natural" configurations. One contributing factor 
to the difference is the presence of proton double minima for OH- hydrogen 
bonds, ill contrast to flat proton potentials for corresponding solvated H+ 
structures. Another, and probably more important, factor is that solvated 
H+ is surely surrounded on the average by a larger dendritic array of favor­
able hydrogen bonds than is solvated OH-, owing to the tendency toward 
stronger bonds with the former. Consequently the H+ hydration complex 
finds at its perimeter a greater set of configurational opportunities for easy 
proton transfer in the field direction and among this greater set will occur 
more opportunities for low-barrier transfers. 

Notice that the ratio of mobilities of H+ and OH- tends toward unity as 
the temperature rises. Presumably this is associated with thermal disruption 
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of the respective solvation complexes. It would be useful to know by direct 
measurement if pressure rise has a similar effect. 

We have noted that ionic motion in water is affected by coupling to 
dielectric dispersion, and that the frequency-dependent dielectric function 
e(w) exhibits branch-point characteristics in the complex w plane. All chemi­
cal reactions in water involving proton transfer are therefore inevitably 
coupled to dielectric response and therefore partake of complex-w branch­
point behavior. This is the reason behind earlier cautioning (Section III,E) 
that the chemical current correlation transforms <1> 1 (w ), <1> 2 (w ), and <1> 3 (w) in 
Eq. (3.68) should not cavalierly be treated as meromorphic functions. 

c. WIEN EFFECT 

Wien was the first to point out that electrolytes display a characteristic 
non-Ohmic behavior; namely, their electrical conductance increases with 
increasing electrical field (Wien, 1928, 1931). This phenomenon exists for 
both strong and weak electrolytes. In the case of the former, the strong 
electrical field destroys the normal ion atmosphere, which exerts a retarding 
effect on ion mobility at small fields. In the case of the latter, strong fields 
enhance the rate of ionization without producing a compensating change in 
association rate. As a consequence, the weak electrolyte's ionization con­
stant increases. 

In comparison, the relative change in conductance at high fields is much 
greater for weak electrolytes than for strong electrolytes. 

Onsager has worked out the theory of the Wien effect for weak elec­
trolytes (Onsager, 1934). He concludes that the dissociation constant Kd 
should exhibit the following dependence on electric field strength E: 

Kd(E) J 1[ 4(- Co q)112] 

Kb(O) 2( -(0 q)112 

= 1 + 2Y + (4(oqf + (4(oq)3 
soq 2!3! 3!4! + ... , 

where for a 1-1 electrolyte 

r - leEI 
so-2k8 T. 

(4.19) 

(4.20) 

J 1 is the usual Bessel function which, for the imaginary argument shown, is 
monotonic. It is noteworthy that Onsager's result (4.19) depends on the 
absolute value of the field in such a way that the leading order effect is 
proportional to IE I itself. In fact, that linear field effect would actually not 
apply at very small fields, owing to neglect of terms in derivation of 
Eq. (4.19). However, in the case of water, these neglected terms (associated 
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with ion atmosphere perturbation) are appreciable only at very small fields 
indeed. 

With an electrical field of 100 kV/cm in water at 25°C, one has 

q = 3.5790 x w- 8 em, 

(4.21) 

which incorporates only slight deviation from Onsager's linear field effect 
regime. 

Eigen and DeMaeyer have employed the Wien effect in pure water to 
study the rate of the fundamental recombination reaction (1.1) (Eigen and 
DeMaeyer, 1955). They used field strengths in the range 50-100 kV/cm, with 
rise times less than 10- 8 sec to generate extra H + and 0 H- ions in the 
liquid. The relaxation engendered by the subsequent neutralization reaction 
could then be monitored as electrical conductivity change. 

V. Conclusions 

The present exposition provides a formal theoretical framework for 
proton transfer reactions and kinetics in water. A major advantage of such a 
formalism is that it helps point out areas of incomplete information. Con­
sequently, it seems highly desirable to pursue the following in the near 
future. 

1. More detailed and accurate quantum-mechanical studies of potential 
energy surfaces for solvated H+ and OH- ions. 

2. Monte Carlo and molecular dynamics investigation of H+ and OR­
ions in water. 

3. Experimental study of dielectric properties and H+ and OH- mobili­
ties in supercooled water, and in water at elevated pressure. 

4. Development of experimental techniques to study dissociation relaxa­
tion down to the picosecond range. 

5. Measurement of dissociation relaxation in H 20-D20 mixtures. 
6. Investigation of models for proton (and proton hole) transfer in 

random networks. 
~- These projects, if successfully carried to completion, would substantially 

improve quantitative understanding of the subject of this review. 
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