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Molecular dynamics calculations have been carried out to establish quantitative properties of the Gaussian 
core model near its crystal-fluid transition. Two densities have been considered, for both of which the 
stable crystal structure at absolute zero is body-centered cubic. Spontaneous melting and freezing events 
were observed at both densities. Annealing of defective crystalline phases and formation of amorphous 
"glassy" structures have been induced. Properties for the model at equilibrium display some surprising 
"waterlike" anomalies, including negative volume of melting. negative thermal expansion in the fluid, and 
increase in rate of self-diffusion as the system is compressed. 

I. INTRODUCTION 

It has been pointed out recentlyl that the "Gaussian 
core model" offers a convenient and illuminating way 
to study phase transitions, in particular to study the 
fluid-solid transition. This model consists of struc­
tureless point particles which move according to the 
laws of classical mechanics, and which interact in pairs 
with a repelling Gaussian potential: 

CPo, l > O. (1. 1) 

The total potential energy <P for a collection of N Gauss­
ian core particles is then taken to be 

<p(r1 ••• r N)= t cp(r ij ). (1.2) 
i<j-l 

It has been suggested1 that some polymer solutions may 
behave osmotically as though <P were the potential of 
mean force acting between macromolecular centroids. 

The Gaussian core model is known to possess several 
interesting properties. Among these are the following1: 

(a) Distinct temperature-density regions in which the 
body-centered-cubic and face-centered-cubic crystal 
structures, respectively, are thermodynamically 
stable; 

(b) A compression-melting phenomenon which leads 
to a density of maximum melting temperature, and 
hence to regions of both positive and negative volumes 
of melting; 

(c) Reduction to hard-sphere-model behavior in a 
suitable low-temperature, low-density limit. 

The Gaussian core model also possesses an impor­
tant mathematical advantage. Its classical partition 
function can be expanded in an asymptotic inverse-tem­
perature series, with coefficients that can be evaluated 
explicitly. Any classical model (with bounded <p) can 
formally be expanded in such a series, where the co­
efficients consist of irreducible cluster integrals that 
are generated by the cumulants (semi-invariants) of <p. 2 

The present model has the unique attraction that its 
cluster integrals reduce to elementary integrals by 
diagonalizing symmetric quadratic forms. Indeed, it 
was this singular feature which caused the Gaussian 
core model to be considered in the first place. 

In preparation for a detailed study of the inverse­
temperature series, it was deemed essential to deter­
mine quantitatively accurate properties for the Gaussian 
core model by an independent means. For this purpose 
we have turned to computer simulation. The present 
paper reports some results obtained by the "molecular 
dynamics" approach. 3 We have examined both solid and 
fluid phases, as well as transformations between them. 

An unexpected finding in this simulation study was 
that the Gaussian core model in some respects is 
"water like. " One such attribute is the negative melt­
ing volume already mentioned. Others are negative 
thermal expansion in the fluid phase, 4 and increase in 
self-diffusion rate upon isothermal compression. 5 Since 
interactions in the present model differ drastically 
from those in water, credible explanation of the ec­
centric behavior of water6 must henceforth be tem­
pered by the knowledge that the eccentriCity can arise 
in a variety of ways. 

We discuss technical details of our molecular dy­
namics approach in Sec. II. This is followed by an 
exposition of simulation results obtained thus far con­
cerning thermodynamic behavior (Sec. III), local struc­
ture (Sec. IV), diffusion rates (Sec. V), and dynamics 
of phase transformation (Sec. VI). 

II. MOLECULAR DYNAMICS METHOD 

We rely upon a digital computer to provide numeri­
cal solutions to the 3N coupled Newton equations of 
motion for the N particles with mass m: 

md 2r/dt 2 =-Vj <P (j=I ..• N). (2.1) 

These differential equations must of course be supple­
mented by initial conditions on pOSitions and momenta. 
The integration procedure and subsequent analysis 
can be carried out most conveniently in terms of re­
duced units that are natural for the model: CPo, l, and 
(ml2/cf;o)1/2 were adopted as units of energy, length, 
and time, respectively. 

We initially carried out a series of-preliminary cal­
culations in the fluid phase using systems of 500 par­
ticles. However, the bulk of our subsequent calcula­
tions have utilized 432 particles. Only very minor 
quantitative differences were perceptible in comparing 
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these two system sizes. We believe that the infinite- 2.290.-----------------------, 

system limiting behavior can be accurately inferred 
from calculations with 432 particles, provided that 2.289 

certain precautions mentioned below are duly observed. 

In all cases the N particles were confined to a cu­
bical cell with volume V chosen to yield the density of 
interest. Periodic boundary conditions have consis­
tently been employed. As usual, the system energy 
(and thus the temperature) can be manipulated by 
scaling momenta. 

The calculations reported here involve only two val­
ues of the dimensionless density p* = Nt 3 / V, namely, 
0.4 and 1. O. Prior work! has revealed that the body­
centered-cubic crystal is apparently the stable low­
temperature structure for both of these densities. The 
reason for using 432 particles is simply that this num­
ber can form a perfect body-centered-cubic crystal 
with the given cubical cell and periodic boundary con­
ditions. Another value of N (not equal to twice a per­
fect cube) would either lead to a metastable crystal 
structure or to a necessarily defective body-centered­
cubic crystal at absolute zero of temperature. 

A fifth-order algorithm due to Gear7 has been used to 
integrate differential equations (2.1) after expressing 
them in reduced units. Time increment t:..t * for inte­
gration was set equal to 0.05 (in reduced units), which 
had the effect of holding drifts in total energy and cen­
ter-of-mass momentum (nominally conserved quanti­
ties) within acceptably narrow limits. The number of 
time steps required to investigate a given thermody­
namic state was variable, but usually a period of 
2000 t:..t* was first allowed to elapse to achieve equili­
bration, and a period of 2000 t:..t* to 10000 t:..t* was 
subsequently utilized to form averages. Except within 
the phase transition region, the results were stable 
and reproducible. Over 70 distinct thermodynamic 
states at the two densities have been examined. 

For the purpose of initiating a series of runs we 
have used both random initial positions, as well as a 
perfect body-centered-cubic array. The former is 
useful in mapping out the behavior of the fluid phase 
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FIG. 1. Potential energy per particle at reduced density 0.4. 
The dotted line locates the thermodynamic transition. 
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FIG. 2. Potential energy per particle at reduced density 1. O. 

by successive stages of cooling. The latter provides 
analogous information for the solid. However, we also 
observe phase transitions to the opposite phase as dis­
cussed below, to check on reproducibility. 

III. THERMODYNAMIC FUNCTIONS 

Figures 1 and 2 present values computed for the 
average reduced potential per particle (if»/N¢o (de­
noted for Simplicity as (if>*) / N), at densities 0.4 and 
1. 0, respectively. In both cases separate and discon­
nected branches were obtained for the low-temperature 
crystal and the high-temperature fluid. The phase 
transitions between these states are first order, with 
change in fundamental phase symmetry. 

It is characteristic of the molecular dynamics simu­
lation that metastable extensions of crystal and fluid 
branches are inevitable beyond the thermodynamic 
transition point. This stems from the sluggishness 
with which spontaneous nucleation of the new phase 
occurs in the absence of a suitable "seed" or container­
supplied epitaxial growth site. But in spite of this 
metastability, it is possible to locate the transition 
pOints reasonably accurately by the means discussed 
below in Sec. VI. 

For an infinite system undergoing a first-order phase 
change, subject to a constant volume constraint, a 
finite temperature interval of phase coexistence should 
in principal exist. In the present case this implies 
that the temperature Tm at which a warming crystal be­
gins to melt reversibly is less than the temperature Tf 
at which a cooling fluid begins to freeze reversibly. 
However, Tm and Tf are not distinguishable in the cal­
culations we have performed, partly because of finite 
system size effects, partly because of incomplete phase 
space averaging, and partly because these temperatures 
probably differ by less than a percent under our pre­
vailing conditions. 

We have concluded from our extensive studies that the 
transitions thermodynamically occur at the following 
reduced temperatures: 

~ 3; Tj= 6. 2 ± O. 3 x 10-3 

=6.0±0.5xI0- 4 

(p*=0.4) 

(p* = 1. 0) , 

(3.1) 
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where we use 

(3.2) 

The dramatic decline in transition temperature as the 
density increases clearly illustrates the compression 
melting phenomenon identified earlier for the model. 1 

The changes in potential energy per particle occur­
ring at the transition were found to be 

(~<I>*)/N= 5. 02± O. 05xl0-s (p* = o. 4) 
(3.3) 

=3.24±0.20XIO-4 (p*=1.0). 

Except for an insignificant correction (to account for 
the constant-density restraint), these are the transi­
tion enthalpies. 

The corresponding entropies of transition may be 
obtained by dividing the results (3.3) by the corre­
sponding temperatures in Eq. (3.1), 

~/NkB=0.81±0.04 (p*=0.4) 
(3.4) 

=0. 54± O. 05 (p*=1. 0) 

By contrast, the hard-sphere model has the following 
entropy of melting8

: 

~/NkB=1.16±0.10 • (3.5) 

Since the Gaussian core model adopts hard-sphere 
melting behavior as p - 0, its own melting entropy must 
approach the hard-sphere value in this limit. In that 
connection, results (3.4) suggest that ~S/NkB for the 
Gaussian core model may decline monotonically as 
density increases. Whether the high density limit for 
this quantity is positive, or is actually zero, must for 
the moment remain an open question. 

In the low-temperature limit, the body-centered­
cubic crystals should behave properly as classical 
harmonic systems. Remembering that the periodic 
boundary conditions permit free motion of the center 
of mass, we expect the mean potential energy to be­
have thus: 

(<I>*(T*)=<I>*(0)+t(N-l)T*+0(T*2). (3.6) 

In fact the data presented in Figs. 1 and 2 accurately 
obey this criterion. However, there is positive cur­
vature unambiguously present in the crystal branches, 
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FIG. 3. Reduced pressure p* at reduced density 0.4. 
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FIG. 4. Reduced pressure p* at reduced density 1. O. 
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which we interpret as anharmonic effects in struc­
turally perfect qystals. 

* 0. 

In the high-temperature limit, the potential per par­
ticle is equal to that for randomly distributed particles: 

lim (<1>*) = t7T3/2 p*(N -1) (3.7) 
T·~ao 

(assuming l« Vl/3). This implies that the fluid branches 
in Figs. 1 and 2 must turn over and become flat at suf­
fiCiently high temperature. 

Figures 3 and 4 show the reduced pressures P* for 
the two densities 0.4 and 1. 0, respectively, where 

(3.8) 

The striking feature conveyed in both cases is that pres­
sure declines with increasing temperature, at least 
up to a point. This region of negative values for 
(ap/aT)y includes the crystal, the transition, and the 
low-temperature portion of the fluid. In particular, 
the sudden pressure drop encountered at the transition 
shows that the melting volume is negative at both den­
sities. We believe it is reasonable to presume that 
negative melting volumes exist for all p* ~ O. 4. 

The isothermal variation of entropy S with volume 
is subject to the following thermodynamic identity: 

(3.9) 

This implies that compression increases entropy 
(i. e. decreases configurational order) in that portion 
of the T, p space for which (ap/aT)y is negative. 
Qualitatively speaking, the explaination is that com­
pression tends to convert the spatially inhomogeneous 
function <I> to a smoother "mean field" interaction which 
allows freer particle motion. This is possible pri­
marily because the Gaussian potential is smooth and 
bounded, with zero slope at the origin. 

It is also useful to recall that 

(3.10) 

The first factor on the left (related to isothermal com­
pressibility) is always negative. Consequently, 
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sgn [(:~) J = sgn [(:~)J ' (3.11) 

so that the system exhibits negative thermal expansion 
(shrinks with increasing T at fixed p) whenever (ap/aT)y 
is negative. Heretofore this behavior usually has been 
associated with substances whose constituent particles 
engage in tetrahedral bonding; for example, water. 9 

We find that 

p*/p*T*=170±8 (p*=0.4) 

=4600±400 (p*=1.0). 
(3.12) 

These results may be compared with the hard-sphere 
value at its freezing point8 : 

(p/pkBT) = 12. 40± O. 20 . (3.13) 

That the values (3.12) are so much larger is attribut­
able to forced overlap of repelling Gaussian cores at 
the chosen densities. 

It is obvious from the scales in Figs. 3 and 4 that up 
to and just beyond the respective transition points the 
pressure changes caused by heating are a small frac­
tion of the total pressure. Thus the coexisting crystal 
and fluid phases in this density region have isothermal 
compressibilities both nearly equal to that of the crys­
tal at absolute zero. Having made this observation, 
we can proceed to estimate the small density changes 
that would accompany the melting process at constant 
pressure. We find 

Ap*/ p* "" 3 X lO-s (p*=0.4) 

(p* = 1. 0) 0 

(3.14) 

IV. LOCAL STRUCTURE 

The pair correlation function g(r) provides a useful 
way to assess the local structure in a classical many­
body system. This function is defined by the require­
ment that the angle-averaged density of particles at 
distance r from the center of an arbitrarily chosen par­
ticle is equal to the overall density N/V times g(r). 
Exact closed-form expressions incorporating g(r) are 
available for the thermodynamic energy, pressure, 
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FIG. 5. Fluid phase pair correlation function above the freez­
ing point. p* =0.4, -r =6.54xIO-s• 
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FIG. 6. Pair correlation fucntion for the bcc crystal. p* = O. 4, 
T* = 6.35 X 10-3• This state is slightly superheated. 

and (in the infinite system limit) the isothermal com­
pressibility. 10 

Figure 5 shows g at T* = 6. 53x10-s, p* = O. 4. This 
is a fluid state just above the freezing point. The shape 
of this function is qualitatively similar to those that 
have been determined for other fluids of spherically 
symmetric particles near their freezing points; for 
example, argon. s particles tend to collect into con­
centric coordination shells of decreasing distinctive­
ness as r increases. Notice that g is essentially zero 
for r* =r/lless than about 0.95; for considerably 
higher temperature (T*;:: 0.03 at p* = 1) we have seen 
frequent particle penetration to zero separation per­
mitted by the fact that the Gaussian interaction is 
bounded. 

Figure 6 presents g for the body-centered-cubic crys­
tal at T * = 6. 35 xl O-s, p* = O. 4. This crystalline state 
is slightly superheated, according to Eq. (3.1), but it 
possesses indefinitely long stability in our computa­
tion. It is obvious from Fig. 6 that particle segrega­
tion in successive shells is much greater in degree 
and in range, compared to the fluid. Nevertheless, 
vibrational motions broaden shells considerably and 
cause them to overlap. Of course, vibrational broaden­
ing can be reduced by lowering the temperature. Fig­
ure 7 shows the crystal-phase g at T* = 6.76 x 10-4, 
still at p* = O. 4, where successive shells are much 
better resolved. 

The pair correlation functions obtained at the higher 
density p* = 1. 0 are rather Similar, provided the dis­
tances are scaled by (p* )1/3, and temperatures scaled 
by the corresponding transition temperatures (3.1). 

In the bcc crystal at absolute zero, the first and sec­
ond coordination shells are located at the following dis­
tances: 

rt = 2- 2/3 3112 ( p* r 11 s (8 neighbors) , 

rt=21/3(p*r1/3 (6 neighbors). 

Define a* to be the average of these distances: 

a* = (3112 + 2) (32p*t 1/3 

"" 1.1755 (p* r 1/S 
• 

(4.1) 

(4.2) 
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FIG. 7. Pair correlation function in a low-temperature bcc 
crystal. p* = 0.4, T* = 6.76 X 10-4• Coordination shells and 
occupancies for the undistorted lattice are indicated by arrows. 

In the perfect crystal at absolute zero, every particle 
will have exactly eight others within distance a*. But 
thermal motions will disrupt this neighbor uniformity, 
either as vibrational motion in the crystal, or by cre­
ating packing disorder in the fluid. Therefore it is il­
luminating to know P(n, a*), the probability that a ran­
domly selected particle has exactly n neighbors within 
distance a*. 
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FIG. 8. Comparison of coordination number distributions for 
fluid and bec crystal, both at reduced density 0.4. 

Ie: 

FIG. 9. Average coordination number vs temperature at 
p*=O.4. 

Figure 8 presents P(n, a*) in histogram form for two 
states at p* =: 0.4. These are the states, one fluid and 
one crystalline, from which the pair correlation func­
tions in Figs. 5 and 6 were selected. Note that the 
fluid has a lower average coordination number n than 
does the crystal: 

n=:6nP(n,a*) • (4.3) 

The quantity n(T*) is plotted in Fig. 9 for denSity 
0.4. The fact that it increases above eight and passes 
through a maximum in the low-temperature crystal 
demonstrates an interesting vibrational phenomenon. 
The effective radial restoring force for the six second 
neighbors of any selected particle is less than the same 
quantity for the eight first neighbors. Consequently a 
small degree of harmonic thermal motion will cause 
second neighbors to move inside a* more frequently 
than it will cause first neighbors to move outside a*. 
That n begins eventually to decline at sufficiently high 
temperature in the crystalline phase evidently stems 
from anharmonicity. 

The behavior of n(T*) at the higher density 1. 0 is 
similar to that shown in Fig. 9, except that the tem­
perature scale shifts in accord with the lower transi­
tion temperature. 

It is very easy to produce amorphous glassy struc­
tures by rapidly quenching a fluid state to very low tem­
perature. The quenching is accomplished by setting 
particle momenta equal to zero, running the system 
for a few (~100) time steps, setting momenta again to 
zero, etc. By this means the system eventually set­
tles into a local minimum in the cP hypersurface. The 
overwhelming majority of the vast number of cP minima 
for N=: 432 are amorphous; the chance of producing an 
ordered crystal this way is negligibly small. 

The result of one such quenching at p* =: 1. 0 produced 
a pair correlation function shown in Fig. 10. Although 
this state still possesses a positive temperature 
(T* =: 7.98 x10-6

), the particles are essentially all locked 
in place, and no perceptible diffusion occurs. For this 
amorphous structure we find 
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FIG. 10. Amorphous packing pair correlation function. p* 
= 1. 0, T* = 7.98 X 10-6• The nearly stationary particles have 
pair distances accumulated in bins of size Ar* =0.05. 

(cp*)IN=2.2845508, 

4.0 

P* = 2. 7819862, (4.4) 

n= 8. 0867 , 

which are values roughly in agreement with smooth 
extrapolations of fluid branch curves for those quanti­
ties. Figure 11 exhibits the distribution P(n, a*) for 
this amorphous packing, which evidently contains a 
wide variety of local coordination geometries. Although 
close-packed particle arrangements may be present 
[they would be included in P(12,a*)], they are not pre­
dominant. The perfect bcc crystal at this temperature 
would have P(n, a*) entirely concentrated at n = 8. 

V. SELF-DI FFUSION 

By monitoring particle displacements as a function 
of time during the course of the molecular dynamics 
runs it is possible to calculate the self-diffusion con­
stant, D*. In particular, we have 

D* = lim ([r1(t) -r1(0)]2:)/6t* • t* _ 00 
(5.1) 

In the perfect crystal (and also low-temperature amor­
phous packings) D* is zero; the mean-square particle 
deviation approaches an asymptotic limit with time that 
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FIG. 11. Coordination number distribution for the amorphous 
pacldng of Fig. 10.p*=1.0, T*=7.98 x 10-s, a*=1.1755. 
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FIG. 12. Temperature variation of the self-diffusion constant. 

is related to vibrational amplitudes. However, in the 
fluid the mean-square deviation rather quickly ap­
proaches linear behavior from whose slope we have 
inferred D*. 

Our numerical results for D* at both densities ap­
pear in Fig. 12, where InD* is plotted against 1IT*. 
In this form of presentation the slope of the curve is 
conventionally interpreted in terms of an energy of 
activation for the diffusion process. 11 The energy of 
activation obviously decreases as p* increases from 
0.4 to 1. O. 

The most notable conclusion from our numerical 
study of D* is that compreSSing the fluid isothermally 
from p* = O. 4 to p* = 1. 0 increases the rate of self-dif­
fusion. At T*=5x10- 3

, for instance, D* increases by 
about a factor of 7. Of course we have not determined 
D* at densities between these extremes, but it seems 
plausible that D* is a monotonic function of p*, at least 
for T* $ 10-2 , p* ~ 0.4. 

The tendency for D* to increase with p* is analogous 
to the same observation for water, 5 though the effect is 
far more dramatic in the Gaussian core model. It in­
dicates a negative volume of activation for self-dif­
fusion; that is, particle displacements are correlated 
with local contractions. As we have noticed before, 
contraction (compression) leads to greater particle 
freedom. From this point of view the negative activa­
tion volume for D* is logically connected to the negative 
temperature coefficient of pressure [Eq. (3.8)] noted 
earlier. 

VI. PHASE TRANSFORMATION DYNAMICS 

As the perfect crystal is heated slowly from absolute 
zero, vibrational motions become increaSingly anhar­
monic as their amplitudes increase. This seems to 
have the effect of locally "softening" the crystal, which 
is eventually able to shake itself apart into the dis­
ordered fluid. We have found that in order for this 
spontaneous melting of a structurally perfect (defect­
free) crystal to occur in a reasonable amount of time 
(within 104 ~t*), the reduced temperature must be at 
least 8 x 10-3 at p* = O. 4, and at least 7.8 X 10-4 at p* = 1. O. 
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We had anticipated at the outset that these instability 
points would have to be interpreted as upper bounds on 
the true melting temperatures ~(p*). 

But whereas a heated crystal will always melt eventu­
ally, a cooled fluid need not crystallize. We have al­
ready noted that amorphous glassy structures can be 
formed by rapid quenching from a stable fluid state. 
Nevertheless, with sufficient patience in the molecular 
dynamics study, spontaneous crystallization will initiate 
if the temperature conditions are appropriate. At p* 
= 0, 4 we have never observed freezing unless the fluid 
was cooled below T* =4. 3x 10-3; at p* = 1. 0 it was cor­
respondingly necessary to cool the fluid below T* = 4. 1 
x10- 4• 

On account of the constant-energy condition under 
which the molecular dynamics is carried out, the melt­
ing of a crystal is accompanied by an obvious tempera­
ture reduction as the latent heat is absorbed. Thus a 
p* = O. 4 perfect crystal which starts melting at T* = 8.0 
X 10-3 finally ends up as fluid at T* = 6. 6 X 10-3• In­
versely, the adiabatic freezing of supercooled fluid 
originally at p* = O. 4, T* = 4. 3 X 10-3 would produce a 
perfect crystal at T* = 5. 7 X 10-3• A long sequence of 
molecular dynamics runs with successive heating and 
cooling to produce cycling through melting and freezing 
transitions will trace out hysteresis loops in, for ex­
ample, the pressure plots as shown in Figs. 3 and 4. 

With respect to freezing of the fluid, it is clear that 
an optimal degree of supercooling exists at which the 
rate of nucleation is at a maximum. We find, for ex­
ample, that p* = O. 4 flud begins to crystallize about 5 
times faster on the average at T* = 3. 9X 10-3 than at T* 
= 4. 3 X 10-3• However, strong and rapid supercooling of 
the same fluid to below T*=2. 5x10-3 slows the rate of 
diffusion (and hence structural change) so much that 
freezing becomes unobservably infrequent. 

We believe that the thermodynamic transition tem­
peratures can reliably be estimated by the average of 
the final temperatures at which spontaneously frozen 
and spontaneously melted systems come to rest. This 
is the basis on which the values stated earlier in Eq. 
(3.1) were chosen. 

While the initiation of spontaneous freezing within the 
appropriate temperature range appears to be predict­
able and statistically reproducible, the resulting solid 
structure is not. Evidently the degree of perfection of 
the "crystalline" phase is highly variable. We pre­
sume that this variability is associated with the crys­
tallographic orientation of the nucleus at which the solid 
begins to grow. Only rarely will this random orienta­
tion closely approximate that possessed by the perfect 
arrangement of 432 particles in the periodic unit cell. 
In that unlikely event, the growing crystal would eventu­
ally encounter its own image, and the two would grow 
together without mismatch. Indeed, we seem to have 
observed one freezing event at p* = O. 4 of this ideal kind. 

More commonly, the growing crystallite is misaligned 
with respect to the periodicity cell. The final defective 
structure then at least contains grain boundaries. These 
grain boundaries are necessarily regions of remanent 

particle disorder, and their presence presumably gen­
~rates strain throughout the crystalline. regions. The 
existence of this mismatch, disorder, and strain are 
obvious from all the quantities by which the phase transi­
tions are monitored. In effect, one observes that the 
transition fails to go to completion. Average potential 
and pressure in this type of circumstance typically shift 
only by 60%-80% of the full changes expected if a defect­
free crystal were to form. Similar interpolated values 
for g(r) and P(n,a*) are also obtained. 

Although the unreproducibly defective nature of the 
frozen material is disadvantageous for study of equilib­
rium crystal properties, it nevertheless provides an 
opportunity. The disordered grain-boundary region can 
act as an effective nucleation site for melting, and thus 
give a better upper bound on T:I: than was provided by the 
perfect crystal melting. The defective solid samples 
also help to fix Tf as well. Upon slowly warming such 
a sample, we first find that annealing takes place as 
some disorder freezes out. This presumably occurs 
below the thermodynamic T1. Further heating eventu­
ally causes both T1 and T:I: to be exceeded, at which 
point we see remelting of the still somewhat defective 
solid take place. These careful observations of an­
nealing and remelting constitute an independent means 
for fixing the thermodynamic transition and have been 
used to confirm the validity of Eq. (3.1). 

A fluid-phase analog of the defective solid can also 
be produced. To do this, a perfect crystal (originally 
constructed at absolute zero and warmed) is taken to 
the temperature at which it shakes apart into fluid. 
But just before the melting goes to completion the 
molecular dynamics process is interrupted. At that 
stage the system is mostly flUid, but contains an un­
melted crystal fragment which potentially can act as a 
"seed" for freezing. If the momenta are then scaled 
downward to bring the temperature below Tf, crystal­
lization quickly ensues. In fact, there is high proba­
bility that the seed will be properly aligned to yield a 
defect-free crystal, since it was produced itself from 
such a structure. We have also used this seed tech­
nique to confirm the transition temperature assignment 
at p*= 1. O. 

VII. DISCUSSION 

Several aspects of the Gaussian core model that have 
not yet been studied deserve future attention by the 
molecular dynamics method. One of these is location 
of the density at which T,.(p*) and T,(P*) attain their 
common maximum. Another would be the study of the 
transition entropy at densities above p* = 1. 0 to see if 
this quantity becomes arbitrarily small in the high den­
sity limit. It would also be interesting to study vacancy 
and interstitial diffusion in the crystal by varying N 
slightly away from 432. 

The analogy between anomalous thermodynamic 
properties in the present model and in water can be 
examined further. The shear viscosity of liquid water 
is known to decrease with increasing pressure, below 
30°C12 ; furthermore, this liquid's isothermal compress­
ibility has a negative temperature derivative below 
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46°C. 13 These phenomena both are contrary to the be­
havior of normal liquids. It would be illuminating to 
establish whether or not these anomalies also exist in 
the Gaussian core model. 

Now that molecular dynamics simulation has begun to 
create a data base for the Gaussian core model, it is 
appropriate to develop theoretical methods for pre­
dicting and understanding its properties. The ab­
normalities of the fluid phase might be amenable to 
study through standard g(r) integral equation methods,14 
though it is possible that the approximations used in 
deducing these integral equations might suppress those 
abnormalities. 

We have already mentioned the opportunity for de­
riving an extended set of exact coefficients for the in­
verse temperature series expansion of the partition 
function. In the infinite-system size limit such a 
series must have a vanishing radius of convergence 
and would require special summation techniques for 
analysis. On the other hand, it may be more useful 
to employ this series for finite N and V, where in fact 
it does have a nonzero convergence radius. In this 
case the series may permit study of location of parti­
tion function zeros in the complex temperature plane. 
The convergence of these zeros onto the real axis as 
N and V become large would locate Tm and T f , and 

would show how the transition sharpens as the number 
of degrees of freedom in the system increases. 
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ERRATA 

Erratum: Coupled molecular reorientational relaxation 
kinetics in mixed binary liquids 
~.Chem.Phys.68,4551 (1978~ 

P. P. Ho and R. R. Alfano 

Picosecond Laser and Spectroscopy Laboratory. Department of Physics. The City College of The City 
University of New York. New York, New York 10031 

The text of this erratum was interchanged with 
that of the following erratum on page 4322 in the 
1 November 1978 issue of the Journal of Chemical 
Physics. 

In this paper, the response functionj(T) in Eqs. 11 
and 18 and in Table II should be replaced by the peak 
Kerr transmitted response function G(T)=U t (tmax))-1/2 
where It(t) is the transmitted signal through the Kerr 
gate at a delay time t, and tmax is the delay time when 
It(t) reaches its maximum value. The response func­
tion G(T) which is calculated from Eq. 15 for a fixed 
pulse duration is plotted in Fig. 13 as a function 
of the relaxation time. The response functions G(T) for 
It(tmu.) in Fig. 13 andj(T) for on(t) in Fig. 12 follow 
approximately the same dependence on T. The times 
tmax and tp are slightly different. Our conclusions and 
results are not affected. 

o 5 10 15 

FIG. 13. Peak Kerr transmitted response function vs relaxa­
tion times T in units of the pulse duration T,. 

Erratum: Study of melting and freezing in the Gaussian 
core model by molecular dynamics simulation 
[J. Chem. Phys. 68, 3837 (1978)] 

Frank H. Stillinger and Thomas A. Weber 

Bell Laboratories. Murray Hill. New Jersey 07974 

The text of this erratum was interchanged with that of the preceding erratum on page 4322 in the 1 November 
1978 issue of the Journal of Chemical Physics. 

Owing to errors in typesetting, the captions to Figs. 5, 6, 7, 9, 10, and 11 require correction. For each of 
these, replace the symbol p* by the reduced density symbol p*. 
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