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Exact series coefficients through eighth order are reported for the high temperature expansion of the 
Gaussian core model free energy. Although this expanison has a vanishing radius of convergence it can be 
summed by a Borel integral transform. It is demonstrated that this Borel transform has an intimate 
connection to "crystallites" in the stable fluid phase which causes it to display a replica of the distribution 
function for large crystallites. This last observation permits implementation of a transform subtractive 
procedure which generates metastable extensions of fluid properties into the supercooled regime below the 
thermodynamic freezing temperature. 

I. INTRODUCTION 

In spite of many attempts, a comprehensive theory for 
the fluid-crystal transition has not yet been devised. A 
possible approach which seems to have received mini­
mal attention thus far is the study of these transitions 
through high temperature expansions for the relevant 
partition functions. This paper is devoted to that ap­
proach, at least in an exploratory sense. The analysis 
presented here is restricted to the classical "Gaussian 
core model, " since that is the case (among continuum 
systems, as distinct from lattice systems) for which the 
high temperature series can most conveniently be evalu­
ated. 

As a result of previous work several interesting 
properties have been established for the Gaussian core 
model. For example it has been proved that this model 
reduces to the classical rigid sphere model in a suitable 
low-temperature, low-density limit. 1 Furthermore in 
three dimensions it displays at least two different crys­
tal structures. 1 Extensive computer simulation studies 
have also revealed unusual behavior once considered 
uniquely to belong to water, namely a fluid-phase den­
sity maximum and an increase in self-diffusion rate 
with increasing pressure. 2 

The formal series expansion for the free energy of 
the Gaussian core model is carried out in the following 
Sec. II, and exact series coefficients have been worked 
out through eighth order. Some numerical properties 
of these coefficients are explored in Sec. III. Because 
the series is a nonconvergent asymptotic series, the 
Borel transform is invoked in Sec. IV to facilitate ana­
lytical study of the phase transition; this transform will 
also facilitate comparison of present theoretical results 
with computer simulation studies. An important con­
.1ection between crystallite distribution in the fluid and 
the Borel transform is presented in Sec. V. This in 
turn shows how to generate metastable extensions of 
fluid properties into the supercooled regime (Sec. VI). 
Section VII indicates possible areas for future study. 

II. FORMAL SERIES DEVELOPMENT 

Using suitably reduced units for length and energy, 
the N-molecule potential function il>N for the Gaussian 
core model has the following elementary form: 

N 

il>N(r1'" r N) = L: exp(- ~J) • 
1<1-1 

(2.1) 

The corresponding canonical partition function is: 

ZN({3) = lI.D!N! Iv dr1"'Iv drNexp(- /3i1>N) , 

/3= (k B T)"1 , A=h(2rrmkB T)"1/2. 
(2.2) 

Here D stands for the dimension of the system "volume" 
V, which each integral in Eq. (2.2) spans. 

The Helmholtz free energy can be obtained directly 
from Z N' For present purposes we need to focus atten­
tion onj({3), the excess free energy per particle, which 
is given by: 

(2.5) 

The averaging operation indicated here is simply 

(exp(- /3i1> N» = V -N Iv drl ••• Iv drN exp(- {3if> N) • (2.6) 

It is elementary to show that this last quantity is analytic 
in {3 throughout the entire complex {3 plane (for finite N 
and V). if> N is always finite, so the integrand may be 
expanded in a power series; hence 

exp(- N{3f) = t (- ~)n (if>".v) • 
n=O n. 

(2.7) 

Taking logarithms in Eq. (2.7), the moment expan­
sion is converted into a cumulant expansion: 

.. 
N/3j({3) = - ') (- {3)1 AI • 

ti' 
The AI are determined by the formula3 

(2.8) 

A = 2:'(-1)l:nJ-1(6n -1)' IT (if>~)nj (2.9) 
I InJ I J' J=1 nJ! (j ! ) n J ' 

where the primed summation includes all distinct sets 
(nil n2, n3, ••• ) of nonnegative integers subject to the re­
striction 

(2.10) 

Whereas moment series (2.7) converges everywhere in 
the complex (3 plane, cumulant series (2.8) will con­
verge only up to the radius of the moment series zero 
nearest the origin. 

By inserting the specific interaction (2.1) into the gen­
eral cumulant formula (2.9) one easily finds the lowest 
order cumulants to be: 
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(2.11) 

(2.12) 

Similar but more complex expressions are obtained in 
succeeding orders. 

It would certainly be instructive to have evaluated 
cumulants to high order 1 for general N and V since this 
would clarify the way that the fluid-solid transition de­
velops upon approaching the infinite system-size limit. 
However the advantageous simplifications offered by the 
Gaussian core model are realized only when integration 
limits are infinite, i. e., when V itself becomes infinite. 
Thus we are obliged to pass immediately to the infinite 
system size limit with N /V = p held fixed. In this limit 
we have 

(2.13) 

(2.14) 

In each cumulant order 1 the Gaussian pair interac­
tions generate integrals which (with infinite limits) can 
be performed by standard manipulations. The result is 
that the f3 series for the infinite system excess free en­
ergy per particle has the following form: 

f3f(f3) - bI2(D)P Df3 - ~[~bn/D)Pb1 (- f3)n 

., 
=' - L Bn(- f3)n , 

n.l 

where we have introduced the quantity 

PD=:rr D/
2p. 

(2. 15) 

(2.16) 

The separate contributions to the bnJ are irreducible 
cluster integrals with products of pair interactions serv­
ing as integrands. Some of the simpler irreducible 
clusters are illustrated in Fig. 1 as linear graphs in 
which vertices represent particles and lines connecting 
those vertices represent Gaussian pair interactions. 
ExpressiOns (2.13) and (2.14) provide the Simplest ir­
reducible clusters respectively, namely those having 
two vertices connected by one and by two lines. In the 
present context irreducibility implies that graphs are 
connected but have no articulation (cutting) points. The 
coefficient bnj(D) in Eq. (2.15) collects contributions 
from all irreducible clusters having n lines and j ver­
tices. 

In order to evaluate a given bnj(D) it is first necessary 
to create a catalog of distinct irreducible cluster graphs 
for the given nand j. For anyone of those graphs G, 
the corresponding contribution to bnJ piD-1 is 

/-1 (0) 

I(G) == :(G) j drt2 ... jdrtn II exp(-1'{J) . (2.17) 

l/o-(G) is a symmetry factor; it equals the number of 
distinguishable ways that the graph could be drawn be­
tween labelled vertices, divided by n! and by a product 
of kIJ!, where k iJ is the number of direct interaction 
bonds between vertices i and j. After diagonalizing the 
quadratic form in (2. 17) the integral can be evaluated in 
closed form with a result that always has the structure: 

I(G) = piD-1 /{o-(G)[ reG) JDI2} • (2.18) 

where r(G) is a positive integer characteristic of G. 

The ~ntire set of irreducible graphs with n :s 8 has 
been catalogued and the corresponding contributions 
(2.18) have been evaluated. The resulting bn/D} are 
shown in Table I, which also provides the numbers of 
contributing cluster species for each bnj(D). These re­
sults were obtained manually. It is conceivable that the 
procedure could be automated via computer, with higher 
order graphs both generated and evaluated to extend sub­
stantially the present tabulation. 

III. SERIES NUMERICAL PROPERTIES 

In order to examine the convergence properties of the 
f3 series (2.15) it is useful to examine the ratios 

(3.1) 

The ratio test for series' speCifies how these quantities 
(always positive in the present case) can reveal the ra­
dius of convergence R of the series. SpeCifically 

lim sup rn = 1/R 
no" 

if the limit exists. 

• • 
1. 77" DI2 
2 1.(77"/2) DI2 

4 

..L\7T/410/2 
48 

D 
1.(77"3/4)0/2 
8 

(3.2) 

FIG. 1. Low-order irreducible clusters. Under the graph of 
each cluster species G is given the value ofI(G)[Eq. (2.17)]. 
the corresponding contribution to /3f(f3). 
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TABLE 1. High-temperature series coefficients for the Gaussian core model excess free energy. 

Cluster 
n,j species 

1,2 1 

2,2 1 

3,2 1 

3,3 1 

4,2 1 

4,3 1 

4,4 1 

5,2 1 

5,3 2 

5,4 2 

5,5 1 

6,2 1 

6,3 3 

6,4 6 

6,5 3 

6,6 1 

7,2 1 

7,3 4 

7,4 11 

7,5 11 

7,6 4 

7,7 1 

8,2 1 

8,3 5 

8,4 22 

8,5 33 

8,6 23 

8,7 5 

8,8 1 

1 
"2 

!(2-Dl2) 

M3-Dl2) 

1.(3-Dl2) 
6 

la WD/Z) 

! (5-D 12) 

!WD/Z) 

...!..WD/2) 
240 

b. (rD/2 ) +! (8-D/2) 

! (rD/2) +! (8-D/2) 

hWD/Z) 

14~0 (6-D/Z) 

la WD/2) + h (11-Dl2 ) +}g (12-D/Z) 

1 (10-D/Z) +.2. (12-D/2) + l (13-D/Z) + 1. (16-DI2 ) o w 2 U 

! (9-D/Z) +! (l1-DIZ) + ~ (12-D/Z) 

hWD/Z) 

• (7-D/Z) 

2h (l1-DlZ) + A (14-D/2) + Ii (15-D/Z) +A (16-DIZ ). 

1. (13-DlZ) + 1. (16-D/Z) + l (17-D/Z) + 1. (18-DlZ) + 1 (19-D/Z) + 1. (20-Dl2) + l(2r"DI2) + l (24-DI 2) 
48 24 8 6 4 16 4 8 

~ (13-D/2) +! (16-D/2 ) +! (1 rD12) +! (18-D12) + ~ (19-DI2) +! (20-DI2) +! (21-D/Z ) +! (24-D/Z) 

! (l1-D/Z) +! (14-D/2) +! (15-D/2) +! (16-D/Z ) 

1. (7-D/2 ) 
14 

~(8-D/2) 

14~O (13-D/Z) + do (17-Dl2 ) + Ih (19-D/2 ) + Ih (20-DI2 ) + Ih (21-D/Z) 

m (I6-DI2) + si (20-D/Z) + ~ (22-D/2) + A (23-D 12) + is (24-D/2) + h (25 oil 12) + h (26-D/2 ) + ~ (2rDI2) 

+! (28-D 12) + t (29-D 12) + ! (30-D 12) + ~ (32-D 12) +! (35-D /2) + ~ (36-D /2) 

is (1 TD/2) +! (23-D/2 ) + t (25-D / 2) +! (2TD/2) + t(28-D/2 ) + t(29-D / 2) + t (31-D/ 2) + ~ (32-D /2) 

+! (33-DI2) + 34-D12 +! (36-D 12) +! (37oil 12) +! (40-DI2) +! (45-D 12) 

k (16-DI2) + & (20-DI2) +! (22-DI2) +! (23-D/ 2) +! (24-D12) + 25-D/2 + ~ (26-D/ 2) +! (21"DI2) 

+ t (28-D/ 2) + 29-D12 + ~ (30-DI2) + N (32-DI2) +! (35-DI2) +! (36-D/Z) 

;\; (13-DI2) +! (l1"Dl2) +! (19-DI2) +;\;(20-D/ 2) +;\;(21-D/Z ) 

1. (8-DI2) 
16 

Figure 2 displays computed rn values plotted versus 
n for D=3, PD==1. The points show smooth behavior 
and suggest that as n- co, 

real f3 and negative Gaussian potentials. This latter 
situation obviously involves instability with respect to 
collapse of the many-particle system into a molecular 
analog of a "black hole, " with the positions of all par­
ticles virtually coincident. This collapse singularity at 
f3 == 0 has no direct bearing on the melting and freezing 
phenomena for positive real f3. It is only a mathemati­
cal annoyance which fortunately can be dealt with by the 
method presented in the following section. 

rn-Aln+Ao+A_ln-l+0(n-2). (3.3) 

Similar results obtain for different PD and D choices. 
Such asymptotic linearity of the rn with n implies that 
R == 0, and it was for this reason that the infinite-sys­
tern-limit series shown in Eq. (2.15) was indicated to 
be asymptotic to ~f{~). 

The vanishing of R seems to have a clear source. 
Negative real values of f3 with the positive Gaussian po­
tentials (2.1) is a case equivalent to that with positive 

Not only do the Bn appear to manifest smooth behavior 
with n, but so too do the component quantities bnjrY;l 
when j is varied at fixed n. Figure 3 illustrates this 
point with a plot of the quantities bSJ rYD-1 for D == 3, PD 

J. Chem. Phys., Vol. 70, No.9, 1 May 1979 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Fri, 31 Jan 2014 03:43:20



4070 Frank H. Stillinger: Gaussian core model 

2.61-

2.4 0=3 
Po=1 

22~ 

2.0 

1.8 

1.6r-
• 

..= 1.41- • 
• 

1.2r-

• 
1.0 

. 8t--- • 

.6 • 
.4 

.2 • 

0 2 3 4 5 6 7 8 9 10 
n 

FIG. 2. Series coefficient ratios rn [Eq. (3. I)J vs order n. 
For the case shown D = 3 and PD = 1. 

== 1. The histogram shown conveys the clear impres­
sion of a discrete representation for a unimodal dis­
tribution. The corresponding plots for n< 8 have the 
same general appearance. Varying PD at fixed D==3 and 
n has the effect of shifting the distribution horizontally 
while maintaining its unimodal character: increasing 
PD shifts to larger j, decreasing PD shifts to smaller j. 

For n> 2, j spans the range from 2 up to n, inclusive. 
At the lower extreme two particle vertices in the rele­
vant irreducible cluster are connected by n parallel 
lines ("watermelon" diagram) while at the upper extreme 
n vertices are linked by n lines in a polygon ("n-cycle" 
diagram). Between these extremes the value of j con­
trols the average number of connections per vertex. Al­
though there is no obvious reason why contributions to 
the free energy series should vary smoothly with this 
topological characteristic, this is nevertheless the case. 
It appears that deep mathematical reasons are yet to be 
discovered for this observation. 

On account of the elementary way that dimension D 
enters the free energy series (see Table I) it is easy to 
study the way that the available series coefficients and 
their component parts depend on this parameter. Con­
ventionally statistical mechanics has concerned itself 
with models embedded in Euclidean spaces, with D==l, 
2,3, . ... However an axiomatic basis exists for the 
mathematical theory of spaces with noninteger D, and 
the statistical mechanics of many-particle aggregates 
in these spaces has legitimate meaning. 5 

Upon increasing D an interesting and perhaps unex-

pected feature occurs. The unimodal behavior previous­
ly illustrated for bnJp~l vs j can become bimodal. This 
is shown in Fig. 4 for n==8, D==15, PD=:O.241506. The 
phenomenon first appears for n == 8 when D s:: 13 and be­
comes more and more pronounced as D increases. Its 
origin is clear from Table 1. The midrange j values 
(for given n) have cluster contributions with larger in­
tegers raised to the - D/2 power than do the cluster con­
tributions for extreme j values. Consequently choosing 
D to be large and pOSitive will exert a discriminatory 
quenching effect on this midrange . 

The tendency toward bimodality as D increases places 
increasing weight on clusters whose graphs are water­
melon-like or cycle-like. This suggests that the statis­
tical theory undergoes important Simplifications in the 
D- 00 limit, at least for the high-temperature fluid 
phase . 

IV. BOREL TRANSFORM 

If Eq. (3.3) provides an accurate representation of 
the ratiOS defined in Eq. (3.1), then we can easily infer 
the asymptotic behavior of the Bn for large n. Specifi­
cally, 

n 

InBn ==C o+2)n(Ak+Ao+"') , (4.1) 
kern 

where m < n and Co is a suitable constant. This can be 
rewritten as follows: 

InB" =:: C1 +n InA1 

0=3 

Po= I 
.06 

r----
.05 

.04 
'0 '0... -
§ 

}i .03 

r--
.02 

.0 I 

r n 
o 2 3 4 5 6 7 8 9 10 

FIG. 3. Eighth-order cluster contributions bsJ(D)pb-1 plotted 
vs j, the number of vertices. For the case shown D = 3 and 
PD= 1. 

J. Chem. Phys., Vol. 70, No.9, 1 May 197!) 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Fri, 31 Jan 2014 03:43:20



Frank H. Stillinger: Gaussian core model 
4071 

6 

5 

.!..o 4 
0... 

9 

3 

2 

1 

-

0=15 
Po =.241506 

r----; 

-

-
,.--

----!--

o 234 5 6 7 8 9 10 

FIG. 4. Eighth-order cluster contributions vs j. for D = 15. 
PD= O. 241506. 

If m and n are sufficiently large, the last logarithm 
in Eq. (4.2) may be replaced simply by Ao/(Atk), and 
furthermore the sum may be replaced by an integral 
over k: 

f
n

+
t/2 

[ A ] InBn-Ct +nlnAt + Ink + ~ dk 
m-1I2 1 

=C2 +nlnAI + (n + ~ +~) In(n +%) 

-C3+(~+~)lnn+nlnAI+nlnn. (4.3) 

With due regard for Stirling's factorial formula, this 
last expression is seen to be equivalent to: 

(4.4) 

where 

Po =Ao/At, a = 1 + InA t , (4.5) 

and K is a positive constant. 

Asymptotic series coefficients have previously been 
observed to show behavior of type (4.4), in particular 
for the n-vector model in three dimensions. 6 Just as in 
that former case, we too can employ the .Borel trans­
form to effect a formal summation of our divergent free 
energy series. 

Set 

f3!(f3} = f'" exp( - t)F(f3t)dt ; 
o 

(4.6) 

F is the Borel transform of f3!. It is easy to see that F 
must have the following series expansion: 

'" 
F(x) = - 2: (Bn/n! )(- x)n (4.7) 

not 

to agree with Eq. (2.15). From Eq. (4.4) we see (via 
the ratio test) that the radius of convergence of the F 

series is 

(4.8) 

Therefore F(x) is analytiC in the neighbor hood of x = O. 

In Appendix A it is shown that F(x) possesses a branch 
point singularity at 

x = - exp(- a) (4.9) 

with the following leading-order character: 

- Kr(po + 1)[1 + x exp(a) ]"'0.1 • (4.10) 

This requires a branch cut from the pOSition indicated 
in (4.9) along the negative axis. Evidently this singu­
larity is the principal manifestation of the collapse phe­
nomenon already discussed. 

When D = 1 no phase transition can occur. 7 The free 
energy must vary smoothly along the positive f3 axis, 
and in fact it must be analytic for 0 < f3 < + 00. For very 
large positive f3 the repelling Gaussian particles will 
have nevertheless continuously settled into a regular 
array with nearly equal spacing between neighbors. 
Any residual motions in this regular array can be de­
scribed by harmonic normal modes. It is then elemen· 
tary to show that for D = 1 

(4.11) 

where cp is the potential energy per particle in the pe­
riodic linear array. In order to yield this low tempera­
ture free energy, the Borel transform for D = 1 must 
obey the following: 

F(x)-cpx+%lnx+'" , (x- +00) • (4.12) 

In contrast to the.relatively simple (and uninteresting) 
one-dimensional case, we expect that when D = 2,3, 
4, •.. , f3!(f3) will have a singularity on the positive real 
axis, specifically at the thermodynamic freezing pOint 
{3 = (3f. This singularity is associated with "hetero­
phase" fluctuations 8

-
11 that constitute microscopic crys­

tallites in the stable fluid phase. We shall examine this 
phenomenon at greater length in the following Sec. V, 
but for the moment we accept its validity and note that 
in order to have a singularity at f3" F(x) must be expo­
nentially increasing as x- + 00: 

F(x) - exp(x/{3,)M(x) • (4.13) 

M is a modulation factor that is dominated at infinity by 
the exponential factor. In principle the convergent 
power series (4.7) for F contains information sufficient 
to determine the freezing point f3, through (4.13). 
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At least while D is equal to 2,3,4, ... , there is no 
analytic continuation that can be expected to supply the 
crystal-phase free energy, starting from the Borel 
transform (4.6) that is the appropriate representation 
for the infinite-system high-temperature fluid phase. 

V. CRYSTALLITE DISTRIBUTION 
We now turn attention to the geometry of particle ar­

rangement. In particular we seek to identify regions 
within the stable fluid in which crystalline order locally 
obtains. These microscopic crystallites could serve 
as nucleation sites for growth of a macroscopic solid 
phase if the temperature were lowered below the. ther­
modynamic freezing point. As we shall see, the size 
distribution of crystallites is intimately related to the 
Borel transform introduced in Sec. IV. 

We assume that the structure of the low-temperature 
crystal is known at the density of interest. 1 In particu­
lar this knowledge includes geometric details about the 
positions (i. e., distances and relative angles) of par­
ticles in successive coordination shells about a given 
particle. 

We now introduce a criterion for crystallinity through 
a function C1U) which is unity if particle i is "properly 
coordinated, " but is zero otherwise. Obviously C1 (i) is 
a function of all particle positions in the system, not 
just the position of i. For present purposes the precise 
form of c1(i) is not relevant, and indeed some freedom 
of choice exists in its selection. However we have in 
mind that in order to equal 1 this function will require 
correct crystalline order in the first (and possibly the 
first two or three) coordination shells, within reason­
able distance and angle limits of the ideal T=O crystal 
structure. Within the stable fluid phase only a small 
fraction of the particles at any instant will be properly 
coordinated, while in the low-temperature crystal all 
will, with the possible exception of a few associated 
with defects. 

Further discussion of crystallites is facilitated by 
use of the grand ensemble. Let 

N 

N C(rl'" r N)=LC1(i) 
1=1 

(5.1) 

represent the number of properly coordinated particles 
when the system contains precisely Nparticles at the 
indicated positions. Then 

(Nc> =Zc1 })yN IN! )Jdrl .,. J drNNc(rl'" r N) 
N=O 

xexp[-,B<I>(rlo"rN)] (5.2) 

gives the mean value of Nc in the grand ensemble, where 
Z c is the grand partition function: 

Zc= t(yN IN!) J drl'" f drN exp[- /3<I>N(rl'" r N)] 

(5.3) 
and y is the fugacity: 

(5.4) 

In order to discuss the aggregation of properly coor-

dinated particles into crystallites it is necessary to in­
troduce a two-particle criterion, which will be expressed 
by the function c2(i,j). This new function will be unity 
if (a) both particles i and j are properly coordinated, and 
(b) i and j serve as nearest neighbors to one another; 
otherwise it will vanish. Obviously C2 is symmetric: 

(5.5) 

The crystalline coordination criteria expressed by Ct 
and C 2 naturally partition the properly coordinated par­
ticles into mutually exclusive subsets. A subset (crys­
tallite) containing just one particle i will preclude the 
existence of some other particle j for which C2(i,j) = 1. 
However subsets (crystallites) with I> 1 particles are 
such that any pair i,j are connected either directly by a 
C2 relation, or indirectly by a chain of C2 relations in­
volving intermediate particles in the same subset (crys­
tallite). Hence 

(5.6) 

where n/ is the number of l-particle crystallites. 

The procedure for identifying crystallites parallels 
that which has been used to identify physical clusters 
(droplets) in the vapor phase. 12 Therefore it is possible 
to adapt the formal techniques for studying the distribu­
tion of physical clusters in the grand ensemble to the 
study of crystallite distribution. This allows an exact 
expression for (nl> to be written down directly: 

Here the Dl-dimensional integration region denoted by 
(1) constrains the 1 particles to those relative configura­
tions which are consistent with the existence of the 1 
crystallite. WI is a cavity free energy representing the 
amount of reversible isothermal work necessary to re­
arrange the medium in such a way that it can accommo­
date the given I crystallite. This quantity can be ex­
pressed as a ratio of grand partition functions, with and 
without the interactions entailed by the presence of an l 
crystallite: 

exp[ - ,BWI (rl .•• r l , /3, y)] 

=z~lt(yNIN!) f dr l +l· .. jdr/+N 
N=O (I,N) 

xexp{- /3[<I>N(r l+1 •• 0 r l+N) 

+<I>I,N(rl" o r l lrl+l 0" r l +N )]}. (5.8) 

Notice that the configuration integrals explicitly shown 
here contain interactions both within the set of N me­
dium particles (<I>N) as well as cross interactions be­
tween crystallite particles and medium particles (<I>I,N)' 

Configurations allowed by the integration region (Z, N) 
are those with rl+l 0 •• r l +N anywhere in system volume 
V except those which would violate the existence of the 
fixed I crystallite. 

For large I we can reasonably expect that the crys­
tallite occurrenc.e probability will be determined by 
macroscopic attributes. In particular we would expect 
to find in the fluid 

J. Chern. Phys., Vol. 70, No.9, 1 May 1979 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Fri, 31 Jan 2014 03:43:20



Frank H. Stillinger: Gaussian core model 
4073 

(5.9) 

The leading terms shown, respectively, represent the 
bulk free energy difference between the (thermodynami­
cally unstable) crystal phase and the (thermodynamically 
stable) fluid, and a positive interfacial free energy be­
tween crystal and fluid. At temperatures just above the 
freezing point and at fixed overall density we will have 

ko = K obo/3 + 0[(bo/3)21 , 

bo/3= /3f - /3 , Ko> 0 
(5.10) 

while kl remains positive when bo/3- 0: 

kl = Kl + O(bofl) , K1> 0 . (5.11) 

On account of their anomalous structure in compari­
son with the fluid overall, the crystallites represent re­
gions of anomalous interaction energy. This energy 
will contain both bulk and surface contributions. For 
large 1 we expect the anomalous energy contribution to 
the fluid to have the form 

E, = [eol + el lw-1l / D + ... ](n l > 

-Vexp[-kol-k11lD-ll/D+ ••• ]. (5. 12) 

Evidently the two leading terms in the exponential will 
be the same as for (nl> alone. The total anomalous en­
ergy that can be attributed to all crystallites obviously 
will be 

(5.13) 

In the neighborhood of the freezing point this gives 
00 

Eer ~ V L exp[ - K obo/31 _K1l(D-1l/ D + ... ] , 
1=1 

(5.14) 

which has an essential singularity at the origin of the 
complex bo{3 plane. 

The excess thermodynamic energy Eox is related to 
the previously introduced excess Helmholtz free energy 
per particle f by 

(5.15) 

The singular portion of Eu shown in Eq. (5.14) must 
have a progenitor inf, of course. Thus we can conclude 
that /3f also includes an essentially singular part, aris­
ing from crystallites in the fluid, that is adequately rep­
resented by the following expression: 

'" 
f3fer(f;3) = Lexp[-Kobo{3l-K1llD-ll/D + ... ] . (5. 16) 

1=1 

Here we have recognized that the differentiation required 
by Eq. (5.15), as well as its inverse, will not affect the 
two leading exponential terms shown. 

Upon making the replacement 

(5.17) 

in Eq. (5.16), followed by replacement of the sum by an 
integral (this will not affect the leading order singularity 
of interest), we obtain 

(5.18) 

wherein 

F c.{x) = exp(x/i3, - Kl (Ko~)(1-DlrD x eD -1l1 D + ••• J. (5.19) 

The important point to notice is that (5.18) has the form 
of a Borel transform. 

The singular function fcr constitutes only part of f: 

(5.20) 

the remainder fa is analytic at (3f. The Borel transform 
F.(x) of fa then cannot increase exponentially as x- + 00. 

We can write 

{3j{{3} = I'" exp( - t}[Fe.{{3 t} + Fa({3 t) ]dt • 
o 

(5.21) 

Borel transforms are equivalent to Laplace transforms 
by trivial change of variables, and on account of the 
uniqueness of the latter we can infer that 

(5.22) 

where F is the function originally introduced in Eq. 
(4.6). Referring to Eq. (5.19), we see that F(x) has the 
following large-x behavior: 

(5.23) 

It is this conclusion which underlies the earlier Eq. 
(4.13). 

The result (5.23) shows that the existence and proper­
ties of crystallites are encoded in the (3 series for free 
energy, and that the Borel transform is required to de­
code that information. The relation between the specific 
irreducible clusters of the !3 series on the one hand, and 
the physical crystallite clusters on the other hand, is 
obscure. In particular it is not clear whether any topo­
logically distinctive subset of the irreducible clusters 
dominates the singular behavior in fer({3). The advantage 
of the Gaussian core model is that since exact (3 series 
coefficients of any finite order can in principle be ob­
tained, this topological question need not be answered. 

VI. METASTABLE EXTENSIONS 

While the singular free energy f~r has a fundamental 
significance in phase transition theory, its numerical 
contribution to fluid phase properties is no doubt very 
small. In fact most pure fluids can readily be super­
cooled below their thermodynamic freezing points, and 
molecular dynamics simulation shows that the Gaussian 
core mOdel is no exception. 2 The question then arises 
whether the present formalism lends itself gracefully to 
the description of the supercooled fluid. The answer ap­
pears to be affirmative. 

Evidently all that is required to generate a metastable 
extension of the fluid free energy is to subtract the ex­
ponentially increasing part from the Borel transform F. 
This can be done by subtracting Fer to leave Fa' as in­
dicated earlier in Eq. (5.22). But in fact the subtrac­
tion is not unique; there exists an infinite set of func­
tions which qualify. If F ~ is anyone of these the cor­
responding free energy with metastable extension fmo 
will be: 
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(3fm.«(3) = f~ exp(-t)[F«(3t) -F~«(3t)Jdt. 
o 

(6.1) 

One must ensure that each function F ~ is analytic at 
least within a circle about the origin including the point 
identified in Eq. (4.9), so as to leave unmodified the 
collapse singularity of the free energy at (3 = O. 

All of the qualifying subtraction functions F ~ share 
with Fer a common asymptotic behavior as x- +00. 
However they can differ widely in their behavior around 
x = O. In particular we could choose a function F ~ (x) 
whose power series coefficients up to some preselected 
order (say 10) identically vanished. Under this circum­
stance (3fm. in Eq. (6.1) would agree exactly with (3f 
through 0«(310), and so the metastable extension proce­
dure would only affect higher powers of (3. If 10 were 
chosen to be very large, Eq. (6.1) would presumably 
give an accurate approximation to the exact free energy 
over the entire stable fluid range, but upon entering the 
metastable regime the function (3fm. is liable to exhibit 
unusual behavior indicative of partial crystallization into 
domains of size'" 10 , Choosing 10 to be very small would 
avoid that problem, but would render f3fme a poor free 
energy approximation over the stable fluid range. 

Evidently an "intermediate" value of 10 is required. 
Intuition suggests that the optimal choice should corre­
spond to the critical nucleus size. According to stand­
ard nucleation theoryl3 this size (a) depends on the time 
scale of the experiment by which metastable states are 
prepared and observed, and (b) for typical laboratory 
conditions will occur in the range of 10 ", 1 02

• In any 
case it is fitting that our subtractive procedure should 
be able to reflect the kinetics of phase change. 

These considerations bear on the connection between 
the f3 series for thermodynamic properties derived in 
this paper and the molecular dynamics results for the 
Gaussian core model. The basic problem is to assemble 
the available series coefficients (Table I) in a form 
which will logically and accurately represent the simula­
tion data, including its metastable regime. Since the 
critical nucleus size lo will normally exceed the highest 
order to which the f3 series will have been evaluated, 
the spirit of the subtractive procedure can be imple­
mented merely by constructing approximants to F - F ~ 
which agree with the exact f3 series as far as it is 
known, and which grow with increasing x less rapidly 
than exponentially. Having established [Eq. (4.10)J that 
the Borel transform contains algebraic branch points in 
the complex plane it seems natural to consider the fol­
lowing approximants: 

.. 
F(x) - F~(x) ~ Qx II (1 - xl xJ)·J , (6.2) 

J=I 

where the constants Q, q}> and xJ are selected to repro­
duce the available power series coefficients. It should 
be noted that the family of functions shown in Eq. (6.2) 
arises by constructing Pade rational approximants14 

(with denominator order greater than numerator order) 
to the logarithmic deri vati ve of F - F ~. The functions 
in Eq. (6.2) obviously will yield metastable extensions 
since they grow at most algebraically as x - + 00. 

Appendix B shows a specific example of an approxi­
mant of type (6.2) for the Gaussian core model. 

VII. DISCUSSION 

Although the Borel transform offers a convenient way 
to handle the collapse singularity of the Gaussian core 
model, its use to study phase change has broader sig­
nificance. The connection between this transform and 
the distribution of crystallites established in Sec. V 
transcends this specific model. For classical models 
with repelling pair interactions of the type: 

v(r jj ) = da/ r ll )" , 

n> 3, 
(7.1) 

it can easily be shown that f3j{f3} has a convergent power 
series expansion in the variable f3 DI". Consequently the 
analytical behavior near the origin is profoundly differ­
ent from that of the Gaussian core model. Nevertheless 
these inverse-power potentials also produce freezing 
transitions so that the respective Borel transforms must 
display the asymptotic behavior shown in Eq. (5.23). 

It is desirable to extend the present study in a way 
which includes attractive intermolecular forces outside 
the repelling core region. This can be done simply 
with a two-Gaussian pair interaction, and in fact a 
rather accurate fit to the minimum region of noble gas 
potentials is possible this way. Although the computa­
tions become somewhat more complex, it is still pos­
sible to evaluate (3 series coefficients exactly, due once 
again to the special nature of Gaussians. With attrac­
tive forces present both crystallization and vapor con­
densation can occur. It is clear that the role played by 
crystallites in the former is adopted by liquid droplets 
in the latter. 12 Consequently we expect that in the vapor 
condensation region of the phase plane the Borel trans­
form would obey an asymptotic relation of type (5.23), 
but including parameters that are appropriate to bulk 
and surface properties of droplets. It is even possible 
that the liquid-vapor critical point may be amenable to 
study by our {3 series techniques. 

An area of special concern is how small variations 
in the space dimension D away from the integer values 
2, 3, 4, ... , will influence the crystallization process. 
There is reason to hope that the Gaussian core model 
will help to illuminate this difficult question. 

APPENDIX A 

We can extract the leading Singularity (i. e., the one 
nearest the origin) in F(x) from the associated function 

~ 

S(x) = -KL: nl'o[ -xexp(a)]n . 
"=1 

(At) 

S and F have series coefficients with a common large-n 
form. Set 

exp(-y) = -xexp(a) (A2) 

so that 

S=-K'2:nPOexp(-ny) . (A3) 
n=1 
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Frank H. Stillinger: 

TABLE II. Values of Xl (JJ, PD) and !II (D, PD) in Eq. (B1). 

PD= 0 0.25 0.50 

xl (D= 1) - 214. 27 -10.483 -5.3731 

!/l (D = 1) -37.878 -1. 8532 - 0.94985 

Xl (D =2) - 43. 200 -10.2857 - 5. 8378 

!/t (D=2) - 5. 4000 -1. 2857 - O. 72973 

xl (JJ = 3) -30.699 -10.746 -6.5131 

!/l (D = 3) -2.7135 - O. 94985 - O. 57568 

xl (JJ=4) -27.574 -11. 676 -7.4057 

!II (JJ = 4) -1. 7234 -0.72973 - O. 46286 

If x is real and only slightly to the positive side of 
- exp(- a) then y is real and positive, but small. In that 
event the sum in (A3) will be dominated by terms with 
large n, and these terms will vary sufficiently slowly 
with n that the sum may be replaced by an integral. 
Thus 

s~ -K j" nPoexp(-ny)dn 
o 

(A4) 

To the same order in which the preceding formula is 
valid we can write 

y~l+xexp(a) • (A5) 

Therefore when x is near to - exp(- a), 

(A6) 

This is the result upon which (4.10) in the text is based. 

APPENDIX B 

The simplest nontrivial approximant of the type shown 
in Eq. (6.2) corresponds to m = 1, i. e., it is the case 
of a single branch point: 

(Bl) 

The three parameters Q, xl> and ql can be selected to 
cause the first three terms in the expansion of (Bl), 

F(x) -F .. (x)=Qx-(Qqt!XI)X2 

+ (iQql (ql - 1)1 xiJi! _ ... (B2) 

to reproduce the same three terms in the exact expan­
sion for the Borel transform F: 

This requirement leads to the following expressions: 

Gaussian core model 4075 

1.0 2.0 

- 2. 7207 -1.3690 

- O. 48095 -0.24201 

-3.1304 -1. 6241 

- O. 39130 - O. 20301 

-3.6430 -1. 9364 

- O. 32200 -0.17115 

-4.2772 -2.3184 

- O. 26733 -0.14490 

Q=PD/2, 

X - [!.(!.)D/2 4(~)D/2 4(~)D/2p ]-1 
1-42 -93 -93 D, (B4) 

With this approximant the free energy (subject now to 
metastable extension below the freezing temperature) 
is represented thus: 

(B5) 

Table II presents some numerical values computed 
for xI and ql according to formulas (B4). It should be 
stressed that exact cluster information only through 
third order has been utilized at this level of approxima­
tion. With more accurate approximants of higher order 
we can expect some modification of the collapse singu­
larity described by XI and ql in Eq. (B5). 
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