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     The objective of this presentation is to provide some basic examination and analysis of 
glass transition phenomena that are observed for atomic and molecular glass formers.    
----- 
View1.  Title, topics, objectives 
----- 
The intended scope of the remarks includes both the interpretation of laboratory 
measurements, as well as the relevance of mathematical models intended to describe 
those measurements.  Although quantum phenomena certainly could be incorporated in 
the relevant statistical mechanical theory, they are not a central issue.  Classical statistical 
mechanics should suffice for present purposes. 
     The glass-forming substances of interest are chemically very diverse.  Some specific 
classes of these substances with representative examples are presented in the following 
View2.  These range from pure elements to high-molecular-weight polymers, and include    
----- 
View2.  Glass-forming substances 
----- 
important examples of both inorganic and organic materials.  Some colloidal suspensions 
are useful for experimental study because they also can exhibit glass transitions.  An 
important distinction needs to be stressed here at the outset.  By "glass-forming" one 
refers to creation of amorphous solids under continuous (and essentially reproducible) 
pathways from the stable liquid into deep metastable states by temperature reduction 
and/or compression.  For the glass-formers of interest this treatment bypasses nucleation 
and growth of the thermodynamically stable crystal phase below its melting temperature 

mT , taking advantage of marked increase in structural relaxation (i.e., reorganization) 
times as cooling proceeds in the liquid medium of interest.  This excludes from the 
discussion other amorphous solids such as those prepared by vapor phase deposition, or 
by disrupting a crystal phase due to severe mechanical deformation or radiation damage.  
     The long history of scientific and technological interest in glasses has generated an 
enormous phenomenology presented in a vast array of scientific/technical publications.  
For present purposes only a few of the primary concepts will be examined.  These are 
basic inferences from the fitting and extrapolation of laboratory data.  Extrapolation is 
necessary to pass downward in temperature through the experimental glass transition 
temperature gT  at which relaxation times have grown to impractical magnitudes 

( sec102 ).  Keep in mind that " gT " tends to be slightly cooling-rate dependent -- slower 

cooling produces a lower observed gT . 

     An historic paper written over 60 years ago by Princeton's Professor Walter   



----- 
View3.  Kauzmann temperature gK TT 0  at which supposedly 0S   

----- 
Kauzmann, now deceased, considers implications of simple extrapolation for mTT   of 
the difference S  in entropies between the crystal phase (presumed to persist 
thermodynamically to 0T ), and the supercooled liquid.  For most (if not all) glass 
formers, this extrapolation apparently indicates that this entropy difference vanishes at a 
positive temperature KT , nowadays called the "Kauzmann temperature".  This situation 
arises because the heat capacity of the supercooled liquid tends to exceed that of the 
crystal.  Further extension of the extrapolation below KT would at first sight seem to 
imply that 0S .  On account of the fact that the crystal is essentially fully ordered 
(possessing a vanishing configurational entropy) at such a KT , the argument has been 
advanced that because the metastable liquid could not in fact attain a lower (negative) 
configurational entropy, an "ideal glass transition" evidently would have to intervene        
----- 
View4.  Ideal glass transition? 
----- 
essentially at KT .  This hypothetical phase change would conventionally be classified as 
a second-order phase transition.  It should not be interpreted as a transition to the 
structurally crystal phase, but a transition occurring to a limiting amorphous low-
temperature glass medium.  The same extrapolated heat capacity difference can also be 
used to calculate the enthalpy difference between the crystal and this hypothetical "ideal 
glass" at KT , with the result that 0)(  KTH . 
     Kinetic slowdown in supercooled liquids as T declines toward gT  has long been 

known to display substantial deviations from a simple Arrhenius temperature dependence 
for a variety of kinetic properties.  One popular curve-fitting choice for measurements of 
these properties is the Vogel-Tammann-Fulcher (VTF) function, a temperature-shifted 
version of the Arrhenius function.  Its fitting parameters have been used to classify glass  
----- 
View5.  Kinetic slowdown phenomenology; VTF fit function 
----- 
formers on a "strong" vs. "fragile" scale, with the extremes illustrated respectively by 

2SiO  and by ortho-terphenyl.  The significance of these VTF fits is that they imply 
divergence of shear viscosity )(T , self-diffusion constant )(TD , or mean stress and 
dielectric relaxation times )(Tstress , )(Tdiel  at a positive temperature 0T  that in many 
cases is close to the Kauzmann temperature KT  for the same substance.  This approximate 
coincidence would seem to support the notion of an ideal glass transition at positive 
temperature.  However it must be kept in mind that VTF fitting parameters often depend 
non-trivially on the temperature range of the data being fitted.  In any case questionable 
extrapolation is invoked for both the KT  and the VTF applications. 



     The metastable-phase thermodynamic argument for an ideal glass transition, built 
upon Kauzmann's observations, and the qualitative kinetic VTF analysis suggesting the 
existence of the same qualitative phenomenon, have been connected by the Adam-Gibbs  
----- 
View6.  Adam-Gibbs relation 
----- 
relation.  The underlying concept is that relaxation and flow processes in the deeply 
supercooled regime proceed via local structural excitations that occur within essentially 
independent cooperatively rearranging regions (CRRs) of the supercooled medium.  The 
number of CRRs is presumed to be roughly proportional to the inverse of their average 
size over mTT 0 .  Furthermore the size of these CRRs, as well as their excitation free 
energies, is postulated to be inversely proportional to the configurational entropy at the 
prevailing temperature. This was an early prelude to the now-popular concept of dynamic 
heterogeneity.  Most significantly, the Adam-Gibbs relation clearly presumes that there 
exists a basic connection between the metastable-phase thermodynamics of a supercooled 
liquid on the one hand, and that liquid's various kinetic phenomena on the other hand. 
     In order to evaluate these two basic hypotheses for glass-forming substances 
(existence of ideal glass transitions, and a fundamental thermodynamics-kinetics 
connection), it is useful to migrate thinking from three dimensions to the high-
dimensional configuration space for the N-particle system, and to consider details of the 
multidimensional topography of the potential energy function )...( 1 NXX  that 
incorporates all interactions present.  This function can be identified as the electronic   
----- 
View7.  Multidimensional potential energy landscape; steepest-descent mapping 
----- 
ground-state Born-Oppenheimer energy plus nuclear Coulomb repulsions.  It is 
dependent of course on the spatial positions of all nuclei present, where those contained 
in molecule j are represented by the vector jX  of cartesian coordinates.  This Born-

Oppenheimer presumption nominally excludes metallic systems from the analysis, but it 
certainly applies to many insulating materials as illustrated earlier in View2.  The   
topography in general will contain interparticle interactions, which may involve 
significant non-pairwise-additive aspects.  It will also contain any intramolecular force-
field information (chemical bond stretching, bending, and other conformational 
deformations).  If real container walls (as opposed to periodic boundary conditions) are 
present, it will specify those as well.  
     A useful way to analyze that   landscape is to divide the configuration space into 
steepest-descent basins.  Each basin represents the locus of all points in the configuration  
space that are connected to an interior relative   minimum (an "inherent structure") by a 
steepest-descent path.  An inherent structure is a mechanically stable particle 
arrangement, and intrabasin displacements are vibrations away from that minimum.  
Anharmonicity increases with displacement magnitude, eventually creating negative 
curvature directions.  By construction every basin contains a single inherent structure and 
is connected, but not necessarily singly connected.  The inherent structures include 



periodic and defective crystal structures, as well as amorphous structures that underlie the 
stable and metastable liquids. 
     Shared boundaries between neighboring basins contain   landscape saddle points, 
i.e., transition states for elementary interbasin readjustments within the system.  It is also 
possible in principle for basins to contain interior saddle points that obviously do not 
involve interbasin transitions.  But for transition states in atomic and molecular glass 
formers, only local rearrangements of molecular dimensions are involved, owing to the 
relatively short range of interactions.  Thus such local rearrangements in separate 
macroscopic sub-volumes are essentially independent, a basic feature that underlies 
enumeration of basins and their inherent structures. 
     Inherent structures and their basins fall into equivalence classes, owing to 
permutational and other symmetry operations that apply to the constituent particles.  A 
system containing N identical structureless particles that are confined by impenetrable 
walls has !N  replicas of each basin within the landscape, due to the possibilities for 
permuting particle positions.  If each of the N identical particles has an internal structure 
leading to   equivalent intramolecular rotational or deformational configurations, the 

basin equivalence number must include an additional factor N .  These numbers have 
straightforward generalizations for multicomponent systems. 
     The full   landscape includes regions (sets of basins) that are occupied respectively 
when liquid or crystal phases are present, or even when phase coexistence is present.  The 
equilibrium occupancies of those regions can be represented by the canonical ensemble 
and its partition function )(TQN at a given temperature and density.  This statistical-
mechanical description assumes that the Newtonian dynamics represented by the full  
----- 
View8.  Canonical ensemble partition function )(TQN  

----- 
ensemble, for the given particle masses and  , samples different regions of 
configuration space in a "complete" fashion with Boltzmann weighting for the given 
temperature.  In the large-N limit quantitative details of the first-order melting/freezing 
transition are contained in )(TQN .  It should be realized though that since the number of 
distinct basin types rises exponentially with N, having any one ensemble member 
dynamically visit all of them would require an exponentially long time.  However thermal 
equilibration for a single ensemble member really requires only visiting a very small 
"representative" basin subset during the time of observation.   
     Note that in addition to the canonical partition function an analogous constant pressure 
("isobaric") partition function could also be exhibited, for which the Born-Oppenheimer 
potential   would be augmented by adding pV  to it.  Then the volume V is treated as an 
additional configurational variable that can be interpreted as a piston position applying a 
fixed force per unit area to the system.  Both of these ensembles and their partition 
functions can be modified to describe at least some features of metastable states 
(specifically, of supercooled liquids), the technical details of which will be examined 
after covering some general observations about the   (equivalently pV ) landscape.      



     The kind of natural tiling analysis of the potential energy landscape generated by 
steepest descent mapping leads to a conceptually simple way of representing the 
canonical partition function to describe strict thermodynamic equilibrium.  This is a 
necessary first step before modifying that partition function to describe metastability, 
especially for supercooled glass formers.  Specifically this approach involves classifying    
----- 
View9.  )(TQN  reduction to a   integral 

----- 
the landscape basins by  , their inherent structure depths (potential energies) on a per-
particle basis, and identifying the mean intrabasin vibrational free energy to be assigned 
to those basins at depth  .  Along with a generic enumeration function for the 
distinguishable basin types that is exponential in system size N, this reduces )(TQN  to a 
simple   quadrature. 
     In the large-system (macroscopic) regime, the )(TQN  quadrature will be dominated 
by the immediate neighborhood of the integrand maximum.  At a given temperature 

1)(  BkT  the position of this maximum, to be denoted by )(*  , is determined by  
----- 
View10.  Definition of )(*  ; graphical construction to identify equilibrium state 

----- 
slope equality of   and of )( vibf  when plotted vs.  .  This dominating integrand 
maximum gives rise to a simple expression for the Helmholtz free energy.  A similar 
result applies for the Gibbs free energy in the case of the isobaric (constant pressure) 
ensemble. 
     At this stage it is appropriate to point out that large families of distinct potential  
----- 
View11.  Different  s can produce same )(NQ ; "stirred  " example 

----- 
energy functions can give rise to identically the same )(TQN , and therefore can produce 
identical thermodynamic functions at all temperatures T.  One hypothetical family of 
possibilities rests upon a transformation of configurational variables that involves a 
multidimensional divergence-free "stirring" operation.  Under this displacement 
operation, all differential elements of the configuration space retain their hypervolumes 
while generally being shape-distorted, and their corresponding pieces of landscape retain 
their respective landscape altitudes. Although the thermodynamics remains invariant 
under this transformation by construction, the Newtonian dynamics on the respective 
landscapes will differ, leading to distinct kinetic properties.  Furthermore, one should 
realize that the N-particle geometric structures involved will have shifted probabilities, 
and thus the corresponding atomic and/or molecular distribution functions will be 
changed. 
     Perhaps a more physically relevant, or at least visually more appealing, version of 
thermodynamic degeneracy for distinct landscapes can be illustrated with another type of 
example, again within the classical statistical mechanical regime.  Such examples can be 



created by fusing together elementary one-dimensional modular units, each with its own 
internal minimum, and rising or falling by one energy unit from end to end.  Details of   
----- 
View12.  Rearrangeable modules that can be fused end-to-end to form one-dimensional 
landscapes. 
----- 
this "cut-and-paste" approach are presented in View12.  The single internal minimum 
contained within each module lies 17/27 below the lower endpoint.  By way of 
illustration, View13 shows a distinct pair of constructed landscapes consisting of eight 
modular units arranged in two different ways, but each case satisfying periodic boundary      
----- 
View13.  Eight-module cut-and-paste landscapes 
----- 
boundary conditions.  The key degeneracy stems from the fact that for both examples 
shown the count of modules as a function of their altitude is the same: 4 and 4.  The 
landscapes are continuous and twice differentiable.  Needless to say the respective 
Newtonian dynamics for the two cases will differ.  
     A second more complicated but more striking example pair, using the same 
underlying idea, is presented in View14.  These involve 60 modules of the same kind, 
again combined to produce a continuous and twice differentiable pair of landscapes.         
----- 
View14.  More complicated landscape examples, 60 rearranged modules 
----- 
 Once again they satisfy periodic boundary conditions.  With this many modules a large 
number of distinct arrangements are possible, even when subject to a fixed vertical 
distribution.  From bottom to top, the common altitude count for the 60 modules in the 
two examples shown is 2, 4, 6, 8, 8, 8, 6, 6, 6, 6.  Because one of these landscapes 
presents a single "metabasin", while the other presents four, it is obvious that the 
respective Newtonian dynamics and consequent relaxation behaviors would be drastically 
different, while by construction the thermodynamics remains identical.   
     Although these examples are merely one dimensional, the basic idea of fusing together 
modular landscape units can and has been be extended to higher dimensions.  Quantum 
corrections (at least in low order) could have been included, but at some cost in technical 
complication.  Such examples call into question the basis of the Adam-Gibbs relation 
mentioned earlier, or at least call for physically-motivated constraints on interaction 
functions   to avoid this kind of thermodynamic degeneracy with kinetic disparity. 
     The possibility of attaining the reverse situation raises a group of open questions.  
Specifically, are there pairs of distinct potential energy landscapes that lead to an 
identical transport or relaxation property at all temperatures, but possess distinct 
thermodynamic properties?  Perhaps the answer is that none exist. 
     It is now appropriate to return to identification of a NQ  modification to yield a 
description of the metastable supercooled liquid.  This involves a projection operation   
----- 
View15.  Projection operation for supercooled liquid 



----- 
that in principle can be based upon the configuration space tiling by basins.  In particular 
basins can be divided into two groups, those whose inherent structures contain 
identifiable crystalline particle clusters of "significant" size, versus those that do not and 
thus are consistently amorphous.  Only the latter basin set, to be designated by L,  
should be retained if the properties of the supercooled liquid are the objective, because 
this is the subset of configuration space within which a supercooled liquid remains if it 
has not nucleated.  This strategy implements theoretically the absence of crystal 
nucleation and growth that is the primary laboratory criterion for successful supercooling.  
By clusters of "significant" size it would be logical to mean those equal to or larger than 
the critical nucleus size at the temperature of maximum nucleation rate in the supercooled 
liquid of interest.   
   After projecting the crystal-containing basin set out of consideration, the resulting 
configurationally restricted partition function )(, lNQ  that describes both the stable 

liquid above mT  and the metastable supercooled liquid below mT  can also be exhibited as 
a   quadrature.  The corresponding integrand as before will possess an exponential form 
that contains a modified enumeration function )( l  and a modified vibrational free 
energy function ),(, lvibf  for the basin subset L.  Once again that quadrature in the 

asymptotic large-system regime will be dominated by its integrand maximum, now at 
)(* l , to be located as before by equality of slopes.  This projection operation is not 

limited by dynamic slow-down as temperature declines, so in principle it can predict 
supercooled liquid properties down to absolute zero.  For mTT  , the projection should 
have virtually no effect on the position of the integrand maximum, i.e., 

)(*)(*  l .   For mTT   ( m  ) it should provide a smooth extrapolation into 
the supercooled regime. 
     The obvious question now is how this bears on the ideal glass transition hypothesis.                     
----- 
View16.  Nominal requirement for ideal glass transition 
----- 
The graphical construction for the metastable state function )(* l  helps to supply an 
answer.  The curve for )],([ ,  lvibf  has a positive bounded slope vs.   for all 

 0 , and that slope increases without bound as TkB/1  increases (i.e., diverging 
to   as T declines toward 0T ).  In order for an ideal glass transition to arise at 
positive temperature, the )( l  enumeration function curve would also have to exhibit a 
positive finite slope at lmin, , its low-  endpoint. 

     However, the earlier observation concerning independence of rearrangement energy 
costs in separate macroscopic subvolumes and the implication for inherent structure 
enumeration leads to a contrary conclusion.  Specifically, )( l  will have a leading-
order fractional-power singularity at its lower end, producing a diverging slope at that                       
----- 
View17.  Effect of local rearrangements on enumeration; no ideal glass transition 



----- 
lower end.  This forces any "transition" implied by the graphical construction down to 

0T .  In other words, no ideal glass transition is possible in the conventional 
interpretation of that concept, at least for atomic and molecular glass formers whose 
interactions have limited spatial range. 
     In the interests of promoting broader discussion about glass transition issues, it seems 
appropriate to describe a somewhat peculiar situation that arises in polymer 
chemistry/physics.  This concerns the structural multiplicity that arises in "atactic"  
----- 
View18.  Atactic polypropylene example 
----- 
polymers, illustrated here by the simple case of atactic polypropylene.  The relevant 
chemical bonding structures are illustrated in View18.  They involve two choices for 
attaching pendant methyl groups to every other site along the interior of the linear carbon 
backbone (shown in a zig-zag all-trans conformation for ease of visualization).  These 
binary choices result from the tetrahedral bonding directions at every other one of those 
interior backbone carbons.  If the polymer is formed from 500 propylene monomers, 

there exist 4982  distinguishable choices for attaching the methyl groups.  It is 
straightforward to show that in a liter of 500-mer atactic polypropylene molecules with 
these structural choices, if they are independent, the chance that any two of the molecules 
will have identically the same stereochemical bonding geometry is absurdly small, 

specifically about 106104  .  Consequently there would be only single representatives 
of the possible molecular structures present in that liter, and thus the equivalence classes 
for inherent-structures/basins would involve no permutations of different molecules.  
Nominally it would seem that the enumeration of distinguishable inherent structures 
would then require a function of the type )]1(lnexp[ OaNNbN   for N atactic polymer 
molecules.  At present it is unclear how these would be distributed with respect to the 
intensive depth parameter  .  Although the corresponding   must have a global 
minimum, it will certainly not involve a spatially periodic structure.  A remaining open 
question is what the low-temperature equilibrated behavior of this macroscopic system 
must be, especially regarding equilibrium phase transitions, and whether a projection 
operation would even be required to describe liquid supercooling.  In particular it is 
unclear whether the global energy minimum might exhibit some partial long-range spatial 
order. 
     The estimate just mentioned for structure redundancy in a single liter of 500-mer 
atactic polypropylene can be turned around to produce another bizarre number.  One can 
alternatively ask how many liters of the polymer would be required so that there is only a 
probability of 1/2 that all molecules are structurally distinct.  The answer corresponds to a 

filled cube of polymer that is approximately 13103 kilometers on a side!  Of course this 
does not account for self-gravitational collapse. 
     One of the glass transition "issues" that deserves some thought and discussion is the 
distinction between the broad modeling opportunities offered by mathematics on the one 
hand, and the possibly severe constraints on those opportunities required by physical 



realism on the other hand.  For the former, the kinds of postulated interactions between 
particles or other degrees of freedom can be very diverse, including specifically very 
long-range interactions.  In particular those unconstrained models can readily generate 
ideal glass transitions.  However the Born-Oppenheimer interaction functions for real 
substances present a much narrower set of possibilities, and the arguments presented here 
indicate that for the latter, ideal glass transitions are not a realistic inference.                                      
 



 
 
                        GLASS TRANSITION "ISSUES" 
 
                                               F.H. Stillinger 
                                Chemistry Department, Princeton 
 
 
     Topics, objectives: 
 
          •   Real glass-forming substances of interest 
 
          •   Experimental gT s versus "ideal glass gT s" 
 
          •   Born-Oppenheimer potential energy "landscapes" 
 
          •   Landscape tiling by steepest-descent basins 
 
          •   Landscapes with identical thermodynamics, different  kinetics 
 
          •   Canonical ensemble modified for supercooled states 
 
          •   Realistic interactions and ideal glass transitions 
 
          •   Atactic polymer dilemma 
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                   GLASS-FORMING SUBSTANCES 
           [vitrification by liquid supercooling and/or compression] 
 
     (1)  Elements:  S, Se, Te 
 
     (2)  Network formers:  2SiO , 32OB , 32SAs , 2ZnCl  
 
     (3)  Concentrated aqueous electrolytes:  OHNOCa 223 4)( ⋅ , 
                                             OHOAcMg 22 4)( ⋅ ,  
                                             OHSOH 242 3⋅  
 
     (4)  Organic molecules:  toluene 
                                             salol 
                                             ortho-terphenyl 
                                             ethanol 
                                             glycerol 
 
     (5)  High mol. wt. polymers:  polypropylene, polystyrene, 
                                             polyvinyl chloride (PVC) 
 
     (6)  Colloidal suspensions:  silica spheres, 
                                             poly methylmethacrylate spheres, 
                                             N-isopropylacrylamide microgel spheres 
 
     (7)  Metallic glasses:  1981BNi , 5590 CeFeAl , 20102743 PNiCuPd  
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                         KAUZMANN TEMPERATURE 

                  [W. Kauzmann, Chem. Rev. 43, 219-256 (1948)] 
 
     Heat capacity ( pC ) of supercooled liquid in mg TTT ≤≤  exceeds that 
     of the stable crystal.  The discrepancy widens as T declines: 
 
 
 
 
 
 
 
 
 
     Liquid-crystal molar entropy difference fixed at mT  by melting enthalpy.   
     Temperature integration determines entropy difference below mT : 
                   )()()( TSTSTS crysscl −=Δ  

                              )/()]()([)( ,, TdTTCTCTS
mT

T
cryspsclpm  −−Δ=   . 

     Simple extrapolation below the experimentally limiting gT  suggests that  
     SΔ  vanishes at 0>KT , the "Kauzmann temperature": 
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                          IDEAL GLASS TRANSITION? 
 
 
   Observations concerning an "ideal glass transition" at 0>KT : 
 
          (1)  The transition  at KT  would be second order by conventional 
                 standards.  It concerns a behavior switching for the amorphous 
                 glass, not a transformation to the thermodynamically stable  
                 crystal. 
 
          (2)  Enthalpy of  the "ideal glass" remains above the enthalpy of  
                 the crystal at KT  according to: 
                   )()()( KcrysKsclK THTHTH −=Δ  

                                  [ ]dTTCTCTH
m

K

T

T
cryspsclpm  −−Δ= )()()( ,,   , 

                 based upon the same simple heat capacity extrapolation. 
 
          (3)  However this does not imply a positive entropy of transition  
                from the glass to the crystal at KT , because a reversible direct   
                transition path between the two does not exist.    
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         KINETIC SLOWDOWN PHENOMENOLOGY 
 
 
•   A wide range of properties is available experimentally to monitor kinetic  
     slowdown as T declines below mT .  These include: 
                 shear viscosity )(Tη ;  self diffusion constant )(TD ; 
         stress relaxation time )(Tstressτ ; dielectric relaxation time )(Tdielτ  . 
 
•   The rate of increase of these properties as T declines toward gT is typically 
     distinctly non-Arrhenius.  A frequently invoked fitting function for that  
     temperature dependence is the Vogel-Tammann-Fulcher (VTF) form, e.g.,

                                







−

≈
0

0 exp)(
TT

AT ηη   . 

 
•   For many glass formers these VTF fits lead to KTT ≈0 , apparently  
    strengthening the case for an ideal glass transition at positive temperature. 
 
•   The VTF parameters can be used to classify glass formers qualitatively 
     on a one-dimensional scale from "strong" to "fragile" extremes:  
            strong (nearly Arrhenius):  large 0/TA ; 0/0 ≈gTT  , 
            fragile (distinctly non-Arrhenius):  small 0/TA ; 1/0 ≈gTT  . 
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                            ADAM-GIBBS RELATION 
          [G. Adam and J.H. Gibbs, J. Chem. Phys. 43, 139-146 (1965)] 
 
 
     BASIC CONCEPTS:  Structural relaxation as T approaches gT  involves 
               restructuring within independent "cooperatively rearranging  
               regions" (CRRs).  The average number of particles in a CRR is  
               inversely proportional to )(TSconfΔ , the liquid's configurational  
               entropy relative to that of the crystal.  The time between "relevant"  
               CRR rearrangements depends exponentially on CRR size. 
 
     AVERAGE RELAXATION TIME: 

                            












Δ
=

)(
exp)( 0 TS

BT
conf

relax ττ  

                   [Usually assumed that )()( TSTSconf Δ≈Δ .] 
 
     IMPLICATION:  Kinetic properties of glass formers can be extracted  
                   from thermodynamic (static) properties. 
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     POTENTIAL ENERGY "LANDSCAPE" PROPERTIES 
 
•   For N molecules described by configuration coordinates NXX ....1 , the  
    interactions can be accurately described by nuclear Coulomb repulsions  
    plus the Born-Oppenheimer approximation to the electronic ground state      
    (exception: metals). The resulting potential energy function )....( 1 NXXΦ    
    includes both intramolecular and intermolecular interactions. 
 
•   If each molecule has ν  degrees of freedom, Φ  defines a hypersurface in  
     the Nν -dimensional configuration space, the "potential energy landscape".
 
•   Assuming Φ  is differentiable away from any nuclear confluence, it  
    generates a tiling of configuration space by steepest-descent basins.  Each  
    basin consists of all points that descend to a common relative minimum of  
    Φ  (an "inherent structure"): 
 
 
 
 
 
 
 
 
•   Basin enumeration, structureless particles, large-N regime: 
                           )](exp[!~ NoNNN +Ω α ,    0>α  . 
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                 CANONICAL PARTITION FUNCTION 
 
•   For the case of a single-component macroscopic system consisting    
     of N structureless particles confined to volume V , the canonical  
     partition function is: 
             ]/),(exp[)( TkVTFTQ BNN −=  

                         ]/)....(exp[....]![ 11
13 TkddN BN

V
N

V

N rrrr Φ−= 
−λ   , 

     where:       NF  is the Helmholtz free energy, 

                       2/1)2/( Tmkh Bπλ =  is the mean thermal de Broglie  
                              wavelength. 
 
•   This equilibrium generating function provides a temperature-weighted  
     sampling of the entire Φ  landscape, biased strongly toward the basins  
     describing the stable phase at the prevailing T,V. 
 
•   Because the number of distinct Φ  basins rises exponentially with N, 
    Newtonian dynamics would take exponentially long to visit examples  
    of each.  Instead, "thermal equilibration" for a single system really just   
    involves visiting a very small representative subset of basins. 
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             PARTITION FUNCTION REDUCTION 
                 TO A BASIN-DEPTH QUADRATURE 
 
•   Express NQ  as a sum over distinguishable basins ( TkB/1=β ): 

             )](exp[)exp(3 RR ΦΔ−Φ−= −
a

Ba
a

N
N

a

dQ ββλ   , 

                         aB :  multidimensional region for basin a, 
                         aΦ :  Φ  value at basin a inherent structure, 
                         ΦΔa :  intrabasin Φ  increment ( aΦ−Φ )  . 
 
•   Classify inherent structures (basin bottoms) by N/Φ=ϕ , with an  
    enumeration function )](exp[! ϕσNCN  for the large-N regime. 
    Here C is an order-unity normalization constant. 
 
•   Define mean vibrational free energy per particle for basins in depth  
    range ϕφ d± : 

           
ϕϕ

βλβϕβ
dB

a
N

vib
a

dfN
±


− ΦΔ−=− )](exp[)],(exp[ 3 RR  

 
•   Transformed canonical partition function, large-system regime: 
 

             ϕβϕββϕϕσ
ϕ

ϕ
dfNCQ vibN  −−=

max

min

)]},()([exp{   . 
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                 ASYMPTOTIC PARTITION FUNCTION  
             EVALUATION VIA INTEGRAND MAXIMUM 
 
Partition function NQ , and consequently Helmholtz free energy NF  , are  
dominated by the region of the ϕ  integrand maximum.  This maximum  
is determined at any temperature by the variational criterion: 
                       ]}/),([1{/)( ϕβϕβϕϕσ ∂∂+= vibfdd   . 
 
At any given )/(1 TkB=β  let )(* βϕ  stand for the position of the integrand 
maximum.  A graphical solution of the determining equation corresponds to 
matching slopes given by the two members of the above equation: 
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           DISTINCT POTENTIAL LANDSCAPES WITH 
                   IDENTICAL THERMODYNAMICS,  
                          BUT DIFFERENT KINETICS 
 
 •   In the N3 -dimensional configuration space VVV ××× ....  of particle  
      configurations NrrrR ,...,, 21≡ , introduce a continuous divergence-free  
      displacement field )(RS : 
                                              0)( =⋅∇ RSR   . 
 
 •   The resulting transformation of positions from R  to )(RSR +  amounts   
      to a multidimensional "stirring" of an incompressible fluid in the available 
      configuration space. 
 
 •   The two potential functions )(RΦ  and )]([)(~ RSRR +Φ=Φ  have the same
      number of basins and inherent structures with equal depths before and  
      after the transformation.  The basins become distorted, but retain their  
      connectedness, content, and intrabasin classical vibrational free energy. 
 
 •   Therefore )(~)( ββ NN QQ ≡  .  However the Newtonian dynamics on the  
     two landscapes are expected to differ. 
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  POTENTIAL ENERGY LANDSCAPES CONSTRUCTED 
                 FROM SIMPLE MODULAR UNITS 
  [F.H. Stillinger and P.G. Debenedetti, J. Chem. Phys. 116, 3353 (2002)] 
 
 
Define a simple one-dimensional landscape module that has unit width, net 
altitude increase of unity, and a single interior minimum: 

    )3cos(
16
1)2cos(

2
1)cos(

16
9)( xxxxP πππ 






+






+






−=  ,        ( 10 ≤≤ x ) . 

 
 
The mirror-image version has a net altitude decrease of unity: 

    )3cos(
16
1)2cos(

2
1)cos(

16
9)1( xxxxP πππ 






−






+






=−   ,    ( 10 ≤≤ x ) . 

 
 
These modular functions have vanishing slopes and equal downward 
curvatures at both endpoints 1,0=x  . 
 
These modules can be translated horizontally and vertically and spliced 
together to produce model potential landscapes in many ways over larger  
x intervals, exhibiting many local minima. 
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             PARTITION FUNCTION MODIFICATION 
                       FOR SUPERCOOLED LIQUIDS 
 
•   Because they are free from obscuring effects of intrabasin vibrations, use  
    inherent structures to divide basins into those that contain local crystalline  
    order vs. those that do not.  The latter set L hosts the stable liquid, and  

    should suffice to describe the supercooled liquid.       
 
•   Define a "liquid" canonical partition function including only basin set L : 

             )](exp[)!()( 13
, RR

L
Φ−= 

− βλβ dNQ N
lN  

                            )](exp[)exp(3 RR
L

ΦΔ−Φ−= 
∈

−

aB
a

a
a

N d ββλ   . 

 
•   Reduction to ϕ  quadrature: 

           ϕβϕββϕϕσβ
ϕ

ϕ
dfNCQ lviblllN

l

l

)]},()([exp{)( ,,
max,

min,

−−=    . 

 
•   The large-N asymptotic value of  lNlN FQ ,,ln β−=  is determined by   
     the integrand maximum now at )(* βϕl  which is the root of: 
                         ]}/),([1{/)( , ϕβϕβϕϕσ ∂∂+= lvibl fdd   . 
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              CONDITIONS REQUIRED FOR POSITIVE 
           TEMPERATURE IDEAL GLASS TRANSITION 
 
•   As a function of ϕ , ),(, βϕββϕ lvibf+  has a positive bounded slope  
     for .0>T  
 
•   In order for a positive-temperature ideal glass transition to occur, the  
    enumeration function )(ϕσ l  would also have to possess a positive  
    bounded slope in the vicinity of its low end at lmin,ϕ  . 
 
•   Graphical representation of matching slopes at a hypothetical 0>T  ideal  
    glass transition: 
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       ENUMERATION FOR BASIN SET  L  NEAR lmin,ϕ  
                   [P.G. Debenedetti, F.H. Stillinger, and M.S. Shell,  
                              J. Phys. Chem. B 107, 14434 (2003)]  
 
•   Suppose that )(ϕσ l  has a finite positive slope near lmin,ϕ  : 

                     ])[()()( 2
min,min, lll OA ϕϕϕϕϕσ −+−=   . 

 
•    For ϕ  just above lmin,ϕ , in order for Nξ  ( 10 <<< ξ ) distinct inherent 
     structures to lie below ϕ , one requires: 
                       )1()ln()/1()( 2

min, ONAN l +=− ξϕϕ   , 
     i.e., the potential energy interval required to contain Nξ  inherent  
     structures would have to increase logarithmically as system size N  
     increases. 
 
•   That conclusion contradicts the principle that the medium has  
     essentially independent )1(O -energy local rearrangement excitations 
     in different macroscopic sub-volumes, which implies that the required  
     interval width does not grow as N increases. 
                             
•   Consequently the initial slope of )(ϕσ l at lmin,ϕ  must diverge.  The  
    matching slope criterion then eliminates any 0>T  ideal glass transition. 
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            ATACTIC POLYPROPYLENE EXAMPLE 
 
•   Linear carbon backbone offers two choices for each methyl group 
    attachment: 
 
 
 
 
 
 
 
 
 
 
 
•   For a 500-mer this leads to 4982  distinct chemical structures. 
 
•   One liter of 500-mer contains 221058.2 ×≅  molecules.  If these have been 
    chosen at random, the chance that any two have identical chemical  
    structures is 106104 −×≅  . 
 
•   Basic questions:  Could the absolute Φ  minimum ever be determined? 
                                 How elongated is the spectrum of relaxation times? 
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