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-------------------------------------------------------------------------------------------- 
Abstract:  A very wide range of gravitational field strengths is present 
throughout our universe.  Basic questions and problems arise about the 
effects of these fields and of their centrifugal analogs on the spatial 
distribution of matter.  To illustrate a few of these issues, this lecture will 
describe the gravitational field behavior of the venerable classical hard 
sphere model (and of its 2-dimensional hard disk version).  Properties to be 
discussed include (a) the barometric formula and its corrections, (b) crystal 
phase orientation, (c) isotope separation, and (d) jammed particle 
configurations formed by a dissipative sedimentation process. 
-------------------------------------------------------------------------------------------- 
 
     Hard spheres have played a prominent role in the original research 
created by this year's Hildebrand Award recipient, Sal Torquato.  Therefore 
it is appropriate to include some novel aspects of that model in this lecture.  
In particular, attention will be focused on gravitational effects and their 
centrifugal equivalents for the classical hard sphere model, as well as for its 
two-dimensional hard disk analog.  These phenomena have received 
relatively limited attention in statistical mechanics, so this presentation will 
attempt to emphasize some of the more notable qualitative aspects, and will 
identify at least a few basic opportunities for future research. 
-------------------------------------------------------------------------------------------- 
View 1.  Title.  Lecturer name and affiliation.  Acknowledgements. 
-------------------------------------------------------------------------------------------- 
     The next View 2 identifies some very diverse examples of gravitational    
--------------------------------------------------------------------------------------------
View 2.  Gravitational and centrifugal force field examples. 
-------------------------------------------------------------------------------------------- 
(and centrifugal) force field strengths across our universe.  In the present 
context it is useful to  illustrate at least one characteristic of these examples 
related to the spatial distribution of matter.  Specifically, the following View 
3 provides the elevation increases involved for a single Xe132  atom residing           
-------------------------------------------------------------------------------------------- 
View 3.  Xe132  elevation changes requiring gravitational energy KBTk 298|  . 



--------------------------------------------------------------------------------------------
respectively in each of those View 2 field examples (assumed to be spatially 
homogeneous) that require an energy input equal to TkB  at room 
temperature 298K.  This is the most abundant of the nine stable isotopes of 
Xe.  That particular element was chosen for illustration on account of its 
hard-sphere-like spherical symmetry, its near-classical behavior in many 
circumstances, and its stable crystal form equivalent to that of the hard 
sphere model.  Of course unlike the hard sphere model, Xe  isotopes and 
their mixtures exhibit a liquid-vapor transition at sufficiently low 
temperature and high particle density. 
     The obvious starting points for examination of gravitational/centrifugal 
field effects are the equilibrium macroscopic equations of state for the 
sphere and disk systems in the absence of those external fields.  Because 
these are classical many-hard-particle systems their density-dependent 
pressures are strictly proportional to absolute temperature T.  The hard 
sphere case shown in View 4 exhibits a conventional first-order melting-      
-------------------------------------------------------------------------------------------- 
View 4.  Classical hard sphere equilibrium equation of state ( 0=g ).  
Nearest-neighbor separation at melting, and at close packing. 
-------------------------------------------------------------------------------------------- 
freezing transition, where the stable crystal structure has been determined to 
be face-centered cubic, but only by a small free energy favorability 
compared to the hexagonal close-packed alternative.  View 5 presents the    
-------------------------------------------------------------------------------------------- 
View 5.  Classical hard disk equilibrium equation of state ( )0=g .  Nearest-
neighbor separation at melting, and at close packing.  Hexatic phase. 
-------------------------------------------------------------------------------------------- 
analogous gravity-free hard disk equation of state which involves a 
considerably smaller melting-transition density jump.  But it also exhibits an 
additional complicating feature, a very narrow hexatic phase density interval 
inserted between the fluid and the "conventional" crystal phase.  In slight 
contrast with the well-known KTHNY theory of hexatic phases, the fluid-
hexatic transition is first order, while the hexatic-crystal transition is higher 
order (as in the KTHNY description). 
     The following View 6 shows the macroscopic system container geometry 
-------------------------------------------------------------------------------------------- 
View 6.  Macroscopic container geometry, field-oriented.  Impenetrable 
floor ( fz ) and ceiling ( cz ) surfaces.  Constant horizontal cross section area 
(or length) A. )...( 1 Ng rrΦ .  Boundary conditions are periodic for lateral 



directions.  Vertical pressure expression in terms of weight above 
measurement position, and the ceiling pressure. 
-------------------------------------------------------------------------------------------- 
to be used for the following analysis of the three-dimensional case, 
specifically a vertically oriented rectangular solid with constant horizontal 
cross-section area A.  The number of contained spherical particles N will be 
fixed, with a canonical ensemble for description of thermal equilibrium 
states.  The gravitational potential energy function )...( 1 Ng rrΦ  for the N 
mass-m particles, measured from the floor position, has been included.  The 
floor and ceiling flat surfaces, perpendicular to the gravitational force 
direction, will be impenetrable.  The side walls could also be chosen as 
impenetrable, but here and for the remainder of the lecture we invoke the 
option of lateral direction periodic boundary conditions to eliminate wall 
interface effects.  The two dimensional version, with a vertically oriented 
rectangular container enclosing N disks, is obvious.  A general expression 
has also been included in the View for the altitude variation of the vertical 
pressure in terms of the ceiling pressure plus the z-dependent weight of the 
particle mass distribution above the observation position. 
     When the external gravitational or centrifugal field is weak, the thermal 
equilibrium spatial distribution of the particles within the fluid phase can be 
accurately described by the "barometric formula".  As presented in the next 
View 7 this is based on the expression for the model's conventional chemical    
-------------------------------------------------------------------------------------------- 
View 7.  Barometric formula stratification.  Ideal gas limit.  Non-ideality 
correction ),( TW ρ , and its void-probability interpretation.   Note that Tλ  is 
the mean thermal deBroglie wavelength for the particles.  
-------------------------------------------------------------------------------------------- 
potential ),( Tρμ , the fundamental intensive thermodynamic property that is 
constant throughout the equilibrium system at number density ρ and absolute 
temperature T, in the absence of an external field.  The non-ideality of that 
field-free system due to interparticle interactions enters ),( Tρμ  as a 
reversible work ),( TW ρ  that would be necessary to insert an additional 
particle anywhere within a uniform particle density ρ  at temperature T.  
This quantity ),( TW ρ  obviously vanishes for an ideal gas (infinitely small 
spheres or disks).  The barometric formula simply assumes that the local 
density )(zρ  in the presence of a gravitational field corresponds to a local 
value of the uniform system chemical potential μ  equal to the slowly 
varying local quantity )(0 fzzmg −−μ , a linear function of z with spatial 



rate of change proportional to g.  Here 0μ  is a constant whose assigned 
value controls N, the total number of particles present in the system.  Note 
that if the gTN ,,  circumstance gives rise to the presence of a crystal phase, 
the density profile )(zρ  predicted by the barometric formula will provide no 
information about the crystal orientation or its long range oscillatory order, 
but simply specifies the crystal's average local density as a function of z.  
The barometric formula stratification produces an infinitely sharp fluid-
crystal interface if circumstances require coexistence.  In the two-
dimensional hard disk case, both the fluid-hexatic and the hexatic-crystal 
transitions would also be represented as infinitely sharp interfaces.  The 
former would display a density discontinuity, the latter would not but would 
involve a weak singularity affecting  high-order z derivatives of the 
predicted density profile. 
     Strong gravitational and centrifugal fields cause rapid density changes 
with respect to altitude z in the system.  The corresponding reversible 
particle insertion function W  then necessarily samples a variable particle 
density )(zρ  over a non-zero distance range σ , thus becoming a density 
functional ])},'({,[ TzzW ρ .  As can be directly verified from grand 
ensemble theory, this properly corrected expression for the z-dependent  
chemical potential is still required to conform to a linear function of altitude 
z.  Consequently the non-local W functional is expected to be a source of 
non-trivial deviation from the barometric formula. The extended formalism 
is exhibited in the following View 8.  While examining such deviations in   
--------------------------------------------------------------------------------------------
View 8.  Barometric formula corrections. 
--------------------------------------------------------------------------------------------
detail, it is worth recalling the formal relation shown earlier in View 6 
between the local pressure )(zp  (i.e., from the vertical component of the 
stress tensor) and the now-corrected equilibrium density profile )(zρ .  Keep 
in mind that whenever there is locally a deviation from density isotropy, the 
stress tensor in principle should be expected to exhibit some anisotropy.  
     If the local density functional ])},'({,[ TzzW ρ  were to be evaluated in a 
fluid region where )(zρ  increased substantially with depth z, the lower 
portion of the radius-σ spherical sampling region would tend to dominate 
the contribution of the upper portion.  This would have the effect of reducing 
the magnitude of the predicted density gradient compared to that predicted 
by the barometric formula. 
     Note that this local density functional correction to the barometric 
formula approximation has the capacity to generate vertically oscillatory 



)(zρ  patterns for crystal phases.  But in order to do so properly it must be 
augmented in general with the system's relevant boundary conditions.  The 
extension also will predict phase coexistence interfaces that are broadened 
from the sharp discontinuities that emerge from the barometric 
approximation.  Crystal-phase oscillations of )(zρ  determined by 

]},'({,[ TzzW ρ  rest primarily on the occurrence probability of finding a 
layer-positioned monovacancy to accommodate an inserted particle, the 
geometry of which strongly discriminates against insertion between layers. 
     By seeking a high-g equilibrium description beyond that provided by the 
pseudo-macroscopic barometric formula, one immediately encounters 
questions about crystalline order and orientation at the bottom of the system.  
One kind of relevant information is the crystal-fluid interfacial free energy.  
This has been examined for several exposed surfaces of the fcc crystal  in 
the negligible-g situation under equilibrium coexistence conditions, with 
results indicated in the next View 9.  Although no results are yet available   
-------------------------------------------------------------------------------------------- 
View 9.  Crystal phase orientation: structures of the (100), (110), and (111) 
layers for the fcc crystal.  Lowest interfacial free energy for oriented crystal 
in contact with fluid. 
-------------------------------------------------------------------------------------------- 
for large g conditions, one may tentatively assume that the relative ordering 
of these results persists into at least the initial portion of increasing g. 
     Perhaps more relevant for this crystal ordering issue is what orientation  
is most favorable at high g for fcc crystal contact with the assumed flat 
horizontal hard floor surface.  In other words, which crystal orientation 
manages to locate particles on average closest to the floor.  A 
straightforward numerical comparison for 0=T  can be produced by 
observing how the gravitational energy increases as crystal layers are built 
up sequentially from the floor, for alternative close-packed fcc crystal 
orientations.  The gravitational energy for any chosen crystal orientation 
then is a piecewise linear function of the number of particles that have been 
added to the completing top layer.  Comparing pairs of these piecewise 
linear results determines the favored crystal orientation.  As an informative 
example, the next View 10 shows the occupancy dependence of  the energy   
-------------------------------------------------------------------------------------------- 
View 10.  Evidence for the preferred crystal contact orientation at the floor, 

0=T .  Displayed is the occupancy number dependence of the unit-area 
gravitational energy for the (100) floor-contacting orientation measured 
relative to that of the (111) surface orientation.   



-------------------------------------------------------------------------------------------- 
difference for (100) minus that for (111), displayed in reduced energy units, 
for a unit horizontal area.  Evidently crystal surface (111) is the preferred 
member at least of this pair.  Analogous results have been obtained for the 
(110) surface, again showing that the (111) energy is consistently the 
preferable choice as the oriented crystal is built upon the floor, but even by a 
substantially larger average amount.   Other crystal orientations are expected 
to fare even worse compared to the (111) orientation.   Consistent with the 
fluid-crystal interfacial free energy, it is clear that this analysis also supports 
the presumption that (111) layer orientation contacting the floor will be the 
lowest free energy case for 0>T .  The two dimensional rigid disk case is 
simpler: The only option is that its first and subsequent layers will be the 
close-packed linear disk sequence. 
     As noted earlier, isotropic compression for the 0>T  fcc crystal from the 
coexistence pressure toward infinite pressure is accompanied by a significant 
reduction in the average nearest-neighbor separation.  This raises the 
question about how disk or sphere packing geometry deals with this feature 
in a high-g situation with a substantial crystal phase at the bottom of the 
container.  Horizontal (111) layers of spheres that nominally sit on each 
other, taking advantage of the underlying geometric "pockets", will be 
presented with numerically inconsistent lateral nearest-neighbor separations.  
That is, successive horizontal macroscopic layers should contain smaller 
numbers of particles with larger separation.  The same kind of mismatching 
also applies to disks in two dimensions.  Insertion of vacancies does not 
resolve this situation.  However the next View 11 proposes one apparently                              
-------------------------------------------------------------------------------------------- 
View 11.  Crystal nearest-neighbor separation vs. altitude, and resulting 
packing disorder.  Edge dislocations. 
-------------------------------------------------------------------------------------------- 
feasible option, specifically in three dimensions the inclusion of properly 
distributed and oriented edge dislocations in the fcc crystal phase.  But note 
that the edge dislocations may not be oriented in a completely vertical 
manner.  The two dimensional version of this nearest-neighbor separation 
requirement amounts to terminated lines of disks, each producing a 
dislocation at its upper end.  The general conclusion is that large equilibrated 
hard sphere or disk crystals residing under gravitational or centrifugal fields 
necessarily incorporate structural defects. 
     An important gravitational or centrifugal phenomenon, with both 
commercial and international political implications, is isotope separation.  
For present purposes this will be discussed in the most rudimentary 



modeling context, specifically a binary mixture of geometrically identical 
spheres or disks (common diameter σ ), but distinguished by two masses 

ba mm <<0 .  The corresponding height distributions )(zaρ  and )(zbρ  
could be approximated by a binary mixture extension of the barometric 
distribution approximation.  However the more powerful analytical approach 
parallels that shown earlier to correct the barometric formula approximation.  
Specifically it determines these individual height distributions by a coupled 
pair of equations that are displayed in View 12.  Note that the common size             
-------------------------------------------------------------------------------------------- 
View 12.  Isotope separation at equilibrium.  Determining equations. 
-------------------------------------------------------------------------------------------- 
assumed for the two isotopes implies that the insertion work function W can 
depend only on the sum of the two local densities, not on those density 
distributions independently, i.e., it is a functional of the form 

])},'()'({,[ TzzzW ba ρρ + .  The system-wide average mole fractions of the 
two isotopes are determined by the choices of the parameters a0μ  and b0μ  
for their respective chemical potentials, both of which are linear functions of 
the altitude z.  It should be stressed that the separation phenomenon involves 
more than just statistical distribution (mole fraction) of the isotopes over a 
density distribution determined for a single isotope case; the coupled 
determining equations generally produce distinct matter height distributions 
that are fundamentally different in shape than those exhibited by the pure-
isotope cases.  Obviously the heavier mass isotope is expected to concentrate 
toward the floor, compared to the lighter isotope concentrating toward the 
ceiling. 
     Thus far, only thermal equilibrium properties for many-hard-particle 
systems have been considered.  There are obviously a large number of non-
equilibrium properties that would command interest and attention as well.  
One class of irreversible phenomena that can be usefully modeled arises 
from dissipative sedimentation of spherical hard colloids in a viscous solvent 
composed of much smaller molecules, to be treated just as a surrounding 
continuum.  A conceptually elementary version is described in the following 
View 13.  The  behavior of monodisperse colloidal suspensions driven into                             
-------------------------------------------------------------------------------------------- 
View 13.  Dissipative (over-damped) sedimentation process.  Single 
component case. Colloid suspension applications.  Multidimensional gravity 
gradient kinetics with frictionless constraints.  Effective particle "mass" 
contains a solvent buoyancy contribution. 
-------------------------------------------------------------------------------------------- 



a sedimentary deposit in a rotating centrifuge would be an obvious 
connection to experiment.   The presumption is that before encountering the 
floor or other particles in a previously formed deposit, the gravitational force 
on a particle causes a constant-velocity downward motion.  A particle that 
finally comes in contact with the floor does not subsequently change its 
altitude fz , but it can slide sideways if repulsive interaction with one or 
more descending particles makes that necessary.  The full multidimensional 
description of dissipative (over-damped) particle motion involves self-
consistent configurational relaxation in the solvent medium to lower the 
gravitational energy, while rigorously observing all floor and sphere (or disk) 
non-overlap constraints.  The final result will be a static downward-jammed 
structure, i.e., one effectively at 0=T . 
      Assuming that they all have identical effective masses, particles that are 
temporarily above the floor and above any sediment already deposited will 
move downward vertically all at the same speed.  Presuming they were 
initially not in contact with one another, that non-contact situation therefore 
will persist until encounter with the floor or the deposit forming at the 
bottom of the system.  However, when a downward-drifting particle 
encounters an isolated one already on the floor surface, a two-body motion 
that retains contact ensues.  The precise details of this pair encounter are 
presented in View 14.  The schematic figure nominally shows a pair of disks,                        
-------------------------------------------------------------------------------------------- 
View 14.  Example of a particle sliding on an isolated already-floored 
particle (2-dimensional view).  Explicit solution in terms of reduced units. 
-------------------------------------------------------------------------------------------- 
but it is also applicable to hard spheres by representing a vertical plane 
containing the two particle centers.  
     The general situation requiring quantitatively precise description is that 
of an n-particle cluster connected internally by pair contacts, a particle 
subset of which is already in contact with the floor.  Deriving quantitative 
details of relaxation motion for this connected cluster depend (a) on 
maintaining those pair and floor contacts (but allowing no others), (b) on 
constraining horizontal components of all particle motions so that the cluster 
centroid has no horizontal motion, (c) on assigning geometry-constrained  
force components arising from the gravitational field, and (d) on enforcing 
equality of the overall rate of gravitational energy reduction as the cluster 
relaxes, and of the net viscous friction dissipation rate.  These criteria were 
the source of the specific motion details for the elementary 2=n  cluster 



illustrated in View 14, and uniquely determine the kinetics of all possible 
2>n  contact clusters. 

     Although every particle directly experiences the same downward 
gravitational force, it is important to realize that some connected 
sedimenting cluster geometries can temporarily require upward displacement 
of a particle to accommodate more intense downward motion of its 
neighbors.  The next View 15 illustrates two examples for disks, but it  
--------------------------------------------------------------------------------------------
View 15.  Upward motion examples. 
-------------------------------------------------------------------------------------------- 
should be clear that analogous examples also arise for hard spheres 
sedimenting in three dimensions. 
     The sedimentation process for two-dimensional hard disks will tend 
strongly to produce a triangular (close packed) crystal.  Note that the 
previous concern about z dependence of crystal nearest-neighbor separation 
for 0>T  is not relevant for this dissipative process.  Deviation from a 
perfect crystal structure can arise from a system width that is not exactly (or 
close to) an integer multiple of the diameter σ .  The result will give rise to 
at least one grain boundary defect.  But aside from that, the result is a set of 
simple triangular crystal domains.  The corresponding three dimensional 
case of hard spheres is more complicated, as illustrated in the following 
View 16.  Even if a structurally perfect first layer were to exist on the floor 
-------------------------------------------------------------------------------------------- 
View 16.  Hard sphere crystal ambiguity (Barlow packing possibilities) and 
resulting disorder as sediment height increases. 
-------------------------------------------------------------------------------------------- 
surface due to an appropriate horizontal cross section geometry, random 
addition of spheres in attempting to build a second layer confronts the binary 
ambiguity about which subset of "pockets" provided by the bottom layer 
should be occupied.  Such packing ambiguity underlies the infinite family of 
close-packed Barlow crystal structures (fcc, hcp, ....).  Horizontal grain 
boundaries between sub-areas occupied respectively by the two pocket 
choices disrupt the height periodicity of subsequently sedimenting particles. 
The sedimentation model as defined includes no annealing mechanism to 
reduce that kind of packing disorder in three dimensions.  At least in the 
three-dimensional hard sphere sedimentation case, the final static structure 
for random initial configurations will be amorphous, except possibly within 
two or perhaps three layers just above the floor.  In principle one might 
expect the resulting amorphous gravitationally jammed packings to be 
statistically anisotropic, but not vividly so.   



     One additional feature deserves emphasis, specifically that the dissipative 
sedimentation process as defined will tend to avoid formation of vacancies 
or larger voids, at least if the initial configuration is a dilute configuration of 
particles.  The next View 17 emphasizes schematically the nearly inevitable    
-------------------------------------------------------------------------------------------- 
View 17.  Filling of a possible vacancy (void) by a downward sliding 
particle.  This inhibits the formation of large rattler-containing voids.  
Possible exceptions to such void exclusion would require exceptionally pre-
configured high density initial configurations. 
-------------------------------------------------------------------------------------------- 
tendency for a falling particle to drop or to slide into a vacant position, 
whether disks or spheres are involved.  This indicates a probabilistic 
distinction between final configurations produced by the unidirectional 
sedimentation process on the one hand, and jammed amorphous hard disk or 
hard sphere configurations on the other hand whose conventional isotropic 
formation processes tend to generate a significant concentration both of 
monovacancies and of voids large enough to contain confined but unjammed 
"rattler" particles. 
     The description offered here for many-body gravitational effects has 
inevitably been very incomplete.  There are many straightforward research 
extensions to provide more detailed qualitative and quantitative insights into 
the properties that have just been discussed for the classical hard sphere and 
hard disk models.  But beyond those possibilities, the final View 18 includes    
-------------------------------------------------------------------------------------------- 
View 18.  Additional opportunities for future research about gravitational 
effects.                                                                                                               
-------------------------------------------------------------------------------------------- 
a few additional scientific directions.  Some of these go beyond the simple 
hard sphere and hard disk concepts, and include possible analytical, 
simulational, and even experimental, research investigations.  
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Gravitational and Centrifugal Force Field Examples
]/980  :gravity al[terrestri 2scmgterr =

Location

Orbiting space vehicle 0.0

Asteroid, 1 km diameter

Earth’s moon 0.166

Earth’s surface 1.0

Jupiter’s surface 2.53

Sun’s surface 28.0

Ultracentrifuge

Neutron star surface

410−≈

610≈

1110≈

Field strength/ terrg
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132Xe Elevation Change 
Requiring Energy kBT|298K = 4.1143 ×

Orbiting space vehicle

Asteroid, diameter 1 km

Earth's moon

Earth's surface

Jupiter's surface

Sun's surface

Ultracentrifuge  

Neutron star surface

Location Altitude increase, cm

10 -14 erg

61015.1 ×

31085.6 ×

61092.1 −×≈

51092.1 ×

91092.1 ×≈

∞+

41058.7 ×

192.0≈
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Hard Sphere Equilibrium Equation of State, Zero Gravity

•

•

•

Hard sphere diameter σ . Pressure equation of state (classical): 

Phase transition parameters: 

Average nearest neighbor separation in fcc crystal at its melting point: σ109.1 .

57.11)/( 3 ≅coexBTkpσ

.938.0)( 3 ≅fluidρσ , 037.1)( 3 ≅fccρσ

,

2/120
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3σ

3ρσ

fluid
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crystal
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Hard Disk Equilibrium Equation of State, Zero Gravity

•

•

•

•

Hard disk diameter σ .

First-order fluid-hexatic transition parameters: 

Average crystal nearest-neighbor separation at crystal-hexatic melting:

Pressure equation of state (classical):

.

,469.9)/( 2 ≅−crysthexBTkpσ 917.0)( 2 ≅−crysthexρσ .

185.9)/( 2 ≅−hexfluidBTkpσ
891.0)( 2 ≅fluidρσ

,
, 913.0)( 2 ≅hexρσ

Higher-order hexatic-crystal transition parameters:
.

σ122.1

Tk
p

B

2σ

0 2/13/22ρσ

fluid

crystal

hexatic
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Field-Oriented Macroscopic Container Geometry

• Rectangular container, z direction parallel to field direction, impenetrable floor (     ) fz and
ceiling ( cz ), lateral direction periodic boundary conditions, fixed horizontal cross section 

•

• Gravitational potential energy: )(),...,(
1

1 f
N

j
jNg zzmg −=Φ

=
rr . 

+= cz
zc dzzmgzpzp ')'()()( ρVertical pressure via density distribution . )(zρ :

z

fz

cz

area A:

dots
Typewritten Text
VIEW 6

dots
Typewritten Text
Back



(B)  Interfaces between coexisting phases are infinitely sharp.
)(zρ

Barometric Formula Stratification

which formally includes all non-ideal fluid and phase change detail.

includes reversible isothermal particle insertion work W:• Exact ),( Tρμ

• For hard spheres (disks), ]/),(exp[ TkTW Bρ− equals the probability that
σ

• For weak gravity, assume local thermodynamic equilibrium, with a 
z-dependent chemical potential:

)(]),([ 0 fzzmgTz −−= μρμ

•

0μ is a z-independent constant that controls the system’s occupancy number N.

•

Ideal gas approximation )ln(),( 3
TBTkT ρλρμ ≈

]/)(exp[)( Tkzzmgz Bf−−∝ρ

Implications of general barometric formula with exact ),( Tρμ
(A)  Crystal phases represented only by monotonic 

a radius- sphere (circle) is devoid of particle centers.

•

yields exponential distribution:

:
;

),()ln(),( 3 TWTkT TB ρρλρμ +=
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Barometric Formula Deficiencies / Corrections

• Height variation of )(zρ

W in the chemical potential:
])},'({,[])(ln[),( 3 TzzWzTkTz TB ρλρμ +=

which must involve a density stratification causing it to equal )(0 fzzmg −−μ

• For spheres (disks) ]/])},'({,[exp[ TkTzzW Bρ−
sphere (circle) of radius σ centered at height z is devoid of particle centers.   

• This radius-σ local sampling in the fluid phase is biased toward the  higher density

)(zρ

• The non-local character of 

(lower altitude) portion of the exclusion region, producing less rapid height 

.

equals the probability that a

can generate oscillatory density 

.

for large g requires a non-local insertion work functional 

variation of

profiles needed for description of oriented crystal phases.

])},'({,[ TzzW ρ
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Crystal-Phase Layer Orientations and Patterns

• For hard sphere fluid-crystal coexistence at  0=g , the most stable planar interface 
involves the (111) surface [R.L. Davidchack, J. Chem. Phys. 133, 234701 (2010).] 

• •

••

•

• •

• •

•
••

•

•

(100)

(111)(110)

• • • •
• • • •

••••
••••

• • • •
• •••

• •••
• •••

••••
••••

•• • •
•• • •
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Crystal Phase Orientation Preference
•

•

•

Gravitational energy vs. crystal-layer sequential-depositing population is a piecewise-linear  
function.  This plot shows the deposition energy difference for (100) minus (111) in reduced  

Corresponding plot of gravitational energy difference for (110) and (111) orientations 
shows an even greater relative stability of the latter.
Other orientations are expected to do even worse compared to (111), suggesting it is the 
preferred crystal orientation at high g, 0>T .

AdepositedN /)( 2σ

mgA
gσΔΦ

units:

86420

0.5

0.4

0.3

0.2

0.1

0.0
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Crystal Nearest-Neighbor Separation vs. Altitude
•

•

•

In a high-g,  T > 0 system containing a deep section of crystal phase, the nearest-
neighbor separation can decrease near its top from σ1.1≈ near its top to  σ≈ near its
bottom.
Successive horizontal layers with slightly different spacings do not fit together properly. 

Properly oriented edge defects can produce a coarse resolution of the mismatch:
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Isotope Separation

•

•

•

• "Isotopes" a and b:  Spheres (or disks) with common diameter σ

ba mm < .
, but unequal

masses

Separate vertical density profiles           and          :

•

)(zaρ )(zbρ

= c
f

z
z aa dzzAN ')'(ρ ')'( dzzAN c

f
z
z bb = ρ , , 

where A is the constant horizontal cross-section area (length) of the container.

Coupled determining equations: 
])},'()'({,[)(])(ln[ 0

3 TzzzWzzgmzTk bafaaTaaB ρρμλρ +−−−= ,
])},'()'({,[)(])(ln[ 0

3 TzzzWzzgmzTk bafbbTbbB ρρμλρ +−−−= . 

The constants a0μ and b0μ control aN and bN

.

. 

Insertion free energy functional W depends only on )'()'( zz ba ρρ + , 

not the individual density profiles.
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Dissipative Sedimentation Process
•

•

•

•

Spherical (or circular) colloids initially suspended in container with viscous solvent:

Unimpeded downward drift speed is ζ/mg , =ζ=m eff. mass , friction coeff.

A particle at fz cannot subsequently move upward, but it can slide sideways. 

Particle collision trajectories with already deposited sediment particles are dynamically
determined by interparticle forces and floor constraints.

z

fz

cz
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•

•

•

Particle Sliding During Sediment Contact
Natural units to describe sedimentation kinetics:

length                             energy                       time                         

Particle (2) encountering already-floored particle (1):

Explicit (reduced unit) time dependence of particle positions:

σ=0l σε mg=0, , .

θ
θ

2
21

tan2
tan

+
−=−=

dt
dx

dt
dx ,

θ2
2

tan2
2

+
−=

dt
dz .

•

•
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Cooperatively Enforced Upward Displacement
•

•

Isolated trimer, roughly vertical orientation above a floor contact: 

Unequal competition for floor space between large, nearly immovable floor clusters:  
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Hard Sphere Crystal Packing Ambiguity
(Local Barlow Degeneracy)

•

•

Close packed (111) layer at   fz presents a binary choice of equivalent pockets (B vs. C)
either of which can be occupied by subsequently depositing particles:

Partially open boundaries between B and C zones disrupt subsequent layer heights.

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

B B B

B B

B B B

B B
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C C C

CCC
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Vacancy and Rattler Discrimination
•

•

Unidirectional sedimentation at low colloid density fills partially formed voids.
This occurs before a “roof” of particles can form over that empty location.

In contrast to conventional isotropic jamming algorithms, this strongly suppresses
appearance of imprisoned “rattler” particles.

fz
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Research Opportunities, Gravitational Effects

•

•

•

•

•

•

Hard sphere and disk diffusion kinetics (inverted parabolic orbits). 

Block copolymer configurational preferences, with distinct monomer masses.

Gravitational stratification of systems exhibiting negative volume of melting,  

Gravitational phenomena for hard sphere bosons as , 0→T including
superfluidity.

Electric fields induced by strong gravity acting on ionic systems with
substantially different anion and cation masses.

Sedimentation model extensions that involve polydisperse hard-particle colloids, 
with distinct radii and effective masses. 

and those with inverse melting.
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