
 
 

                        Chiral Symmetry Breaking in Liquids 
                              and Critical Point Confluence 
 
      
     The geometry of molecules residing in solid, liquid, and vapor phases is 
obviously a basic issue in chemistry, chemical physics, materials science, and 
molecular biology.  In particular, the chirality (handedness) of molecules  
frequently demands attention.  Polymeric biological molecules (proteins, DNA, 
carbohydrates, ....) contain subunits that typically exhibit a specific chiral geometry 
choice, avoiding its mirror image.  What caused this broken geometric symmetry 
to arise and to influence first appearance of life and its subsequent evolution on our 
planet?  Was this terrestrial chiral bias an absolute necessity for life as we define it?  
If so, how far must one search in the universe to discover other H,C,N,O,P based 
life with chirality opposite to our own?  This lecture concentrates on one among 
many possibilities of spontaneous chiral symmetry breaking phenomena, among 
which geochemists must decide was most likely involved in our prebiotic history. 
--------------------------------------------------------------------------------------------------- 
View 1.  Title, Lecturer, Affiliation, Acknowledgements, Widom Festschrift 
reference.    
--------------------------------------------------------------------------------------------------- 
     To serve as a familiar starting point, View 2 illustrates the two enantiomers  
--------------------------------------------------------------------------------------------------- 
View 2.  Alanine enantiomers.    
--------------------------------------------------------------------------------------------------- 
(mirror images) of the simple protein-monomer amino acid alanine in isolation, 
identifying which  one is biologically favored.  In this case it is the strong 
tetrahedral directionality of four covalent single bonds emanating from the " -
carbon" ("stereo carbon") that produces a pair of mirror-image twins. These 
distinct alanine molecules are separated by a high transition state barrier of 
approximately molkcal /78 , much larger than ambient kinetic energy 

molkcalTkB /6.0 .  However there are many other molecular scenarios that also 
generate distinguishable chiral enantiomers, not necessarily relying on the presence 
of tetrahedral stereocarbons.  The following View 3 provides the contrasting    
--------------------------------------------------------------------------------------------------- 
View 3.  Hydrogen peroxide enantiomers. 
--------------------------------------------------------------------------------------------------- 



example of the isolated hydrogen peroxide molecule.  Quantum mechanical 
calculations indicate that for this case the inversion barrier located at a planar 
transition state (trans geometry) is only approximately molkcal /1.1 . 
     The main emphasis of this presentation concerns spontaneous chiral symmetry 
breaking in pure isotropic liquids.  Here attention focuses on an initially racemic 
isotropic liquid at elevated temperature composed of molecules that have high 
inversion rates.  Lowering the temperature ultimately produces macroscopic 
isotropic liquid phases within each one of which one chirality strongly dominates.  
This is a phenomenon that now has unequivocal experimental support.  View 4    
--------------------------------------------------------------------------------------------------- 
View 4.  138-atom molecular structure.  [Coexisting chiral liquids exist 
thermodynamically between a lower temperature bicontinuous cubic phase, and a 
higher temperature single isotropic achiral liquid phase.] 
--------------------------------------------------------------------------------------------------- 
presents the molecular structure of a flexible 138-atom organic substance that has 
been shown to exhibit isotropic chiral liquid phases at 1 atm in the temperature 

range CC  213205  .  The chiral nature of the liquids is demonstrated by 
observing them with a polarimeter.  View 5 reproduces the published patterns seen    
--------------------------------------------------------------------------------------------------- 
View 5.  Polarimetry results. 
--------------------------------------------------------------------------------------------------- 
by a microscope view of a thin film sample in the mentioned temperature range.  
Coexisting immiscible liquid phases of this pure substance are then distinguished 
by changing the angle between incident light polarity and the polarimeter detector 
(analyzer).  Isotropy of the phases is demonstrated by noting that no intensity 
pattern changes as the sample is rotated while the polarity-analyzer relative angle 

remains constant.  At  P-A angle 90  the phases would be visibly indistinguishable. 
     Positive surface tension interfaces are clearly visible in the polarimetry 
observations.  Because their presence amounts to a positive free energy source, a 
statistical driving force exists for one of the chiral liquids ultimately to consume 
the other.  However that evidently is a very slow process for this substance. 
     The specific 138-atom substance is not unique in exhibiting the formation of 
immiscible pairs of isotropic chiral liquid phases.  The next View 6 identifies a  
--------------------------------------------------------------------------------------------------- 
View 6.  Additional substances producing isotropic chiral liquids.   
--------------------------------------------------------------------------------------------------- 
published listing of several other experimentally identified cases.  In all of these 
substances no tetrahedral-bonding stereocarbons appear, but the individual 
molecules are quite flexible objects.  If one were able to examine exhaustively the 



intramolecular force field for one such molecule in isolation (i.e., in vacuo), one 
would surely discover numerous mechanically stable distorted structures, including 
mirror image chiral pairs.  In a cooling liquid state, intermolecular interactions can 
have the effect of probabilistically selecting neighbor pairs with favorable relative 
configurations.  For these various experimentally observed cases this has led to 
spontaneous appearance of preferential chirality in isotropic liquid phases. 
     The organic molecules just identified have a large number of internal degrees of 
freedom, a situation that can be distracting in an attempt to understand 
quantitatively what underlies the phenomenon of spontaneous chiral symmetry 
breaking in pure isotropic liquids.  Consequently it has been sensible to create a 
simpler theoretical model exhibiting this phenomenon prior to undertaking a 
massively complex explanation of the experimentally studied cases.  The following 
View 7 introduces an elementary continuum model that my collaborators and I    
--------------------------------------------------------------------------------------------------- 
View 7.  Tetramer enantiomers, stable structures. [F. Latinwo, F.H. Stillinger, and 
P.G. Debenedetti, J. Chem. Phys. 145, 154503 (2016)] 
--------------------------------------------------------------------------------------------------- 
have examined recently.  In a rough sense it was inspired by the four-atom 
hydrogen peroxide example.  For each of its two mechanically stable structures 
(intramolecular potential energy global minima), it possesses three equal 

"covalent" bond lengths b, two intramolecular 90 bond angles at each of the two 

internal "atoms" , and a 90 dihedral angle, the sign of which distinguishes the 
two enantiomers. 
     A basic property of this continuum model is how the molecule's potential 
energy rises as deformations away from the global minima are imposed.  View 8   
--------------------------------------------------------------------------------------------------- 
View 8.  Tetramer intramolecular deformation energy expression, shown with 
dimensionless parameters. 
--------------------------------------------------------------------------------------------------- 
provides full details.  This involves harmonic contributions for bond-length change, 
and for bond angle change.  The square of the cosine of the dihedral angle controls 
the transition state energies (at either cis or trans planar geometries) which must be 
surmounted for chiral inversion. 
     In order to have a mathematically unambiguous identification scheme for the 
two tetramer enantiomers, even when they might be subject to arbitrary large 
intramolecular deformations, it is natural to classify the tetramers according to 
their values of a geometric quantity   defined in View 9.  This is a function of  
--------------------------------------------------------------------------------------------------- 
View 9.  Definition of )4,3,2,1(  .  [Can be used to determine sign of  ] 



--------------------------------------------------------------------------------------------------- 
the three intramolecular vector bond displacements, and as defined is confined to 
the interval 11   .  The upper and lower limit values are attained 
respectively by the two undeformed mechanically stable configurations.  It is 
simply the algebraic sign of   that is the enantiomer identifier.  Planar 
configurations have 0 , which identifies the hypersurface separating the two 
configurational manifolds for the mirror-image enantiomers. 
     In order for this simple tetramer model to mimic the ability of the previously 
mentioned complicated molecules to produce isotropic immiscible chiral liquids, it 
is necessary to define appropriate pair intermolecular interactions.  This has been 
done in a way that incorporates both indiscriminately attractive interactions, as 
well as chirality-dependent interactions.  The following View 10 indicates how this  
--------------------------------------------------------------------------------------------------- 
View 10.  Chirality-sensitive tetramer pair interaction. 
--------------------------------------------------------------------------------------------------- 
is implemented, starting with the well-known Lennard-Jones 12-6 pair potential 
acting between an "atom" (force center) in one of the tetramers and an "atom" 
(force center) in the other tetramer.  However the resulting sum of 16 Lennard-
Jones interactions is energy-strength-scaled in a way that depends specifically on 
the instantaneous  values for the two tetramers.  This effect is controlled by the 
scalar parameter 11   .  Because this mathematically converts each of the 
Lennard-Jones pair functions into "eight-atom" functions, it can be regarded as a 
coarse-grained chirality preference interaction strategy for neighboring tetramers. 
     The continuum tetramer model has been examined via a modest amount of 
molecular dynamics simulation.  The majority of computations completed thus far 
have employed a dimensionless set of interaction parameters, as listed in View 11. 
--------------------------------------------------------------------------------------------------- 
View 11.  Dimensionless parameters for tetramer model simulations. 
---------------------------------------------------------------------------------------------------  
For these and some other selections of potential energy parameters with various  
physical conditions the model indeed exhibits spontaneous formation of 
immiscible isotropic chiral liquids upon cooling a racemic state.  View 12 shows  -
-------------------------------------------------------------------------------------------------- 
View 12.  Molecular dynamics result for low-T growth of   away from 0; 

5.0 ; opposite enantiomers are distinguished by red vs. blue coloring.  

[State reference.  4.1/,17.0,1024 0
3   TkN B  ]  

[A higher temperature MD run with an enantiopure initial condition would 
qualitatively reverse the time dependence, ending up racemic.] 



--------------------------------------------------------------------------------------------------- 
an example of a time sequence for 5.0  over which an initial racemic mixture 
evolves into a contacting pair of chiral liquids with opposite   values.  This 

phase separation kinetically involves both tetramer inversion and diffusion.  Upon 
carrying out these simulations at several temperatures for the same number density, 
one infers that the temperature variation of   exhibits a "conventional" critical 

point behavior as qualitatively indicated in the next View 13.  For the previously  
--------------------------------------------------------------------------------------------------- 
View 13.  Isochoric plot of   vs. T . 

--------------------------------------------------------------------------------------------------- 

illustrated density 17.03   and 5.0 , the estimated critical temperature is  
3.2/ 0 cBTk .  The isochoric plot indicates that the chiral liquids would finally 

crystallize as temperature falls, however that phase transition for the continuum 
tetramer model has only been incompletely examined thus far.  [Tentative result: 
triclinic, 2 tetramers per unit cell]   
     The tetramer model includes Lennard-Jones attractive interactions between 
neighboring molecules of some magnitude regardless of whether their respective 
chiralities are relatively favored or disfavored by the   choice.  Consequently it is 
reasonable to expect that in principle the tetramer model might also exhibit a 
second critical point, specifically a conventional liquid-vapor critical point, among 
its set of thermodynamic equilibrium states.  It is worth noting in passing that a 
pair of critical points are also observed in real fluid systems at thermal equilibrium, 
namely upper and lower consolute critical points, examples of which are 
referenced in View 14.  However this latter phenomenon does not involve    
--------------------------------------------------------------------------------------------------- 
View 14.  Experimentally observed cases of critical point pairs at equilibrium. 
                 Nicotine-water. 
--------------------------------------------------------------------------------------------------- 
spontaneous appearance of chirality, and so is only indirectly related  
to the possible scenario presented by the continuum tetramer model.  [Perhaps it 
might be worth mentioning the distinction between these thermal equilibrium cases 
of pairs of critical points, and the case of water with its second critical point 
located within the metastability domain.]  
     Because computer simulation has not yet undertaken the necessarily demanding 
search for conventional liquid-vapor critical points that might be generated in the 
continuum tetramer model, there is virtue in temporarily creating and analyzing an 
even more elementary lattice model that could simultaneously present both chiral-
symmetry-breaking, and liquid-vapor, critical points.  The properties of this 



elementary model could ultimately assist in extended study of the tetramer model.  
Such an elementary lattice model should be constructed to mimic roughly the 
qualitative characteristics of the continuum tetramer model.  Details of such a 
discrete description appear in View 15.  Specifically this amounts to a spin-1 Ising   
--------------------------------------------------------------------------------------------------- 
View 15.  Lattice model basic definition: spin-1 Ising model with spatially 
extended pair interactions, i  ,  NN ,  ; spin inversion symmetry.  
--------------------------------------------------------------------------------------------------- 
model with possibly spatially extended pair interactions.  It is based upon a three-
dimensional Bravais lattice (e.g., a simple cubic lattice) of M cells, each one of 
which can contain at most a single chiral molecule.  The cells are identified by 
index Mi 1 , with corresponding occupancies which are specified by "spin" 
variables 1,0,1 i ; these represent respectively a left handed molecule L, no 
occupying molecule, and a right handed molecule D.  
 --------------------------------------------------------------------------------------------------- 
View 16.  Cartoon image of occupied lattice. 
--------------------------------------------------------------------------------------------------- 
     The following View 17  involves the interaction potential   for this spin-1  
--------------------------------------------------------------------------------------------------- 
View 17.  )...( 1 M  in terms of )( ijJ r  and )( ijK r ; canonical partition 

function. 
--------------------------------------------------------------------------------------------------- 
system, which must be invariant to overall spin inversion.  By analogy with the 
continuum tetramer model, it is assumed that only pairs of spins contribute to  , 
with magnitudes depending on the scalar distance between the respective occupied 
cells, and on the relative chirality of the occupants.  This View 17 also displays the 
classical canonical partition function for the lattice model. 
     It is well known that exact evaluations in the large system limit are not available 
for three-dimensional Ising models, even for the cases of spin-1/2 with just nearest-
neighbor interactions.  But to infer statistical properties in at least a semi-
quantitative manner, one can traditionally invoke the so-called "mean field 
approximation".  This tactic is outlined in View 18, where it is applied to the  
--------------------------------------------------------------------------------------------------- 
View 18.  Mean field approximation; 0, KJ  .   
--------------------------------------------------------------------------------------------------- 
canonical partition function for the spin-1 model.  The principal tactic underlying 
the mean field approximation is to suppose that the neighborhood of any molecule-
inhabited cell is composed of particle concentrations equal to the overall average 
for the entire lattice.  This has the effect of replacing the local J  and K  sums in 



  respectively by constants J and K.  Both of these constants will be assumed to 
be negative (a) to conform to normal molecular dispersion attraction, and (b) to be 
relevant to the present focus on chiral symmetry breaking.  For any specific 
molecular pattern on the lattice of cells, intensive quantity 11  x  describes 
the net chiral bias.   
     The relative values of interaction parameters J and K control the appearances of 
the two possible equilibrium critical points.  If one initially wishes to have a 
chirality preference appear first as temperature is lowered from a high value 
isochorically, one should set |||| JK  .  View 19 then shows how the mean-field  
--------------------------------------------------------------------------------------------------- 
View 19.  Chiral symmetry breaking for |||| KJ  ; nonlinear equation for )(Tx .  
--------------------------------------------------------------------------------------------------- 
partition function predicts the existence of chiral symmetry breaking by generating 
a nonlinear equation for )(Tx .   
     Numerical solution of that nonlinear equation leads to the plot displayed in the 
next View 20, showing )(Tx  splitting continuously from the high-T racemic  
--------------------------------------------------------------------------------------------------- 
View 20.  Plot of )(Tx ; KTkB  ; no crystal structure predicted. 
--------------------------------------------------------------------------------------------------- 
value 0 to a symmetric pair of non-zero values representing mirror-image phases.  
This critical point description conforms to the conventional mean-field result of a 
square-root (inverted parabola) shape of the coexistence region as a function of 
temperature.  Note that the critical point temperature T  is predicted to be 
proportional to the molecular number density MN / . 
     Next, consider the reversed case |||| KJ   , which should generate a liquid-
vapor critical point for the racemic fluid at a temperature well above any chiral 
symmetry breaking propensity.  Locating the occurrence of the liquid-vapor critical 
point at 0x  and related spinodal curves requires identifying divergence of the 
isothermal compressibility as a function of T and  .  This can be accomplished 
using the pressure equation of state for the homogeneous racemic fluid, in the 
mean-field approximation for the lattice model.  View 21 displays that pressure  
--------------------------------------------------------------------------------------------------- 
View 21.  Liquid-vapor critical point identification considerations for |||| KJ  .  
Lattice model mean-field approximation for p  .   
--------------------------------------------------------------------------------------------------- 
function. 



     Specifically, the critical point and the associated spinodal curves are located by 

the vanishing of the isothermal derivative 
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 , the specific form of which 

appears in the following View 22.  In order to identify the coexisting liquid and  
--------------------------------------------------------------------------------------------------- 
View 22.  Critical point and spinodal curves from   0)/1(/  Tp  ; real 

solutions formula; 4/JTk lvB  , 2/1lv .  Maxwell construction for coexisting 
densities below lvT  . 
--------------------------------------------------------------------------------------------------- 
vapor densities when lvTT  , it is necessary to invoke the Maxwell equal-areas 
construction to assure that the chemical potentials for those coexisting fluids are 
equal.  The resulting densities to leading order in temperature reduction are 
specified in this View 22.   
     Under the isochoric condition 2/1 , and with the two negative coupling 
constants satisfying ||2|| KJ  , both types of critical points will be observed, with 

 TTlv  .  The following View 23 provides a schematic diagram of how the   
--------------------------------------------------------------------------------------------------- 
View 23.  Schematic plot in Tx ,,  space of homogeneous phases with  TTlv ; 
three distinct surface tension functions. 
--------------------------------------------------------------------------------------------------- 
individual homogeneous phases that would coexist under the isochoric condition 
would be located in Tx ,, space.  It is a significant fact that three distinct 
interfacial surfaces will appear under the imposed isochoric condition, each with 
its own temperature-dependent surface tension.  These are (a) the interface between 
the racemic liquid and vapor for  TTTlv  , (b) the interface between the pair of 
chiral liquids for TT  , and (c) the interface between a chiral liquid and the 
racemic vapor for TT  .   
     The obvious next issue is what happens at 2/1  if the temperature difference 
between the two critical points vanishes:  TTlv  .  In other words, what 
interaction choices cause confluence of the two critical points.  View 24 contains   
--------------------------------------------------------------------------------------------------- 
View 24.  Critical point confluence conditions: KJcfl 2,2/1  ; 

2/||4/|| KJTk cflB  . 

--------------------------------------------------------------------------------------------------- 
relevant details of this special circumstance. 



     View 25 shows a schematic plot of the homogeneous-phase intensive properties   
--------------------------------------------------------------------------------------------------- 
View 25.  Schematic plot in Tx ,,  space of homogeneous phases for 

cfllv TTT   ; two distinct surface tension functions. 

--------------------------------------------------------------------------------------------------- 
in the three-dimensional Tx ,,   space for the confluence case.  Note that in this 
situation there are only two observable interfaces with respective surface tensions: 
(a) the interface between the two immiscible isotropic chiral liquids, and (b) the 
interface between a chiral liquid and the racemic vapor.  These both arise for 

TTcfl  .  

     Confluence of the two critical points produces at least one additional unusual 
detail, the basic features of which are outlined in View 26.  A qualitatively  
 --------------------------------------------------------------------------------------------------- 
View 26.  Mean field approximation prediction of modified critical exponent for 
chiral symmetry breaking magnitude vs. TTT cfl  .   2/1   . 

                                
2/1)( x  

 

                        2/12/1 )|(| T                     

                                   4/1|| T   .  
 
---------------------------------------------------------------------------------------------------  
distinct outcome emerges from the critical behavior of the extent of chiral symmetry 
breaking.  This arises in connection with the density variation of T  indicated earlier.  As 

a result of the confluence, the chiral symmetry breaking phenomenon is not subject to a 
fixed number density  , but to the liquid density rising by an amount proportional to 

2/1|| T  as T declines.  Consequently the applicable symmetry-breaking parameter x 
exhibits the leading-order temperature dependence specified in View 26.  Thus the 
critical exponent controlling the rate of chirality bias as T declines has been cut in half.       
     Having discussed the effects at the half-filled density 2/1  of raising the chiral-

symmetry-breaking critical point temperature T  from substantially below lvT  until 
these two coincide, it is natural to inquire whether continuation of this relative 
temperature trend at the same overall system density 1/2 can yield a non-trivial situation 
where again two critical points appear with lvTT  .  A straightforward analysis  
indicates that upon isochoric cooling, an initially appearing high-temperature chiral liquid 
at this density 1/2 would not exhibit a liquid-vapor critical point.  Instead, cooling the 
chiral liquid phase would cause its  pressure to decline until it equaled an equilibrium 



racemic-vapor pressure, at which point a first-order vaporization transition would occur.  
In other words, when |||2| JK   , the high temperature chirality occurrence pre-empts 
subsequent appearance upon further cooling of a conventional liquid-vapor critical point, 
at least as predicted within the mean field approximation. 
     A final View 27 lists a few directions along which the subject discussed could  
--------------------------------------------------------------------------------------------------- 
View 27.  Opportunities for future research, experimental and theoretical. 
[renormalization group approach; synthesize more molecules exhibiting these 
phenomena; Monte Carlo simulations for lattice model (study effects of interaction 
range, etc.); measure the interfacial surface tensions and determine their critical 
exponents; achiral solvents; patchy colloids; MD search for critical points in 
tetramer continuum model]. 
--------------------------------------------------------------------------------------------------- 
be expanded and strengthened scientifically. 
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         Additional Molecular Substances Experimentally 
                    Exhibiting Isotropic Chiral Liquids 

   •   Relevant reference: 
           C. Tschierske and G. Ungar, ChemPhysChem 17, 9-26 (2016), 
           "Mirror Symmetry Breaking by Chirality Synchronisation in  
            Liquids and Liquid Crystals of Achiral Molecules" 

   •   Eight distinct organic examples cited in Scheme 3 and Table 1. 

   •   None of the molecular structures of these additional substances  
        contains stereocarbons.   
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               Chirality Measure for Individual Tetramers 

   •   Monomers located at 4321 ,,, rrrr  . 

   •   
||||||
)(),,,(

342312
342312

4321 rrr
rrrrrrr ×⋅=ζ  

||||||
)(

213243
213243

rrr
rrr ×⋅≡   . 

                
   •   11 +≤≤− ζ  ;  1±=ζ  at the )1(Φ  minima . 

   •   0=ζ  for tetramer planar configurations, including the ideal  
       transition states.   

   •   Enantiomeric excess ("ee"):   1)/()(1 +≤+−≤− −+−+ NNNN  
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                                 Tetramer Pair Interaction ( )2(Φ ) 

       •    Sixteen energy-scaled Lennard-Jones pair interactions between   
          monomers belonging to different tetramers ( γα , ): 

                      )/|(|v),( 0
)()(

LJ
)(4

1

4

1

)()2( σζζε γαγα
ji

i j
mm rr − =Φ

= =
  . 

      •    )(4)(v 612
LJ

−− −= xxx   .   

      •    )1(),( )()(
0

)()( γαγα ζλζεζζε +=mm  ,  where 1|| <λ  . 

      •    0>λ  favors like enantiomers, 0<λ  favors opposite enantiomers. 

      •    mmε  varies smoothly as the tetramers deform, passing through 0ε  when  
         one tetramer changes chirality. 
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                     Parameter Choice, Reduced Units 

       •   Elementary parameter set choice:   m ,  0ε ,  0σ  
                
      •   Time unit:   2/1

00 )/( εσ m   

      •   Number density unit:  3
0

−σ   

      •   Temperature unit:   Bk/0ε  

      •   Pressure unit:   3
00 /σε  

      •   Dimensionless intramolecular ( )1(Φ ) parameters: 

          8003=strK ,    7.643=bndK ,    86.17=dihK ,    0583.1=b   
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     (T=1.4, tetramer number density = 0.17) 
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    Consolute Critical Point Pairs: Closed Coexistence Curves   

        •   glycerol + guaiacol  
             [B.C. McEwan, J. Chem. Soc. 123, 2284-2288 (1923)]     

        •   glycerol + m-toluidine  
             [R.R. Parvatiker and B.C. McEwan, J. Chem. Soc. 125, 1484-1492 (1924)]    

        •   glycerol + ethylbenzylamine 
             [R.R. Parvatiker and B.C. McEwan, J. Chem. Soc. 125, 1484-1492 (1924)]    

        •   water + nicotine 
             [A.N. Campbell, E.M. Kartzmark, and W.E. Falconer, Can. J. Chem. 36,     
             1475-1486 (1958)] 

        •   water + 2-butoxyethanol 
             [C.M. Ellis, J. Chem. Educ. 44, 405-407 (1967)]     
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                Basic Three-Dimensional Bravais Lattice Structure  
                                       Consisting of M Cells 

                        •   Discrete cell occupancy variables ( Mi ≤≤1 ): 

                                        1−=iν     (left-handed chiral occupant L)  
                                            0=       (empty cell) 
                                            1+=     (right-handed chiral occupant D)  . 

                       •   Overall occupancy: 
                                   

                                        2/)1(
1

−= 
=

− i
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i
iN νν   , 

                                        2/)1(
1
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+
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iiN νν   , 

                                        2
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=

+− =+=
M

i
iNNN ν   . 

                       •   Potential energy invariant to overall particle mirror inversion: 

                                        )....,()....,( 2121 MM νννννν −−−Φ=Φ  . 
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              Lattice Model Potential Energy Assumption: 
 

                [ ]
=


−

=
+=Φ

M

i

i

j
ijKjiijJjiM rr

2

1

1
22

21 )()()....,( ϕννϕννννν  , 

                           =Jϕ chirality-independent pair interaction , 
                              =Kϕ chirality-sensitive pair interaction , 
                              =ijr scalar distance between cell centers . 
 
              Classical Canonical Partition Function for the  
             Lattice Model: 
 

                [ ] Φ−=
),(

}{
21 /)....,(exp),,(

NM
BM

N

i
TkTNMZ

ν
νννω  

                                [ ]TkTNMF B/),,(exp −≡  ; 
 
                      F=Helmholtz free energy, =ω cell volume.   

dots
Typewritten Text
View 17  (click to go back)



 
                        Mean Field Approximation 
 
     •   Basic assumption:  Local particle distribution around any chosen 
          occupied site is equal to the system's average distribution. 
 
     •   Interaction simplifications ( 0, <KJ ):  

                Jr i
M

i
J →

=
)( 1

2
ϕ   ,      Kr

M

i
iK →

=
)(

2
1ϕ    . 

 
     •   Simplified free energy expression: 
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     •   Intensive variable 11 +≤≤− x  measures overall chirality: 
                  2/)1( NxN +=+  ,              2/)1( NxN −=−   .   
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                Chiral Symmetry Breaking for |J|<<|K| 

       •   Condition on intensive chirality variable x to minimize ),,( TMNF  
            expression: 

                                  















−=

−
+ x

Tk
K

x
x

B

ρ2exp
1
1

   , 

          where MN /=ρ  . 

       •   If  ρKTkB −>   (K<0) the only real solution is 0=x  (racemic state). 
            If  ρKTkB −<  there is a symmetric pair of non-zero solutions ),( ρTx±  . 

       •   Chiral symmetry breaking critical point:  ρKTkB −=±   .   
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                        Liquid-Vapor Transition 

       •   Temporarily assume |||| KJ >>  so that the temperature range of 
            liquid-vapor phase separation begins well above any ±T  . 

       •   Free energy for the racemic fluid system: 
                     )ln()(lnln/ NMNMMMNTkF B −−−+≈− ω  

                                                   









−






−

TMk
JNNN

B22
ln

2
  . 

       •  Locating the critical point and the coexisting liquid-vapor densities  
           requires the pressure formula: 

                                  
TT M

F
V
Fp 








∂
∂−≈








∂
∂−=

ω
1    . 

       •   Lattice model:   2/)1ln( 2ρρω JTkp B +−−=   .   
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              Liquid-Vapor Transition Densities Located  
           by the Homogeneous System Pressure Formula 
                                    

       •   The critical point and spinodal curves are located by the condition: 

                [ ]TkJJpp
B

TT
−−











−
=








∂

∂−=







∂

∂= ρρ
ρ

ρ
ρ
ωρ

ρ
ω 2

2
2

1
  

)/1(
0   . 

                                      
       •   Real solutions:   ])/41(1)[2/1( 2/1JTkB+±=ρ    . 

       •   Critical point:  4/JTk lvB −=  ; 2/1=lvρ   . 

       •   Maxwell construction for equal liquid-vapor chemical potentials at  
            coexistence ( lvTT < ) implies:   

                )(])3(1)[2/1(, 2/1 ηηρρ Ovl +±=  ,           JTkB /41+=η   .   
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              Critical Point Confluence Condition 

   •   Participation of liquid-vapor critical point requires 2/1/ == MNρ  . 

   •   Requirement that ±= TTlv  implies KJ 2=  . 

   •   Therefore:  2/||4/|| KJTk cflB ==   , and 2/1=cflρ   .   

   •   As T declines through cflT  , three fluid phases arise:  Two chiral liquids,  
        and a racemic vapor. 
    
   •   Two distinct interfacial free energies appear for cflTT <  : 
                 (a)  Contact interface between opposite chirality liquids; 
                 (b)  Chiral liquid-racemic vapor interface. 
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                     Critical Exponent Modification Due to 
                                Critical Point Confluence 

           •   Define:     0>−=Δ TTT cfl  ,       2/1−=Δ ρρ   . 

           •   Unlike the liquid-vapor critical point, the chiral-symmetry breaking  
                critical point can occur over a variable density range:    
                                           )2/1( ρΔ+−=± KTkB   . 

           •   In the mean field approximation, the liquid branch in the liquid-vapor   
                separation effect involves a leading-order density increase: 
                                                   2/1)( TΔ∝Δρ   . 

           •   The spontaneous chirality measure x at fixed T  moves away from zero   
                as a result of a density increment: 
                                          2/1)( ρΔ±∝x   . 

           •   Therefore:  4/12/12/1 )(])[()( TTtx Δ=Δ±∝Δ   . 
                This constitutes reduction of a critical exponent by one-half.    
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   Experimental and Theoretical Future Research Opportunities 

  (1)  Synthesize more molecules possessing isotropic chiral liquid phases. 

  (2)  Undertake molecular dynamics search for liquid-vapor critical points in  
         tetramer continuum models. 

  (3)  Use Monte Carlo simulations to determine interaction range effects  for  
         the lattice model family. 

  (4)  Create renormalization group analyses for the lattice and continuum  
         models to determine their precise critical confluence exponents. 

  (5)  Measure interfacial tensions vs. temperature for chiral liquids. 

  (6)  Determine the stable crystal structures for the tetramer model  
         for different choices of potential energy parameters.  
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