Inherent Structures and Their Excitations Jan. 2000 Author: Frank H. Stillinger

Transparencies for Lecture at Pitzer Memorial Symposium on Theoretical Chemistry Univ. of California, Berkeley Jan. 9-13, 2000

Table of Contents

- Inherent Structures and their Excitations
- Areas of Application
- Areas of Application (cont'd)
- Potential Energy Functions
- Potential Energy vs. Particle Coordinates
- Basin Properties
- Cyclohexane C-C Pairs/S.D. Quench
- Quench/Liquid
- Ni80P20
- Percentage of Hessian Eigenvalues That Are Negative

- 2D GCM
- Lindemann Melting Criterion
- Inherent Structure Representation
- Ideal Glass Transition?
- Inherent Structure Implications for the "Kauzmann Paradox"
- Inherent Structure Pressures
- Cluster
- SPC/E "Water"
- Low-Density Regime
- Challenging Problem

Inherent Structures and their Excitations

- Areas of application
- Some definitions
- Intrabasin "vibrations" and their effects
- Thermal equilibrium conditions
- Kauzmann paradox
- Amorphous solids in tension
- Low density properties
- A challenging problem

Acknowledgement: Princeton Materials Institute; Prof. P.G. Debenedetti and students, Chemical Engineering Dept., Princeton Univ.

Page 1 F.H. Stillinger Jan. 2000

Areas of Application

- Lindemann melting law, freezing extension.
- Low-T two-level system identification.
- Vibration-free local order in liquids.
- Stress-strain ageing and rejuvenation phenomena.
- Mechanical strength of glasses.
- Structure of aerogels.
- Hole-burning dynamics.
- Nucleation events for freezing and cavitation.
- Anomalous density of crystalline **4**He.
- Capillary waves at liquid interfaces.
- Protein folding.
- Critique of "ideal glass transition."

Page 2 F.H. Stillinger Jan. 2000

Areas of Application (cont'd)

- T, p dependence of water structure.
- 2-dimensional melting and hexatic order.
- Liquid metals and alloys.
- Colloidal suspensions.
- Pressure-induced amorphization.
- Breakdown of Stokes-Einstein formula for self diffusion rate in s.-c. liquids.
- Thermally excited cluster rearrangements.
- Point defect formation pathways in solids.
- Formation of silica glass by dehydration reactions.
- Molten salts.
- Shock wave propagation.
- Fracture dynamics.

Page 3 F.H. Stillinger Jan. 2000 • BORN-OPPENHEIMER GROUND ELECTRONIC STATE FOR N PARTICLES (MOLECULES, IONS, ATOMS):

$$\Phi(s_1 \cdots s_N)$$

· CHEMICAL INFORMATION :

HOLECULAR SIZE, SHAPE, FLEXIBILITY MULTIPOLE MOMENTS, POLARIZABILITY DISPERSION ATTRACTION HYDROGEN BONDS COVALENT BOND FORMATION, DISSOCIATION.

. MATHEMATICAL FORMAT AND PROPERTIES:

TROM NUCLEAR CONFLUENCES.

 Φ > - NB (STABILITY CRITERION).

• ADD pV TO \$ FOR CONSTANT PRESSURE CONDITIONS; CONFIGURATION SPACE DIMENSION:

V = NUMBER OF INTERNAL DEGREES OF

FREEDOM PER PARTICLE .

F.H. Stillinger Jan. 2000

Page 4

Jan. 2000

Page 6 BASIN PROPERTIES

- . DEFINED BY STEEPEST DESCENT ON D HYPERSURFACE.
- NUMBER OF BASING ~ N (and (N) , X > 0 .
- SPAN OF ⊕ MINIMA = O(N).
- . ELEMENTARY INTERBASIN TRANSITIONS ARE:
 - (A) LOCALIZED [SHIFT OF O(1) PARTICLES] ,
 - () SELDOM PURELY PERMUTATIONAL .
- O(N) TRANSITION STATES (SIMPLE SADDLE POINTS)
 IN EACH BASIN BOUNDARY.
- INTERBASIN TRANSITION RATE FOR POSITIVE TEMPERATURE IS O(N) .
- TRANSITION STATE BARRIERS CAN BE ARBITRARILY SMALL IN THE AMORPHOUS REGION OF CONFIGURATION SPACE (QUANTIZED 2-LEVEL SYSTEMS IN LOW TEMPERATURE GLASSES).
- . BASING NEED NOT BE SIMPLY CONNECTED.
- · PASING MAY CONTAIN INTERIOR DADDLE POINTS.

,

٠

Jan. 2000

.

Page 10

F.H. Stillinger Jan. 2000

 $l = \langle (\Delta r_i)^2 \rangle / a$

-

≅ 0.15 AT T.

INHERENT STRUCTURE REPRESENTATION

- ENUMERATE POTENTIAL MINIMA (INHERENT STRUCTURES) BY DEPTH PER PARTICLE $\Phi/N \equiv \varphi$: DENSITY = N! - M/PR[NO(φ)].
- MEAN VIBRATIONAL FREE ENERGY PER PARTICLE FOR DEPTH 9:

$$\mathcal{A}_{\mathcal{B}}\left[-Nf_{\mathcal{H}}\left(\beta,\varphi\right)\right] = \left\langle \int_{\mathcal{B}_{a}} d^{3N} \mathcal{A}_{\mathcal{R}} \mathcal{A}_{\mathcal{A}}\left[-\beta\Delta_{a} \overline{\Phi}(\mathcal{R})\right] \right\rangle_{\mathcal{P}} .$$

$$\mathcal{B}_{\mathcal{A}}\mathcal{J}(N) \qquad \left(\mathcal{B}_{\mathcal{R}}^{\dagger}\right)^{-1} \qquad \left(\mathcal{B}_{\mathcal{R}}^{\dagger}\right)^{-1}$$

· EXACT FREE ENERGY:

$$\beta F N = ln \lambda_T^3 - \sigma(\varphi^*) + \beta \varphi^* + \beta f_N(\beta, \varphi^*) .$$

$$THERMAL MINIMIZED BY \varphi^*(\beta)$$
• PRESSURE:
$$p = -\left(\frac{\partial F N}{\partial V/N}\right)^\beta$$

$$\geq 0 \quad \text{AT EQUILIBRIUM} .$$
• $\varphi^*(\beta)$ SINGULAR AT PHASE TRANSITIONS.

F.H. Stillinger Jan. 2000

IDEAL GLASS TRANSITION ?

F.H. Stillinger Jan. 2000

Inherent Structure Implications for the "Kauzmann Paradox"

• Ideal glass transition at T>0 is not possible: It would require infinite structural excitation energy out of lowest glass basin.

• It is possible to have

$$S_{jiq} - S_{aps} < 0$$

if and only if

$$S_{liq}^{(ni\delta)} - S_{ays}^{(ni\delta)} < 0$$

is sufficiently large in magnitude and negative.

Page 15 F.H. Stillinger Jan. 2000

F.H. Stillinger Jan. 2000

Page 16

N = 1372

$$p^* = 0.725$$
, $T^* = 0.9$

F.H. Stillinger Jan. 2000

.....

Page 17

Low-Density Regime

• Enumeration of inherent structures:

 Ω (N,V) ~ N! exp[α (N/V)N] (α >0)

• Consequence of attractions:

(1) Spatially inhomogeneous structures;

(2) $\lim_{N/V\to 0} \alpha (N/V) = +\infty$.

• Large finite N, infinite V:

(1) Fractal structures (cf. "DLA");

(2) $\Omega(N,\infty) \approx N! \exp[KN \cdot lnN + O(N)]$

 $\approx (N!)^{1+K}$ (K>0).

Page 19 F.H. Stillinger Jan. 2000

• Connection with aerogels.

Challenging Problem

• Born-Green-Yvon equation:

$$-k_B T \nabla_1 \ln g^{(2)}(r_{12}) = \nabla_1 V(r_{12}) + \rho \int d\mathbf{r}_3 [\nabla_1 V(r_{13})] \\ \times g^{(2)}(r_{13}) g^{(2)}(r_{23}) K(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3).$$

• Kirkwood superposition defect:

$$K(\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{r}_{3}) = \frac{\mathbf{g}^{(3)}(r_{2},r_{3},r_{3})}{\mathbf{g}^{(2)}(r_{12})\mathbf{g}^{(2)}(r_{13})\mathbf{g}^{(2)}(r_{23})}$$

• T \rightarrow 0 for inherent structures:

$$0 = \nabla_1 V(r_{12}) + \rho \int d\mathbf{r}_3 [\nabla_1 V(r_{13})] K(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3 \mid T = 0) \\ \times g_q^{(2)}(r_{13}) g_q^{(2)}(r_{23}).$$

• Questions:

(1) $\mathbb{Z}_{4}^{(2)}$ uniquely determined by K?

Page 20 F.H. Stillinger Jan. 2000 (2) How does K depend on method of preparing T = 0 deposit?