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Potential Energy/Enthalpy Functionsfor Many-Particle Systems

e For particlei, let x; denote the 3 coordinates for position, plus orientation, and intramolecul ar
deformation, if any. Thisrequires 3+7 coordinates (7> 0).

e Potential energy of interaction for N particles, confined to fixed volume V:

N
D(X1..XN) = _ZlVl(Xi)+_ZV2(Xi ,xj)+_ Z kv3(xi X XK) F e
i= i<j i<j<

This normally represents the electronic ground-state energy surface (“energy landscape”).

e Theintramolecular deformation energy for an isolated particle has been represented by v;(X) .
Pair (v5), triplet (v3), .... terms represent dispersion attractions, short-distance repulsions,
multipole interactions, hydrogen bonds, etc.

e Configuration space dimension for N particlesis (3+7)N .

e General featuresof @ :
(a) divergesto +< when any two nuclel approach zero distance;
(b) symmetric under interchange of identical particles,
(c) @ iscontinuous and at |east twice differentiable away from nuclear coincidences,
(d) for uncharged particles, @ isbounded below by — KN , where K isindependent of N;
() @ reducesto v; sum when all particles are widely separated;
(f) if the boundaries are remote, ® possesses tranglational and rotational symmetry;
(g) inalarge system, local rearrangements change ® only by O(1), not O(N).

e Extension to constant-pressure (isobaric) conditions ( p > 0):
Append volume V as another configurational coordinate [configuration space dimension increases
to(3+7)N +1]. Introduce “potential enthalpy” function'¥ ,

Y(X1.. XN, V) =DO(X1.. XN, V) + PV .
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Configuration Space Attrition by Particle Repulsive Cores

e Total configuration space content for point particles. V N

Ui
e Total configuration space content for molecules: (V H|§)N ;
¢=1
| s =measure for £ -thinternal degree of freedom.

e Edimate close-encounter strong repulsions as rigid sphere interactions with collision
diameter a.

e Non-overlap condition on rigid spheres reduces available configuration space by attrition
factor A. Calculate A using non-ideal entropy for rigid spheres:

A=exp[(S—Sgeal )/ kgl -
e Scaled particle theory approximation for rigid sphere entropy ( y=7za3N /16V):

ma® _ y(+y+y°)
6kgT 1-y)3
[Reiss, Frisch, and Lebowitz, J. Chem. Phys. 31, 369 (1959)] ;

S—Sdeal _ o1 . 3lq. 1
—NkB =In(1 y)+2{1 (1—y)2} .

e Numerical values of attrition factor a half close-packing [ y =7 /(6- 21/2) =0.3702]:
A= exp(—2744) =107 1192 (N=1000) ,

23
A= exp(—1.653x10%%) =10~ /17810 (N =Nj =6.022x10%) .

e Attenuated configuration space is connected, but tortuous!
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Steepest-Descent M apping, | nherent Structures, L andscape Basins

e Any point in the configuration space can be connected to (mapped onto) arelative minimum
of the potential energy function ®(x5...xp ) by steepest descent. These minima are called
inherent structures (1S's).

e Each|Siscontained in itsown landscape “basin”, the set of all configurations that map to that
IS by steepest descent.

e Number of basins for large N is asymptotically equal to N!'exp(eN) , where o > 0.
e Span of ® valuesfor thelS'sis O(N).
e Each basin boundary contains O(N) transition states (simple saddle points of @ ).

e Elementary interbasin transitions are:
(a) localized, i.e. involve shifts of O(1) particles;

(b) seldom purely permutational.

e Transition state barriers can be arbitrarily small in the “amorphous’ region of
configuration space. These produce “quantized 2-level systemsin low-T glasses.

e Each of the previous statements has an analogous version for the constant-pressure
(isobaric) circumstance, where the potential enthalpy W (X1...Xn,V) provides the

multidimensional landscape.
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Schematic plot of potential energy landscape
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Partition Function Transformation, Constant Volume Conditions

e Classical canonical partition function ( # =1/kgT ):

Qn(B.V) =[NIAN (B)] 7 dxy...] oy exp[—D(xq.. X )] = exp(—fF) ;
F isthe Helmholtz free energy, A isthe result of momentum integrations.

e Express Qn asasum of integrals over distinguishable (permutationally unrelated) basins B, :

Qn =AY exp(-AD,) [ dxy...] dxy exp{-BlO(x-.XN) - D, ]}
1 Bl

where @, isthe potential energy at the basin bottom (the IS).

¢ Classify IS'sby their value of ¢ =®/ N . The density of distinguishable IS's according
to the intensive depth parameter ¢ for large systems has the exponential form:

exp[No(@)] .

o Define Nfy,(83,9) to be the mean intrabasin vibrational free energy (including AN ) for basins
with depths in the immediate vicinity of ¢.

e Re-express Qn asaone-dimensional integral over ¢:

Qn =[dpexp{N[o(p)-Bo- &, (B.0)]} .

e ForlargeN, the integral is dominated by the neighborhood of the integrand’s maximum
a ¢ =¢*(S). Therefore, the Helmholtz free energy per particle becomes:

BFIN = po*+ X, (B,¢*)-o(¢*) .

o ¢*(f) locatesthe basins most probably occupied at the given temperature; it is determined
by the variational condition:

o'(¢*)= ﬁ[l"' (afv /8(0)(/):(/)*] .
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Intrabasin Vibrational Partition Functions,
Constant Volume Conditions

e Theclassical partition function for aspecific basin B, hasthe form:

AN [elxq...| dx exp[—A,@(xq.- XN )] = exp[-N& O (B)] |
Bl

where A,® isthe system’s potential energy measured from the basin bottom, i.e.

fromthe IS. Thefree energy of vibrational motion restricted to B, is Nf @ (8.

e Define a mean basin-depth-dependent vibrational free energy Nf, (5,9) to be an average
over al basinsthat have IS potential energiesin the narrow range N(¢ + op) :

exp[-NA (5, 9)] = <e><p["\'ﬂf D )]>¢i5(p

o f,(B,¢) will be essentially harmonic at low temperature, but will contain strong
anharmonic contributions at high temperature.



Partition Function Transfor mations, Constant Pressure Conditions
Classical isothermal-isobaric partition function ( # =1/kgT ):
Qn (B, P) =INIAN (B) Ay (B[ dxg...[ dxy [ AV exp[—A¥ (x1.. X V)] = exp(=G) ;
0

G isthe Gibbs free energy, A and A, result from molecule and piston momentum integrals.

Express QN asasum of integrals over distinguishable (permutationally unrelated) basins I§, :

Qu = AN A IS exp(- 5%,) [y [ dxy [V exp{—A1¥ (x.xn V) %]}
l Bl

where V¥, isthe potential enthalpy at the basin bottom (the 1S).

Classify IS s by their value of ¥ =¥ /N . The density of distinguishable |S's according
to the intensive depth parameter y for large systems has an exponential form:

exp[NG(v)] .

Define va(ﬂ,l//) to be the mean intrabasin vibrational free energy (including A_Nﬂv_l)
for basins with depths in the immediate vicinity of .

Re-express QN as aone-dimensional integral over v :

Qn = [ dyexp{N[6(y) - By~ B (Bw)]} .

For large N, the integral is dominated by the neighborhood of the integrand’s maximum
a v =y*(B). Therefore, the Gibbs free energy per particle becomes:

BGIN = By*+ A (B.y*)-6(*) .

w* () locatesthe basins most probably occupied at the given temperature and pressure;
it is determined by the variational condition:
R A Princeton Lecture
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M etastable States M odification

o First-order phase transitions (crystal/liquid, liquid/vapor, etc.) involve discontinuities

ing*(8), y*(B):
!
oY T,

i\

e These represent switches from one dominant ¢ or  integral maximum to another, resulting
from sudden shiftsin population of inhabited landscape basins.
e To avoid these shifts, and to permit metastabl e extensions of the Helmholtz and Gibbs

free energy expressions, separate all basins into distinct subsets corresponding to
the IS patterns contributing to the respective phases. Enumeration functions ¢, ¢ and

vibrational free energy functions f,, and f,, can then be separately defined for each basin
Subset.

e Supercooled liquid case: Divide basins according to whether or not the IS's contain
crystalline regions at |east large enough to nucleate freezing. Those that do not are
“amorphous IS's’, which determine liquid-state properties, whether in equilibrium or
in supercooling.

o Freeenergy expressions (subscript a denotes amorphous basin subset):

Bral N = Bpa*+Kay(B,0a*) —0a(Pa*)

BGa N :ﬂl//a*"'ﬁfav(ﬂa‘//a*)_é'a(‘//a*) :
where ¢, *, w4 * aretheintegrand maximain this restricted format.

* Thesefree energy expressions |ose relevance below a glass transition temperature Ty .

9
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Potential energy landscape: projection for distinct
metastable states
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I nterbasin Transitions. Excitations from the Perfect Crystal

e Theabsolute @ or ¥ minimum normally correspondsto a structurally perfect crystal:

O
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e Elementary excitations consist of minimal displacement of any one of the N particlesto a

nearby interstitial site:
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e The path from the perfect crystal IS to the vacancy-interstitial configuration requires
an energy or enthalpy rise of O(1) , and surmounts an intervening barrier also of O(1) ,

located &t the basin boundary.

e Number of excitations (and their saddle points) out of the absolute minimum basin is nN,
where n is the number of equivalent nearby sites for stable residency of the intergtitial.

11
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Basin Sampling Kinetics — Rough Estimate

e Similarly to the large-system crystal case, amorphous-structure basins are expected to have
O(N) transition statesto neighbor basins. These arise from O(N) locations in the | S that can
independently rearrange to produce a different IS.

e Number of basins that could be populated (isobaric conditions) = exp[J(y3*)N] .

For the glass-former ortho-terphenyl at its freezing point , experimental calorimetry leads
to the estimate:
o(py*)=6.3 (T=TH=329.35K, p=1bar) ,

[F.H. Stillinger, J. Phys. Chem. B 102, 2807-2810 (1998)].
e Crude estimate of interbasin transition rate: R=N sec ™+ .

e Timerequired for onemole (N =Np = 6.022><1023) of ortho-terphenyl at its melting point

to visit all relevant landscape basins in turn, optimistically assuming no returns until all had
been inhabited once (“Poincare recurrence”):

t(Poincare) = exp[o(w*)Nal/ R(N )
= exp[(6.3)(6.022x10%3)] /[6.022x10%° sec 1]

24
Z10-64890% o

24
= 1064810 millenia.

e Qualitatively similar results apply to isochoric conditions, other materials, other
temperatures and pressures.

e Concluson: Macroscopic material systems observed over typical laboratory observation
times can only visit atiny fraction of the basins in their multidimensional landscape.

12
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Thermal Equilibrium

Whether in isochoric or isobaric conditions, thermal equilibrium requires
particle dynamics only to visit atiny, but representative, sample of all basins
enumerated by o(¢) or 6(y) [dternatively o,(p) or 64(w) for metastable

supercooled states]. Inthis respect it is analogous to accurate voter polling

prior to an election. The representative basin sampling fails below a glass
transition temperature.

13



Princeton Lecture
December 11, 2003
F.H. Stillinger
Slide 14

General Properties of Landscape Basins
(Isochoric Case)

e Each landscape basin isthe locus of all points R in the multidimensional configuration
Space that steepest-descent mapping connects to its single local minimum (inherent structure):

dR/ds=-V®(R) , R=R(s=0) , R(s=+=)=R(IS) .

e Simple transition states connecting neighboring basins lie in the common boundary, have
vanishing gradient (V® =0), and one negative curvature (i.e. smple saddle point). These
transitions correspond to local rearrangements within the N-particle system, and are O(N)

in number.

e Higher-order saddles also occur & the interbasin boundaries, with V& =0, and n>1

negative curvatures. Theseare O(N"/n!) in number, lie O(n) in energy above the IS,
and mostly correspond to n independent localized transitions occurring simultaneously.

e Saddlesof order 1,2,.... can occur within basin interiors, but have nothing to do with
transitions between neighboring IS's.  Steepest-descent trajectories emanating from such
internal saddles all converge onto the single interior IS.

e Basins are forced by definition to be connected, but may be multiply connected.

e The N-body intrabasin “vibrational” displacements that move each particle a modest O(2)

distance from its position at the IS, have the effect of moving the multidimensional

N1/2

configuration point an O( ) fromthe|S. For some basins, macroscopic elastic

displacements are possible, staying within the same basin, that reach O(N 5/ 6) . [These
results rely on the multidimensional form of Pythagoras' theorem.]

e Small intrabasin deviations from the IS can be described as independent normal modes of
the N-particle system. Inthiscase ® can be truncated after quadratic termsin the
displacements. Diagonalizing the quadratic form for structureless particles with mass m,

3N >
D=2 Y Ku? ,
i=1

leads to normal mode angular frequencies @; = (K; / m)ll 2

14
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For simple point particles, mean-square vibrational displacements from IS positionsin
3-dimensional space can be defined as averages over the populated basins:

B:

-1
((ar ,-)2>=<{ JaR(ar j)zexp[—ﬂcb(R)]}>< deexp[—/i’(I)(R)]>
Bl

with a corresponding expression for isobaric (constant pressure) conditions.

Assuming classical datisticsisvalid, <(Arj)2> o< T at low temperature where the harmonic

normal mode approximation is valid.

If thermally excited defects are negligible, only the perfect-crystal basin needsto be
considered below the melting point, i.e. basin averaging is unnecessary.

Lindemann melting criterion: The thermodynamic melting point occurs when heating
causes the dimensionless ratio of root-mean-square particle displacement to nearest-neighbor
crystal spacing | to rise approximately to:

<(Arj)2>1/2/I =015 .

Values of the Lindemann ratio determined experimentally (by radiation scattering) are
somewhat dependent on crystal structure. However this empirical rule works reasonably
well for heavier noble gases, ionic crystals, metals.

The “one-sided” Lindemann melting criterion contrasts with the “two-sided”
thermodynamic criteria for phase transitions (equality of temperature, pressure, and
chemical potential in both phases).

Dimensionless “Lindemann ratios’ can be defined for liquids, using the amorphous basin
set, and using the pair correlation function first peak to identify I. Available evidence

indicates that freezing occurs when cooling of the liquid causes its dimensionless ratio to drop
to acritical value:

<(Arj)2>ll =040 .

This congtitutes an “inverse Lindemann” criterion for freezing.

15
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Plot of Lindemann ratios vs. temperature, crystals and
liquids
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Schematic diagram of s.-d. quenching effect on g(r)
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Effect of s.-d. quenching on cyclohexane g(r)
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Effect of s.-d.

in n-pentane

guenching on dihedral angle distribution
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FIG. 2. Dihedral angle distributions in simulations of n-pentane. Top row: liquid state at various
T TS T

temperatures; bottom row: Inherent structures obtained from the liquids by steepest descent energy mini-

mization.
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Separ ation of |sother mal Compressibility
(IS + vibrational contributions)

¢ |sothermal compressibility definition: &1 =—(dInV /dp)t .
e Connection to local order viathe pair correlation function (Ornstein and Zernike, 1926):

pkeTrr =1+ p[dr[g (r)-1] (p=NIV) .

e Validfor: equilibrium liguids and crystals,
supercooled liquids,
non-pairwise-additive interactions,
classical and quantum statistics.

e Apply isochoric (constant-V) mapping to system configurations to obtain vibration-free
pair correlation function g|3(2) (r) for the contributing IS's.

e Add and subtract g|s(2)(r) in the Ornstein-Zernike formula:
pkeTrr ={1+ plarlgis'? (1) -1} +{p] dr[g@ () - 918D (1)}
= pkgTlrr(!® + e 0]
e For agructurally perfect crystal, KT('S) =0 .

e For equilibrium and supercooled liquids, k7S >0 |

* Expressions not applicable to glasses below temperature Ty .

20
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| dentification of Contributionsto Cy

e Helmholtz free energy per particle in terms of isochoric (constant V) basin properties.
BFIN =—-o(¢*)+ po* +(8.¢*) (B=1kgT) .

e The dominant value of the IS potential energy per particle, ¢* () , is determined by the
variational criterion:

o'le* (B)] = Bl1+(9fy [ 09) p=p+(5)] -

. ... E_9JfFIN
Energy per particle: N op
opty (. 9)
=0*(B) +( v ] :
B p=0*(B)

e Constant-volume heat capacity per particle:

Gy _ ,2dE/N

Nkg p ds
=49 ZM _ B2 al azfv Y afv azfv d@*
_{ B 35 }+{ B {zaﬂJr'BaﬁZ}Jr{ B {a¢*+ﬁ8@(p*} d,b’}
=c, 19+, D) 4 g, (1SViD)

e Thecrossterm OV('S'Vi b) arises from depth dependence of average basin geometry.

21
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| dentification of Contributionsto Cp

e Gibbs free energy per particle in terms of isobaric (constant p) basin properties:

BGIN ==6(y*)+ By*+ B, (B.w*) (B=1/kgT) .

e The dominant value of the IS potential enthalpy per particle, w* (f) , is determined by the
variational criterion:

&'y (B)] = Bld+ @y 109)y—y(p)] -

. . H _JdBG/IN
Enthalpy per particle: N 95 7
oM (B.¥)
=y* (ﬂ){ v J :
9p y=y*(B)

e Constant-pressure heat capacity per particle:

i:_ﬁz dH /N
Nkg ds

—J_ ZM _R2 & 82]E\v _n2 afv 82]?v
‘{ g dﬁH g {Zafﬁaﬁ]}*{ / {aw“ﬁaﬂaw*

:Cp(IS)+Cp(vib)+Cp(IS,vib) '

dy*
dg
e Thecrossterm Clo('s'Vi b) arises from depth dependence of average basin geometry.

22
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Resolving I sobaric Thermal Expansion

Definition: o =(1/V)(@V/dT) .

Virial equation of state [additive spherical interactions v(r)]:

b= pkeT — (220213 [r3 (g, T)dr .
0

Apply (o/ E)T)IO , rearrange:
op =(2p- pkgT) ™Y pkg — (2702 13) é r3v(r)@g'? (r, T)/aT) par

Use constant-pressure mapping to potential-enthal py landscape minima

to identify separate basin contributions to g(z) . Basin i has occupancy
probability P;(T):

0@ 1=xRg@.T) |
|

ag? (3Pj ) g2 (.1)
[aT ]p ZaT Ji (rT)+ZP oT .

o Thetwo terms in the last expression represent respectively interbasin
inherent structural shifts, and intrabasin vibrational shifts. Thus:

op = ap('s) + ap(Vi b)

23
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Angell’s Strong vs. Fragile Glass Formers

Strong limit:
Arrhenius temperature dependence of shear viscosity, mean relaxation time;
no discontinuity in Cp across glass transition temperature. [GeO,]

Fragilelimit:
Markedly non-Arrhenius temperature dependence of shear viscosity, mean
relaxation time; large drop in Cp upon cooling through the glass transition
temperature. [OTP]

Empirical conclusion:
Thermodynamic and kinetic properties of individual glass-formers are closely
correlated with respect to their strong-fragile classification.

24
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Schematic plot of “strong” vs. “fragile” landscapes

(a) Strong Glass Formers

(b) Fragile Glass Formers
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Model energy landscapes confounding strong-

fragile correlation idea
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