
 
 
 
 
 
 

          Selected Features of Potential Energy Landscapes 
                        and Their Inherent Structures 
 
              Lecture delivered December 11, 2003 for ChE 536 

Frank H. Stillinger

Department of Chemistry

Princeton Univesity

Princeton Lecture
December 11, 2003

F.H. Stillinger
Slide 1



              
 
 
 
 
                Potential Energy/Enthalpy Functions for Many-Particle Systems 
 
 
     •   For particle i, let ix  denote the 3 coordinates for position, plus orientation, and intramolecular  

          deformation, if any.  This requires η+3  coordinates ( 0≥η ). 
 
     •   Potential energy of interaction for N particles, confined to fixed volume V: 
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         This normally represents the electronic ground-state energy surface (“energy landscape”). 
 
     •  The intramolecular deformation energy for an isolated particle has been represented by )(1 xv . 

         Pair ( 2v ), triplet ( 3v ), .... terms represent dispersion attractions, short-distance repulsions,  

         multipole interactions, hydrogen bonds, etc. 
 
     •   Configuration space dimension for N particles is N)3( η+ . 
 
     •   General features of Φ : 
               (a)  diverges to ∞+  when any two nuclei approach zero distance; 
               (b)  symmetric under interchange of identical particles; 
               (c)  Φ  is continuous and at least twice differentiable away from nuclear coincidences; 
               (d)  for uncharged particles,Φ  is bounded below by KN− , where K is independent of N; 
               (e)  Φ  reduces to 1v  sum when all particles are widely separated; 
               (f)  if the boundaries are remote, Φ  possesses translational and rotational symmetry; 
               (g)  in a large system, local rearrangements change Φ  only by O(1), not O(N). 
 
     •   Extension to constant-pressure (isobaric) conditions ( 0>p ):  
          Append volume V as another configurational coordinate [configuration space dimension increases 
          to 1)3( ++ Nη ].  Introduce “potential enthalpy” function Ψ , 
 
                         pVVV NN +Φ=Ψ ),...(),...( 11 xxxx   . 
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                  Configuration Space Attrition by Particle Repulsive Cores 
 
 

     •   Total configuration space content for point particles:  NV . 
 

     •   Total configuration space content for molecules:  ∏
=

η

ξ
ξ

1
)( NlV  ; 

          ξl =measure for ξ -th internal degree of freedom. 

 
     •   Estimate close-encounter strong repulsions as rigid sphere interactions with collision 
          diameter a.   
 
     •   Non-overlap condition on rigid spheres reduces available configuration space by attrition 
          factor A.  Calculate A using non-ideal entropy for rigid spheres: 
 
                         ]/)exp[( Bideal kSSA −=   . 

 

     •   Scaled particle theory approximation for rigid sphere entropy ( VNay 6/3π= ): 
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          [Reiss, Frisch, and Lebowitz, J. Chem. Phys. 31, 369 (1959)] ; 
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     •   Numerical values of attrition factor at half close-packing [ 3702.0)26/( 2/1 ≅⋅= πy ]: 
 

                         119210)2744exp( −≅−≅A                     (N=1000) , 
 

                         
2310178.724 10)10653.1exp( ×−≅×−≅A                ( 2310022.6 ×≅= ANN ) . 

 
     •   Attenuated configuration space is connected, but tortuous!
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          Steepest-Descent Mapping, Inherent Structures, Landscape Basins 
 
 
     •   Any point in the configuration space can be connected to (mapped onto) a relative minimum 
          of the potential energy function )...( 1 NxxΦ by steepest descent.  These minima are called  

          inherent structures (IS’s). 
 
     •   Each IS is contained in its own landscape “basin”, the set of all configurations that map to that 
          IS by steepest descent. 
 
     •   Number of basins for large N is asymptotically equal to )exp(! NN α , where 0>α . 
 
     •   Span of Φ  values for the IS’s is )(NO . 
 
     •   Each basin boundary contains )(NO  transition states (simple saddle points of Φ ). 
 
     •   Elementary interbasin transitions are: 
                    (a) localized, i.e. involve shifts of )1(O particles; 
                    (b) seldom purely permutational. 
 
     •   Transition state barriers can be arbitrarily small in the “amorphous” region of  
          configuration space.  These produce “quantized 2-level systems in low-T glasses. 
 
     •   Each of the previous statements has an analogous version for the constant-pressure 
          (isobaric) circumstance, where the potential enthalpy ),...( 1 VNxxΨ  provides the  

          multidimensional landscape.  
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Schematic plot of potential energy landscape 
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          Partition Function Transformation, Constant Volume Conditions 
 
 
     •   Classical canonical partition function ( TkB/1=β ): 
 

                 )exp()]...(exp[...)](![),( 11
1 FddNVQ NN

N
N ββββ −≡Φ−Λ= − xxxx  ; 

 
          F is the Helmholtz free energy, Λ is the result of momentum integrations. 
 
     •   Express NQ  as a sum of integrals over distinguishable (permutationally unrelated) basins ιB : 

 

                    ]})...([exp{...)exp( 11 ι
ι

ι ββ
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Φ−Φ−Φ−Λ= −
NN

B
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N ddQ xxxx   , 

 
          where ιΦ  is the potential energy at the basin bottom (the IS). 

 
     •   Classify IS’s by their value of N/Φ=ϕ .  The density of distinguishable IS’s according  
          to the intensive depth parameter ϕ  for large systems has the exponential form: 
 
                                                )](exp[ ϕσN  . 
 

     •   Define ),( ϕβvNf  to be the mean intrabasin vibrational free energy (including N−Λ ) for basins  

          with depths in the immediate vicinity of ϕ . 
 
     •   Re-express NQ  as a one-dimensional integral over ϕ : 

 
                    )]},()([exp{ ϕβββϕϕσϕ vN fNdQ −−=    . 

 
     •   For large N, the integral is dominated by the neighborhood of the integrand’s maximum 
          at )(* βϕϕ = .  Therefore, the Helmholtz free energy per particle becomes: 
 
                              *)(*),(*/ ϕσϕβββϕβ −+= vfNF   . 

 
     •   )(* βϕ  locates the basins most probably occupied at the given temperature; it is determined 
          by the variational condition: 
 
                    ])/(1[*)(' *ϕϕϕβϕσ =∂∂+= vf   . 
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                              Intrabasin Vibrational Partition Functions, 
                                     Constant Volume Conditions 
 
 
     •   The classical partition function for a specific basin ιB  has the form: 

 

                    )](exp[)]...(exp[... )(
11 βββ ι

ι
ι

fNdd NN
B

N −≡ΦΔ−Λ− xxxx   , 

 
          where ΦΔι  is the system’s potential energy measured from the basin bottom, i.e. 

          from the IS.  The free energy of vibrational motion restricted to ιB  is )()( βιNf . 

 
     •   Define a mean basin-depth-dependent vibrational free energy ),( ϕβvNf  to be an average  

          over all basins that have IS potential energies in the narrow range )( δϕϕ ±N : 
 

                                
δϕϕ

ι ββϕββ
±

−=− )](exp[)],(exp[ )(fNfN v   . 

 
     •   ),( ϕβvf  will be essentially harmonic at low temperature, but will contain strong 

         anharmonic contributions at high temperature. 
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          Partition Function Transformations, Constant Pressure Conditions 
 
 
     •   Classical isothermal-isobaric partition function ( TkB/1=β ): 
 

           )exp()],...(exp[...)]()(![),(ˆ

0
11

1 GVdVddNpQ NNV
N

N βββλββ −≡Ψ−Λ=  
∞

− xxxx  ; 

 
          G is the Gibbs free energy, Λ  and Vλ  result from molecule and piston momentum integrals. 

 

     •   Express NQ̂  as a sum of integrals over distinguishable (permutationally unrelated) basins ιB̂ : 
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          where ιΨ  is the potential enthalpy at the basin bottom (the IS). 

 
     •   Classify IS’s by their value of N/Ψ=ψ .  The density of distinguishable IS’s according 
          to the intensive depth parameter ψ  for large systems has an exponential form: 
 
                                                     )](ˆexp[ ψσN  . 
 

     •   Define ),(ˆ ψβvfN  to be the mean intrabasin vibrational free energy (including 1−−Λ V
N λ )   

          for basins with depths in the immediate vicinity of ψ . 
 

     •   Re-express NQ̂  as a one-dimensional integral over ψ : 

 

                             −−= )]},(ˆ)(ˆ[exp{ˆ ψβββψψσψ vN fNdQ   . 

 
     •   For large N, the integral is dominated by the neighborhood of the integrand’s maximum 
          at )(* βψψ = .  Therefore, the Gibbs free energy per particle becomes: 
 

                              *)(ˆ*),(ˆ*/ ψσψβββψβ −+= vfNG   . 

 
     •   )(* βψ  locates the basins most probably occupied at the given temperature and pressure; 
          it is determined by the variational condition: 
 

                    ])/ˆ(1[*)('ˆ *ψψψβψσ =∂∂+= vf   . 
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                                              Metastable States Modification 
 
 
     •   First-order phase transitions (crystal/liquid, liquid/vapor, etc.) involve discontinuities 
          in )(* βϕ , )(* βψ : 
 
 
 
 
 
   
 
 
 
 
 
     •   These represent switches from one dominant ϕ  or ψ integral maximum to another, resulting   
          from sudden shifts in population of inhabited landscape basins.  
 
     •   To avoid these shifts, and to permit metastable extensions of the Helmholtz and Gibbs 
          free energy expressions, separate all basins into distinct subsets corresponding to 
          the IS patterns contributing to the respective phases.  Enumeration functions σ , σ̂  and 

          vibrational free energy functions vf  and vf̂  can then be separately defined for each basin  

          subset. 
 
     •   Supercooled liquid case:  Divide basins according to whether or not the IS’s contain  
          crystalline regions at least large enough to nucleate freezing.  Those that do not are  
          “amorphous IS’s”, which determine liquid-state properties, whether in equilibrium or  
          in supercooling.  
 
     •   Free energy expressions (subscript a denotes amorphous basin subset): 
 
                           *)(*),(*/ aaaavaa fNF ϕσϕβββϕβ −+= , 

 

                           *)(ˆ*),(ˆ*/ aaaavaa fNG ψσψβββψβ −+=  , 

 
          where *aϕ , *aψ  are the integrand maxima in this restricted format.  

  
     •   These free energy expressions lose relevance below a glass transition temperature gT . 
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Potential energy landscape: projection for distinct 
metastable states 
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               Interbasin Transitions: Excitations from the Perfect Crystal 
 
 
     •   The absolute Φ  or Ψ minimum normally corresponds to a structurally perfect crystal: 
 
                                             Ο      Ο      Ο      Ο      Ο      Ο      Ο  
 
                                             Ο      Ο      Ο      Ο      Ο      Ο      Ο  
 
                                             Ο      Ο      Ο      Ο      Ο      Ο      Ο  
 
                                             Ο      Ο      Ο      Ο      Ο      Ο      Ο  
 
                                             Ο      Ο      Ο      Ο      Ο      Ο      Ο  
 
                                             Ο      Ο      Ο      Ο      Ο      Ο      Ο  
 
     •   Elementary excitations consist of minimal displacement of any one of the N particles to a  
          nearby interstitial site: 
 
                                             Ο      Ο      Ο      Ο      Ο      Ο      Ο  
 
                                             Ο      Ο      Ο      Ο      Ο      Ο      Ο  
                                                                             Ο  
                                             Ο      Ο      Ο      Ο      Ο      Ο      Ο  
 
                                             Ο      Ο               Ο      Ο      Ο      Ο  
  
                                             Ο      Ο      Ο      Ο      Ο      Ο      Ο  
 
                                             Ο      Ο      Ο      Ο      Ο      Ο      Ο  
 
     •   The path from the perfect crystal IS to the vacancy-interstitial configuration requires  
          an energy or enthalpy rise of )1(O , and surmounts an intervening barrier also of )1(O , 
          located at the basin boundary. 
             
     •   Number of excitations (and their saddle points) out of the absolute minimum basin is nN,  
          where n is the number of equivalent nearby sites for stable residency of the interstitial.
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                                 Basin Sampling Kinetics – Rough Estimate 
 
 
     •   Similarly to the large-system crystal case, amorphous-structure basins are expected to have  
          O(N) transition states to neighbor basins.  These arise from O(N) locations in the IS that can  
          independently rearrange to produce a different IS. 
 
     •   Number of basins that could be populated (isobaric conditions) ]*)(ˆexp[ Naψσ≅   . 

          For the glass-former ortho-terphenyl at its freezing point , experimental calorimetry leads 
          to the estimate:  
                                        3.6*)(ˆ ≅aψσ         ( KTT m 35.329== ,  barp 1= )  , 

 
          [F.H. Stillinger, J. Phys. Chem. B 102, 2807-2810 (1998)]. 
 

     •   Crude estimate of interbasin transition rate:  R=N 1sec−   . 

 

     •   Time required for one mole ( 2310022.6 ×== ANN ) of ortho-terphenyl at its melting point 
          to visit all relevant landscape basins in turn, optimistically assuming no returns until all had  
          been inhabited once (“Poincare recurrence”): 
 
                                   )(/]*)(ˆexp[)( AA NRNPoincaret ψσ≅  
 

                                                       ]sec10022.6/[)]10022.6)(3.6exp[( 12323 −××≅  
 

                                                       
2410648.110 ×≅  sec 

 

                                                       
2410648.110 ×≅ millenia . 

 
     •   Qualitatively similar results apply to isochoric conditions, other materials, other  
          temperatures and pressures. 
 
     •   Conclusion:  Macroscopic material systems observed over typical laboratory observation 
          times can only visit a tiny fraction of the basins in their multidimensional landscape. 
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                                          Thermal Equilibrium 
 
 
          Whether in isochoric or isobaric conditions, thermal equilibrium requires 
          particle dynamics only to visit a tiny, but representative, sample of all basins 
          enumerated by )(ϕσ  or )(ˆ ψσ  [alternatively )(ϕσ a  or )(ˆ ψσ a  for metastable  
          supercooled states].  In this respect it is analogous to accurate voter polling 
          prior to an election.  The representative basin sampling fails below a glass  
          transition temperature. 
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                                  General Properties of Landscape Basins 
                                                (Isochoric Case) 
 
     •   Each landscape basin is the locus of all points R  in the multidimensional configuration  
          space that steepest-descent mapping connects to its single local minimum (inherent structure): 
 
                     )(/ RR Φ−∇=dsd  ,             )0( =≡ sRR  ,             )()( ISs RR ≡+∞=   . 
 
     •   Simple transition states connecting neighboring basins lie in the common boundary, have  
          vanishing gradient ( 0=Φ∇ ), and one negative curvature (i.e. simple saddle point).  These  
          transitions correspond to local rearrangements within the N-particle system, and are )(NO  
          in number. 
 
     •   Higher-order saddles also occur at the interbasin boundaries, with 0=Φ∇ , and 1>n   

          negative curvatures.  These are )!/( nNO n  in number, lie )(nO  in energy above the IS, 
          and mostly correspond to n independent localized transitions occurring simultaneously. 
 
     •   Saddles of order 1,2,.... can occur within basin interiors, but have nothing to do with  
          transitions between neighboring IS’s.  Steepest-descent trajectories emanating from such 
          internal saddles all converge onto the single interior IS. 
 
     •   Basins are forced by definition to be connected, but may be multiply connected. 
 
     •   The N-body intrabasin “vibrational” displacements that move each particle a modest )1(O  
          distance from its position at the IS, have the effect of moving the multidimensional  

          configuration point an )( 2/1NO  from the IS.  For some basins, macroscopic elastic  

          displacements are possible, staying within the same basin, that reach )( 6/5NO .  [These 
          results rely on the multidimensional form of Pythagoras’ theorem.] 
 
     •   Small intrabasin deviations from the IS can be described as independent normal modes of  
          the N-particle system.  In this case Φ  can be truncated after quadratic terms in the  
          displacements.  Diagonalizing the quadratic form for structureless particles with mass m, 
 

                                         
=

=Φ
N

i
iiuK

3

1

2)2/1(   , 

 

          leads to normal mode angular frequencies 2/1)/( mKii =ω   . 
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                                                 Melting and Freezing Criteria 
 
     •  For simple point particles, mean-square vibrational displacements from IS positions in  
         3-dimensional space can be defined as averages over the populated basins: 
 

                    

1
22 )](exp[)](exp[)()(
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          with a corresponding expression for isobaric (constant pressure) conditions. 
 

     •   Assuming classical statistics is valid, Tj ∝Δ 2)( r  at low temperature where the harmonic 

          normal mode approximation is valid. 
 
     •   If thermally excited defects are negligible, only the perfect-crystal basin needs to be  
          considered below the melting point, i.e. basin averaging is unnecessary. 
 
     •   Lindemann melting criterion:  The thermodynamic melting point occurs when heating  
          causes the dimensionless ratio of root-mean-square particle displacement to nearest-neighbor 
          crystal spacing l to rise approximately to: 
 

                                 15.0/)(
2/12 ≅Δ ljr   . 

 
     •  Values of the Lindemann ratio determined experimentally (by radiation scattering) are 
         somewhat dependent on crystal structure.  However this empirical rule works reasonably  
         well for heavier noble gases, ionic crystals, metals. 
 
     •   The “one-sided” Lindemann melting criterion contrasts with the “two-sided”  
          thermodynamic criteria for phase transitions (equality of temperature, pressure, and 
          chemical potential in both phases). 
 
     •   Dimensionless “Lindemann ratios” can be defined for liquids, using the amorphous basin  
          set, and using the pair correlation function first peak to identify l.  Available evidence 
          indicates that freezing occurs when cooling of the liquid causes its dimensionless ratio to drop  
          to a critical value: 
 

                                  40.0/)( 2 ≅Δ ljr  . 

 
          This constitutes an “inverse Lindemann” criterion for freezing. 
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Plot of Lindemann ratios vs. temperature, crystals and 
liquids 
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Schematic diagram of s.-d. quenching effect on g(r)
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Effect of s.-d. quenching on cyclohexane g(r)
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Effect of s.-d. quenching on dihedral angle distribution 
in n-pentane 
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                              Separation of Isothermal Compressibility 
                                   (IS + vibrational contributions) 
 
 
     •   Isothermal compressibility definition:   TT pV )/ln( ∂∂−=κ   . 
 
     •   Connection to local order via the pair correlation function (Ornstein and Zernike, 1926): 
 

                        ]1)([1 )2( −+=  rgdTk TB rρκρ                    ( VN /=ρ )  . 

 
     •   Valid for:   equilibrium liquids and crystals, 
                            supercooled liquids, 
                            non-pairwise-additive interactions, 
                            classical and quantum statistics. 
 
     •   Apply isochoric (constant-V) mapping to system configurations to obtain vibration-free 

          pair correlation function )()2( rgIS  for the contributing IS’s. 

 

     •   Add and subtract )()2( rgIS  in the Ornstein-Zernike formula: 

 

                          −+−+= )]}()([{]}1)([1{ )2()2()2( rgrgdrgdTk ISISTB rr ρρκρ  

 

                                        ][ )()( vib
T

IS
TBTk κκρ +≡   . 

 

     •   For a structurally perfect crystal, 0)( ≡IS
Tκ   . 

 

     •   For equilibrium and supercooled liquids, 0)( >IS
Tκ   . 

 
     •   Expressions not applicable to glasses below temperature gT . 
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                                          Identification of Contributions to CV 
 
 
     •   Helmholtz free energy per particle in terms of isochoric (constant V) basin properties: 
 
                              *),(**)(/ ϕβββϕϕσβ vfNF ++−=                      ( TkB/1=β )  . 

 
     •   The dominant value of the IS potential energy per particle, )(* βϕ , is determined by the  
          variational criterion: 
 
                              ])/(1[)](*[' )(* βϕϕϕββϕσ =∂∂+= vf   .  

 

     •   Energy per particle:       
β

β
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∂= NF

N

E /
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     •   Constant-volume heat capacity per particle: 
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                             ),()()( vibIS
V

vib
V

IS
V CCC ++=   . 

 

     •   The cross term ),( vibIS
VC  arises from depth dependence of average basin geometry. 
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                                        Identification of Contributions to CP 
 
 
     •   Gibbs free energy per particle in terms of isobaric (constant p) basin properties: 
 

                            *),(ˆ**)(ˆ/ ψβββψψσβ vfNG ++−=                  ( TkB/1=β )  . 

 
     •   The dominant value of the IS potential enthalpy per particle, )(* βψ , is determined by the 
          variational criterion: 
 

                              ])/ˆ(1[)](*['ˆ )(* βψψψββψσ =∂∂+= vf   . 

 

     •   Enthalpy per particle:        
β

β
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     •   Constant-pressure heat capacity per particle: 
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                          ),()()( vibIS
p

vib
p

IS
p CCC ++=   . 

 

     •   The cross term ),( vibIS
pC  arises from depth dependence of average basin geometry. 
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                                     Resolving Isobaric Thermal Expansion 
 
 
     •   Definition:    pp TVV )/)(/1( ∂∂=α   . 

 
     •   Virial equation of state [additive spherical interactions )(rv ]: 
 

                          drTrgrvrTkp B ),()(')3/2( )2(

0

32 −=
∞

πρρ   . 

 
     •   Apply pT )/( ∂∂  , rearrange: 

 

         
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




 ∂∂−−=
∞−

0

)2(321 )/),()((')3/2()2( drTTrgrvrkTkp pBBp πρρρα   . 

 
     •   Use constant-pressure mapping to potential-enthalpy landscape minima 

         to identify separate basin contributions to )2(g .  Basin i has occupancy 
         probability Pi(T): 
 

                            ),(),( )2()2( TrgPTrg i
i

i=   , 

 

            

p

i

i
ii

pi

i

p
T

Trg
PTrg

T

P

T

g











∂
∂

+ 







∂
∂=











∂
∂ ),(

),(
)2(

)2(
)2(

 

 
     •   The two terms in the last expression represent respectively interbasin  
          inherent structural shifts, and intrabasin vibrational shifts.  Thus: 
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                        Angell’s Strong vs. Fragile Glass Formers 
 
 
     Strong limit:  
              Arrhenius temperature dependence of shear viscosity, mean relaxation time; 
              no discontinuity in CP across glass transition temperature. [GeO2] 
 
 
     Fragile limit: 
             Markedly non-Arrhenius temperature dependence of shear viscosity, mean  
             relaxation time; large drop in CP  upon cooling through the glass transition 
             temperature. [OTP] 
 
 
     Empirical conclusion: 
             Thermodynamic and kinetic properties of individual glass-formers are closely   
             correlated with respect to their strong-fragile classification. 
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Schematic plot of “strong” vs. “fragile” landscapes 
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Model energy landscapes confounding strong-
fragile correlation idea 
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