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---------- 
Figure 0. Lecture title, workshop title and dates, principal collaborators. 
---------- 
     Hard particle models for many-body systems possess several important virtues.  Ease of visualization 
for allowed configurations is certainly one.  Another is that they represent an extreme limit of 
anharmonicity for dense forms of matter.  Beyond those features, they have an economical mathematical 
definition, while nevertheless exhibiting complex and fascinating phenomena.  Explanations of those 
phenomena in many cases remain incomplete or even missing, and so provide irresistible challenges for 
theorists.  This lecture focuses on some aspects of hard-particle models in their nearly-jammed states, 
both ordered and disordered.  Limited time will impose restriction to the simplest of hard-particle 
models: monodisperse rods, disks, and spheres, in d = 1, 2, and 3 Euclidean dimensions respectively.  
Figure 1 provides the starting point. 
 
---------- 
Figure 1.  Elementary hard particle models. 
---------- 
     The general situation to be described involves N identical rods, disks, or spheres in a container with 
fixed size and shape to which periodic boundary conditions apply.  Furthermore, for a given container 
size the common particle diameter a can be chosen large enough so that the particles become trapped by 
their non-overlap constraints.  Each of the N particles then will be narrowly confined by the presence of 
its immediate neighbors that themselves are similarly narrowly confined.  Independent small particle 
displacements remain possible in such a trapped state until increase in the particle diameter gives rise to 
particle jamming, say at *aa  , at which permanent neighbor contacts exist and only the overall 
translational motion permitted by periodic boundary conditions is possible.  
     Three distinct jamming categories at *aa   deserve to be distinguished.  These are briefly defined 
in Figure 2, where they are listed in order of increasing stringency.  For the purposes of this lecture, 
 
---------- 
Figure 2.  Three jamming categories. 
---------- 
it is the second of these that will be required.  Barring overall system translation, no non-overlap 
collective (simultaneous) motion of any subset of particles will be possible allowing the system 
ultimately to escape from the neighborhood of jamming.  Of course this requirement will also include 
strictly jammed cases as well.  Figure 3 provides an obvious illustrative example in two dimensions for               
 
---------- 
Figure 3.  Collectively (and strictly) jammed disk state, 39N . 
---------- 
collectively jammed disks.  It belongs to the family of triangular crystals that can contain irregular 
arrangements of monovacancies while still fulfilling at least the "collectively jammed" requirement.  



Indeed the specific example shown in Figure 3 is both collectively jammed as well as strictly jammed.   
We will also consider amorphous (irregular) packings that are collectively jammed.  An example for 
spheres is shown in Figure 4.  
 
---------- 
Figure 4.  Amorphous sphere packing, 500N , 64.0  [Donev, et al., J. Appl. Phys. 95, 989-999, 
(2004), Fig. 5]. 
---------- 
     Figure 5 raises the minor technical issue of "rattlers".  These are particles in 2 and 3 dimensional                          
 
---------- 
Figure 5.  Four disk rattlers, 250N  [Donev, et al., J. Appl. Phys. 95, 989-999 (2004), Fig. 9]. 
----------    
disk and sphere packings that even in the system-jammed state are not themselves jammed by neighbors, 
but only loosely confined within a prison of jammed neighbors.  The example shown, presenting the unit 
cell and three images, has each of the four rattlers confined by a convex heptagon of neighbors.  In 
various irregular packing preparations of disks and spheres, these rattlers have been found to comprise 
up to several percent of the N particles.  Formally these configurations would not fall into any of the 
three jamming categories defined in Figure 2.  However, we will simply suppose that any rattlers have 
been removed, and so we will confine attention just to the jammed network of the remaining majority.  
N will now stand for only those particles remaining after rattler removal. 
     Figure 6 presents the current estimates of the covering fraction ranges over which collectively 
jammed configurations can exist in ,2,1d  and 3 dimensions. 
 
---------- 
Figure 6.  Covering fraction ranges for collectively jammed rods, disks, and spheres. 
---------- 
    A basic message of this lecture concerns the value of examining the geometry of the available portion 
of multidimensional configuration space for the N-particle system as a whole, i.e. that portion free of 
particle overlap.  Under the periodic boundary condition convention it is natural to hold the system 
centroid fixed, so the dimension of the relevant subset of configuration space is dND )1(   for N 
particles.  When the particle diameter a is sufficiently small, the accessible portion of that space is singly 
connected (for 1d ). But as the diameter increases (increasing covering fraction ) the system 
experiences configurational disconnections, leaving local "jamming" regions that eventually disappear 
upon further particle size increase (equivalent to compression).  In the elementary rigid rod case, 
disconnection applies at all densities on account of the fact that impenetrable rods cannot pass one 
another on the line. 
      Figure 7 schematically indicates the basic properties of a trapping region in configuration space,  
 
---------- 
Figure 7.  Trapping region in dND )1(  -dimensional configuration space.  
---------- 
determined by non-overlap constraints.  These overlap constraints take the form of hypersurfaces, 
specifically hypercylinders for 1d , one for each pair of particles that can come into contact.  At the 
center of such a trapping region is the location **,...,1 Nrr  of the jammed particle configuration.  This is 

identified by growth of the diameter a to its local maximum *a  .  Of course there are equivalent small 
regions elsewhere in the multidimensional configuration space corresponding to the other 1)!1( N  
particle permutations that cannot be attained by system translations permitted by the periodic boundary 
conditions.  Additionally there can be other non-equivalent disconnected, nearly jammed, regions 
(indexed by l) whose own jamming diameters *la  are close to that of the region under consideration.   



The disconnection phenomenon obviously implies loss of ergodicity for the N-particles as a dynamical 
system. 
     Upon approach to the jamming limit *aa   for the specific disconnected region of interest, the 
linear dimensions of the available region shrink monotonically to zero.  Consequently hypersurface 
curvature ( 3,2d ) becomes asymptotically irrelevant.  This means that asymptotically the 
hypercylinders can be replaced by tangent hyperplanes.  Thus the limiting shape of the local allowed 
configuration space region is a convex "polytope".  Figure 8 outlines this replacement and its immediate  
 
---------- 
Figure 8.  Hyperplane selection and resulting convex polytope. 
---------- 
consequences.  Geometric properties of these polytopes and their many-body-phenomenon implications   
form the subject of this lecture.  The value of this multidimensional approach and the polytopes it 
identifies for hard-particle systems was first identified 45 years ago by Salsburg and Wood.  Their 
pioneering paper is indicated in the next Figure 9, along with a few other literature references that  
 
---------- 
Figure 9.  Relevant publications. 
----------   
are relevant to polytope geometry and hard-particle statistical mechanics. 
     One of the basic polytope properties is a generalized Euler theorem, Figure 10.  This is familiar in 
 
---------- 
Figure 10.  Generalized Euler's theorem; result for simplices. 
---------- 
its three-dimensional version, stating a linear equality that is satisfied by the numbers of faces (f), edges 
(e), and vertices (v) of any polyhedron.  The generalization to arbitrary dimension D requires 
enumeration of  j-dimensional "j-faces".  In our present context these are the mutual intersections of 

jD   pair-contact tangent hyperplanes [i.e. the )1( D -faces].   
     The j-face enumeration is straightforward for simplices, the polytope type relevant to the rigid rod 
case, because pair contacts occur substantially independently of one another.  This implies that all of the 
simplex )1( D -faces are equivalent in size and shape for rigid rods.  However for disks and spheres the 
enumeration generally is not straightforward.  As Figure 11 illustrates pair contacts do not always occur  
 
---------- 
Figure 11.  Pair contacts surrounding a central disk. 
---------- 
independently, but the existence of some pair contacts can automatically force others into contact as well.  
When applicable, this local crowding phenomenon implies that the total count of  j-faces for all 

10  Dj  will be less than that for a simplex in the same number of dimensions D. 
         A basic problem obviously is finding the content  of the polytopes.  In terms of earlier notation, 

this amounts to the evaluation of the multiplier C in the expression dNaaC )1()*(  .  
Unfortunately there is no generally useful procedure for doing this when N is large.  However the result 
is known for regular simplices in arbitrary dimension.  This includes the case of the rigid-rod polytope, 
with results outlined in Figure 12.  For this relatively straightforward example it is worth noting that the  
 
---------- 
Figure 12.  Rigid rod system: Regular simplex in arbitrary dimension. 
---------- 



contents of the inscribed and circumscribed hyperspheres, formally giving lower and upper bounds for 
 , are thermodynamically useless.  However, a simple "independent cell" approximation produces a 
thermodynamically relevant, but crude lower bound.  This approximation limits each rod to 
displacements about the regular periodic arrangement with maximum displacement small enough so as 
not to restrict similar displacements of its two neighbors. 
     These bounding relationships extend to the more general cases for disk and sphere system limiting 
polytopes.  For large N these polytopes are highly protuberant, shapes that again cannot be adequately 
approximated by inscribed or circumscribed hyperspheres.  But at least for regular packings, the cell 
method qualitatively captures polytope protuberance, and yields a thermodynamically relevant, though 
crude, lower bound to the polytope content.  It is illustrated graphically in Figure 13 for a disk crystal.  
However, finding analytic procedures to calculate the polytope content exactly, or even just with high                       
 
---------- 
Figure 13.  Independent displacement cells for a disk crystal. 
---------- 
numerical precision, remains generally unsolved.  Of course MC and MD computer simulations for 
finite N, (a) with density integration from the ideal gas limit, or (b) "tether" methods, provide good 
estimates of the exact infinite-system-limit results.  In principle the crude independent-cell estimate can 
also be adapted to irregular packings, given the jammed configuration *...*1 Nrr . 

     It is worth noting that another  procedure, due to Zevi Salsburg [J. Chem. Phys. 44, 3752 (1966)], 
generates a thermodynamically relevant upper bound on polytope content for the triangular disk crystal 
and the face-centered cubic sphere crystal, as each approaches its jamming limit.  The method involves 
including only those neighbor interactions along two of the three neighbor directions for the disk crystal, 
and along three of the six neighbor directions in the fcc sphere crystal.  This amounts to removing sets of 
faces from the true polytope, and extending those that remain until they produce closure.  By counting 
the number of remaining hyperfaces, one realizes that this constructs a circumscribed simplex for the 
disk or sphere polytope.  The resulting simplex has lower symmetry than that for the rigid rod system in 
the same number of dimensions.  However, Salsburg has shown that its content can be obtained from the 
fact that these modified many-particle systems amount to two or three independent rigid rod systems, in 
the cases of disks and spheres respectively. 
     The next aspect of the configurational polytope analysis to be considered is the distribution of 
particle pairs.  For any one of those pairs that contribute hyperplane-faces to the limiting polytope, the 
probability distribution of their separation beyond contact is simply given by the polytope's cross-
sectional hyper-area generated by a hyperplane sweeping across the polytope, parallel to the hyperface, 
toward the far extreme.  This is schematically illustrated in Figure 14.  The distance distribution for         
 
---------- 
Figure 14.  Polytope cross section determining particle pair distance separation. 
---------- 
these pairs thus starts with a discontinuity at contact.  For other (non-contacting) pairs the relevant cross 
sectioning hyperplanes are not parallel to a hyperface, and thus their distance distributions rise 
continuously from zero.  
     Polytope hyperfaces, the [ 1)1(  dN ]-dimensional faces that were selected as tangent hyperplanes 
to the original hypercylindrical surfaces, are perpendicular to one another if the generating contact pairs 
have no particle in common.  However they are not perpendicular if there is a common particle.  One 
finds that the angles of these particle-sharing cases are always 3/2 .  [Figure?]  These angles are 
directly relevant to the initial-slope behavior of distance distributions for contacting pairs. 
     Because we are concerned with the asymptotic approach to a collectively jammed configuration, a 
state at which particle displacements become zero, coordinate rescaling becomes natural.  Recalling that 
linear dimensions of the polytope behave in that limit as aa * , Figure 15 provides the scale change. 
 



---------- 
Figure 15.  Jamming-limit scale change for distances. 
---------- 
     The Brünn-Minkowski inequality for convex polytopes, Figure 16, guarantees that each of these pair  
 
---------- 
Figure 16.  Brünn-Minkowski inequality. 
---------- 
separation distributions can individually possess only a single maximum as a function of distance. 
     Joint probabilities for two or more pairs are proportional to the measure of the intersection of the 
respective hyperplanes within the polytope.  These joint probabilities may or may not involve pairs that 
share a particle.  
     The polytope is a simplex not only for the rigid rod case, but also a large class of irregular 
(amorphous) jammed packings of disks and spheres.  These are often termed "isostatic" packings.  The 
next Figure 17 examines the contacting-neighbor pair separation probabilities for these simplex cases. 
 
---------- 
Figure 17.  Contacting-pair distance distribution for simplex polytope cases. 
---------- 
A convenient simplification occurs.  The cross sections parallel to the hyperfaces remain strictly similar 
in shape to the hyperface, and scale uniformly in size with a power given by dimension 

1)1(  dND as the single remote vertex ( 0f ) is approached.  In the large system limit of primary 

interest here, this amounts to an exponentially damped distance distribution.  Obviously all neighbor 
pairs in the rod system are identical and so have identical exponential decay rates.  But that is not the 
case for irregular isostatic packings of disks and spheres. 
     Figure 18 considers the isostatic amorphous packing situation (disks and spheres) in further detail.   
 
---------- 
Figure 18.  Simplex geometry and distance distributions for amorphous packings of disks and spheres. 
---------- 
The limiting simplex polytopes have low symmetry, or perhaps even no symmetry.  The hyperfaces 
(themselves simplexes) will exhibit a distribution of hyperareas.  It is important to note that the 
displacement distance that a cross section must travel across the polytope is inversely proportional to the 
area, and this translates into an inverse proportionality to the (large-system) exponential decay rate of 
the distance distribution function for that pair.  The net averaged pair distribution function for contacting 
pairs thus is an average over all exponential decays present.  Although the result is non-exponential, it 
nevertheless has its maximum at contact and is monotonically declining with separation, consistent with 
the Brünn-Minkowski theorem implication. 
     A disk or sphere system confined to a polytope is dynamically an ergodic system.  That is, energy-
conserving Newtonian dynamics with elastic collisions between pairs of particles eventually uniformly 
samples the polytope interior and uniformly distributes collisions over all hyperfaces.  The collision rate 
for any contacting pair will thus be proportional to its hyperface hyperarea. The collision rate can be 
interpreted as a time-averaged repulsive force acting between the pair.  Figure 19 presents a distribution  
 
---------- 
Figure 19.  Force distribution, 1000N  and 10,000 hard spheres, amorphous packing [Donev, et al., 
Phys. Rev. E 71, 011105 (2005), Fig. 7]. 
---------- 
of area (as a force distribution) for large hard sphere irregular collectively jammed packings.  This and 
similar results suggest that the force distribution remains positive down to vanishing hyperface 
hyperarea, at least for spheres in amorphous packings.  By implication there are many hyperplanes 



lurking just outside the limiting polytope, and these would begin to contribute new bounding surfaces to 
the available configuration space for the N-particle system as the collision diameter a is slightly reduced.  
This is confirmed by examining the conventional pair correlation function for spheres in an amorphous 
packing, an example of which appears in Figure 20.  This representative case clearly displays a buildup   
 
---------- 
Figure 20.  )(rg  for five amorphous sphere packings, N=10,000 [Donev, et al., Phys. Pev. E 71, 011105 
(2005), Fig. 9]. 
---------- 
of pair distances in the jammed state just beyond contact, that is, just beyond those (a Dirac delta 
function in this representation) providing simplex hyperfaces.  The effect of these near-contact pairs on 
the system's pressure is a positive contribution, beyond what mere expansion of the polytope region 
would be with density reduction. 
     Leaving aside the irregular amorphous packings, consider next the case of the face-centered cubic 
sphere packing.  This is one of the maximum-density arrangements (along with hcp and the interpolating 
hybrid stackings).  It consists of four interpenetrating simple cubic sublattices. Upon removal of any or 
all of the spheres from one of those four sublattices, this remains not only collectively jammed but also 
strictly jammed.  As spheres are removed from the one sublattice, the average number of contacts per 
remaining particle declines from 12 to 8.  This changes the polytope to a more protuberant form, moving 
it partially toward simplex character.  It is interesting to see how the average pair separation for 
contacting pairs evolves as the one sublattice is randomly vacated.  Figure 21 shows what happens. The  
 
---------- 
Figure 21.  Evolution of contact-neighbor peak as one sublattice is randomly vacated; initial system 
contained 13500N  spheres [Donev, et al., Phys. Rev. E 71, 011105 (2005), Fig. 11]. 
---------- 
peak initially beyond contact moves inward and develops into a monotonically decreasing function of 
distance.  In periodic structures, larger numbers of nearest neighbors have the effect of localizing the 
distance distribution away from contact.  This can be observed in a fixed dimension as in this example, 
or as dimension increases with corresponding "kissing number" increase. 
 
     The last aspect of this polytope analysis to be examined concerns elastic behavior of the nearly-
jammed system.  Normally this would require the container shape be deformed, and specifically would 
demand that the packing involved be strictly jammed.  But if the system is large, elastic constants can be 
extracted from the polytope moment tensor.  This will now be demonstrated for structurally perfect 
periodic crystals: disks in a triangular crystal, spheres in an fcc or hcp crystal.  As shown in the next 
Figure 22, the moment tensor for the corresponding polytope is defined in terms of reduced  
 
---------- 
Figure 22.  Definition of the polytope moment tensor in terms of reduced displacements jt . 

---------- 
displacement vectors for the N particles, in the fixed centroid subspace. 
 
---------- 
Figure 23.  Isothermal elastic constants. 
---------- 
     Apparently the geometric reason that elastic constants can be extracted from properties of the 
undisplaced system is relatively simple.  Uniform distortion of the system principally affects the outer 
protruding portions of the polytope.  Analogously the moment tensor also is dominated by those outer 
portions.  
 



     In reaching the end of formal remarks, it's worth emphasizing that a substantial list of unsolved 
problems still face us.  Some are listed in the last Figure X, whose answers are desirable objectives.   
 
---------- 
Figure X.  Some unsolved problems. 
---------- 
for further research.  This foreshortened list only includes monodisperse disk and sphere systems, but it 
should be obvious that generalizations to mixtures, rigid non-spherical particles, and systems in more 
than three dimensions also offer challenging opportunities. 
 
~~~~~ 
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                            Elementary Hard Particle Models 
 
 
     •   Monodisperse rigid rods ( 1=d ), rigid disks ( 2=d ), rigid spheres ( 3=d ). 
 
     •   N  particles in fixed container, with periodic boundary conditions. 
 
     •   Collision diameter 0>a  to be treated as adjustable. 
 
     •   Maximum attainable densities ( ρ ) and covering fractions (ϕ ): 
                          rods:        1)( max =aρ ,     1max =ϕ  ; 

                          disks:       2/1
max

2 3/2)( =aρ ,      )32/( 2/1
max ⋅= πϕ  ; 

                          spheres:   2/1
max

3 2)( =aρ ,      )32/( 2/1
max ⋅= πϕ  . 

 
     •   Disk and sphere systems exhibit arrays of jammed structures, both regular  
         and irregular geometrically, with non-trivial ranges of 2aρ  or 3aρ  values. 
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                       Disk and Sphere Jamming Categories 
                                   [arranged by increasing stringency] 
 
 
     Locally jammed:  On account of neighbor contacts, no particle can be  
                     individually displaced. 
                    
     Collectively jammed:  No subset of particles can be simultaneously  
                    displaced allowing subsequent motions of all particles that  
                    would eliminate every contact. 
 
     Strictly jammed:  Collectively jammed configuration that resists all   
                    possible uniform container shear strains. 
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                  Covering Fraction Ranges, 
                Collectively Jammed Systems 

        Rigid rods ( 1=d ):            maxϕϕ ≡  . 

        Rigid disks ( 2=d ):          maxmax 4/3 ϕϕϕ ≤≤   . 

        Rigid spheres ( 3=d ):      maxmax 3/2 ϕϕϕ ≤≤   . 
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                                   Collectively Trapped Region, 
                           Configuration Space Dimension (N-1)d 
 
       Hard particle trapping for fixed system centroid: 
 
 
                                                                                              confining 
                                                                                           hypersurfaces 
                                                                                               ( arij = ) 
 
 
                                                                                                      
                                                                                          collectively jammed  
                                                                                              state *...*1 Nrr  
                                                                                                   ( *aa → ) 
 
     Number H of confining hypersurfaces: 
 
                    Rods ( 1=d ):               NH =  , 
 
                    Disks ( 2=d ):             NHN 312 ≤≤−   , 
 
                    Spheres ( 3=d ):          NHN 623 ≤≤−   . 
 
     CAUTION:  As a result of hypersurface curvature, strict disconnection for  
                    large N and 2≥d only occurs when )(* /1 dNOaa −=− .  But   
                    this involves extremely thin "filaments" with correspondingly  
                    small content.
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                               Polytope Limit Near Jamming 
 
 
     •   Replace bounding hypersurfaces with tangent hyperplanes: 
 
                                  arij =    →   aaijij =⋅ */)*( rr  . 
 
 
 
 
 
 
 
 
     •   Distances in resulting convex polytope scale as aa −* . 
 
     •   Content of polytope:  dNaaC )1()*( −−=Ω ,   0>C   . 
 
     •   Pressure equation of state (from configuration-restricted  
         partition function): 
 

                        )1(
1)/*(
)1( 1

O
aa
Nd

Tk
p

dB
+

−
−=

−

ρ
  . 

 
       Inclusion of "rattlers" would only contribute to )1(O . 
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                               Some Relevant Literature 
 
 
         Pioneering investigation: 
 
                  "Equation of State of Classical Hard Spheres at High Density", 
                  Z.W. Salsburg and W.W. Wood, J. Chem. Phys. 37, 798 (1962). 
 
 
        General mathematical text, properties of polytopes: 
 
                "Convex Polytopes", B. Grünbaum, Wiley-Interscience, 
                 New York, 1967. 
 
 

        Hard-particle statistical mechanics papers: 
 
                "Limiting Polytope Geometry for Rigid Rods, Disks, and Spheres",  
                 F.H. Stillinger and Z.W. Salsburg, J. Stat. Phys. 1, 179 (1969). 
 
                "Jamming in Hard Sphere and Disk Packings", A. Donev, S. Torquato, 
                 F.H. Stillinger, and R. Connelly, J. Appl. Phys. 95, 989 (2004). 
 
               "Pair Correlation Function Characteristics of Nearly Jammed Disordered 
                and Ordered Hard-Sphere Packings", A. Donev, S. Torquato, and F.H.  
                Stillinger, Phys. Rev. E 71, 011105 (2005). 
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                                                   Euler's Theorem 
 
 
   •   Familiar form in 3=d  for any polyhedron (Euler, 1752): 
 
                                      2=+− vef  
 
       connecting numbers of faces f, edges e, and vertices v. 
 
 
   •   For any polytope let jf  denote the number of its j-dimensional "j-faces". 
 
        Generalization of Euler's theorem for any 1≥D  (Schläfli, 1901): 
 

                              D
j

D

j

j f )1(1)1(
1

0
−−= −

−

=
 . 

 
   •   j-face enumeration for simplices in D dimensions: 
 

                                   
)!()!1(

)!1(
jDj

Df j −+
+=  . 
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                                         Rigid Rod System: 
                       Regular Simplex in Arbitrary Dimension 
 
 
  •  For N rigid rods of length a on line length L, the content Ω  of the fixed-centroid  
      simplex in 1−N  dimensions is: 

                    
LNN
aaN NN

!
)*(

2/1
−=Ω  ,             eaaN +−Ω− )*ln(~ln1  . 

 
  •   Inscribed and circumscribed hyperspheres yield thermodynamically useless  
       lower and upper bounds: 
                      )/ln()2/1()*ln(~ln1 NeaaN in π+−Ω−  ,                  

                      [ ]NeaaN circ
2/11 )24/(ln)*ln(~ln π+−Ω−  . 

 
  •   Independent cell approximation (enclosed hypercube) is a thermodynamically  
       relevant, but crude lower bound: 
                                     )*ln(~ln1 aaN cell −Ω−  . 
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                      Particle-Pair Distance Distributions 
 
 
     •   Separation probability for a contacting pair i,j is proportional to the  
         )1( −D -dimensional polytope cross section )( ijij rA swept out parallel   
         to the i,j hyperface: 
 
             i,j hyperface 
                                                                                               
 
 
 
                                                                                                    polytope 
 
 
 
 
                    )( ijij rA  
 
     •   The probability Ω/)( ijij rA  rises discontinuously from 0 at arij = . 
 
     •   For non-contacting pairs k,l the cross-sectioning hyperplane also moves  
         across the polytope by parallel displacement, but not parallel to a hyperface. 
           No initial discontinuity. 
 
     •   Conventional particle pair distribution function averages over all pairs. 
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                          Jamming Limit Scale Change 
 
 
     •  Particle deviation from collectively jammed configuration (fixed centroid): 
 
                            iii rrr −= *δ             ( Ni ≤≤1 ) . 
 
     •  Distance scaling by collision diameter decrement: 
 
                             )*/( aaii −= rt δ  . 
 
     •   Polytope defined by scaled inequalities: 
 
                            0)(1 ≥−⋅+ ijij ttw             ( |*|/* ijijij rrw = )  . 
 
     •   Pair distance distributions remain well-defined as *aa → , e.g. for contacting  
         neighbors: 
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                               Brünn-Minkowski Theorem 
 
 
     ∗∗  Let 1B  and 2B  be two closed, bounded, convex sets in MR , and set: 
 
                            21)1()( BBB λλλ +−=                ( 10 ≤≤ λ ) . 
 
          If (...)MV  represents M -dimensional volume (content), then [ ]{ } M

MV /1)(λB   
          is a concave function of λ : 
 
                        [ ]{ } [ ] [ ] M

M
M

M
M

M VVV /1
2

/1
1

/1 )()()1()( BBB λλλ +−≥   . 
 
     ∗∗   Application to single-pair distance distributions: 
            Choose 21,BB  to be two parallel polytope cross-sections ijA  for pair i,j.   

            With large 1)1( −−= dNM  the quantity [ ]{ } M
ijM AV /1)(λ  is uninformative. 

            However Brünn-Minkowski concavity implies that the pair distance  
            distribution Ω/)( ijij tA  has no relative minima. 
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                         Contacting-Pair Distance Distribution 
                                            for a Simplex 
 
 
     •   The collective-trapping polytope is a simplex for rigid rods ( 1=d ), as well   
         as for irregular disk ( 2=d ) or sphere ( 3=d ) packings.  These irregular  
         packings are often labeled "isostatic".    
                   
     •  The cross-sectional hyper-area )( ijij tA  for a contact pair retains fixed shape   
        as it sweeps across the simplex toward the far vertex ( 0f ), but its content  
        scales downward according to a power equal to dimension 1)1(1 −−=− dND . 
 
     •   Large-N behavior of rigid-rod contact-pair distance distribution: 
 

                            
2

1
1.)(/)(

−







−
−×=Ω

N

N
tconsttA  

 
                                              )exp(~ t−   . 
 
     •   Large-N behavior of the Ω/)( ijij tA  for irregular disk and sphere packings are  
         also simple exponential decays, but with i,j-dependent decay rates. 
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                   Amorphous Disk and Sphere Packings 
 
  
     •  Mean contact number for disks is 4, for spheres is 6. 
 
     •  The simplectic polytopes have little or no symmetry; the hyperfaces 
         for contact pairs have a distribution of contents )1(ijA . 
 
     •  Travel distance across simplex for cross-section )( ijij tA  is inversely  
         proportional to )1(ijA .    Exponential decay rate for distance  
        distribution is proportional to )1(ijA . 
 
     •  Average distance distribution for contact pairs remains monotonically  
         decreasing with distance. 
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                                 Polytope Moment Tensor 
 
 
      •   The polytope incenter *...*1 Nrr  in general will not coincide with its  
         centroid ("center of mass"). 
 
      •   Restrict attention to cases of incenter-centroid coincidence:  
                  Particle arrangements with center of symmetry. 
 
      •   Ntttt ⊕⊕⊕≡ ....21   
 
      •   Polytope moment tensor defined as thermal average at fixed centroid: 
                           ... mocttT =  
 
     •   Eigenvalues of T  will yield polytope's principle moments of inertia. 
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                                             Elastic Constants 
 
 
     •   Nearly jammed triangular crystals ( 2=d ) have two isothermal elastic constants;  
          nearly jammed FCC crystals ( 3=d ) have three isothermal elastic constants.   
          In the high compression limit these all scale as 2)*/( aaTkB − . 
 
     •  Eigenvectors of the moment tensor T  for these perfect crystals have running- 
        wave character (wavevector k ).  Probability distributions of eigenvector amplitudes
        are determined by appropriately oriented polytope cross sections. 
 
     •   Large-system, small- || k , limits for amplitude distributions determine isothermal  
         elastic constants. 
 
     •   Adiabatic elastic constants can be trivially obtained from isothermal versions  
         for hard-particle models. 
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                            Some (of Many!) Unsolved Problems 
 
 
 
     •   What collectively jammed structure(s) can host the highest rattler density? 
 
     •   How is polytope geometry related to thermal conductivity? 
 
     •   What is the range of covering fraction for collectively jammed hyperspheres  
          in dimensions 4≥d ?  Does the lower limit become an arbitrarily small 
          fraction of maxϕ  as d increases? 
 
     •   After creating an unstable divacancy in a perfect triangular crystal of disks,  
          how does re-jamming influence ϕ  and the mean contact number?    
          Analogous question exists for a compact trivacancy in an fcc crystal. 
 
     •   Starting with a jammed structurally-perfect crystal of N disks or spheres,  
         does insertion of particle 1+N  require an unbounded system size increase  
         in the large-N limit? 
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