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X1I} THERMODYNAMICS OF POLYMER SOLUTIONS 539

termination of the fundamental thermodynamic parameters from os-
motic or light-scattering measurements is an unfortunately difficult
matter owing to the secondary dependence of the observed thermo-
dynamic behavior on the molecular configuration.

APPENDIX

Integration of the Interaction Free Energy for a Pair of Molecules.?
—We require, according to Eq. (53), the integral [oz0:8V over the total
volume, when the centers of the polymer molecules k and [ are separated
by the distance a; pr and p;, the segment density distributions for the
respective molecules about their centers, are assumed to be given
with sufficient accuracy by Gaussian distributions (Eq. 51). Since the
chain lengths of the molecules are taken to be identical, the Gaussian
parameters 8’ characterizing their distributions will be identical. It is
convenient to choose cylindrical coordinates, r* and 6 with origin
midway between the molecules. Then

\
5t

a?/4 + ar* cos 0 + r*?

' (A-1)
sf = a?/4 — gr* cos 8 + r*?

Substituting these relations in the Gaussian expression, Eq. (51), for
pr and p;, and inserting them in the required integral

fpkp,av = (xzﬁ"’/ﬁ)fwffexp[— B'%(a%/2 + 2r*?) |2xr*? sin 6dr*d8
0 [

(42?88 /7?) exp(— B’2a2/2)f exp(— 2B'7r*%)r*2dr*
0

[228'3/(27)*/2] exp(— B'%a%/2) (A-2)

Substituting this result in Eq. (53), we have for the free energy change
associated with the transfer of molecule l from infinity to a distance a
from molecule k& A

AF, = ETYs(1 — ©/T)(8%/2'*x3%)(x*V 2/ V1) exp(~ B’2a2/2) (A-3)

Replacement of the polymer molecular volume zV, by m#, where m is
the mass of the molecule and 7 its specific volume, leads at once to Eq.
(54) in which the quantities J, £ and y are deﬁned by Egs. (55) (56),
and (57).
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Figure 1. A snapshot from a simulation involving two self-avoiding polymers. In this configuration,
the centres of mass of the two chains (denoted by the big sphere) coincide, without violation of the
excluded-volume conditions. (Courtesy of Arben Jusufi.)
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- FIG. 1.  Polymer center of mass potentials SBuv(r)
from simulations of L = 500 monomer SAW chains

[8] are compared to a best-fit Gaussian (1), deter-
mined by fitting Bv(0) to fix Be, and B9(0) to fix
R. The potential for two isolated coils (p — 0)
is well approximated by a Gaussian potential with
Be = 1.87, R = 1.13R¢. The potential in the semi-dilute
regime (p ~ 4x3/ (47rR3 )) is approximated; by a Gaussm.n
potential with Be = 2.16, R = 1.45Rg.



~ Gaussian Core Model

 Basic pair interaction:
sexp[—(r/ 0')2] , €0>0.

N-body potential energy (reduced units):
N
2
O(r..ry) = 3 exp(r?) .

i<j=1

3-body, 4-body, .... nonadditive interactions
are not present in the Gaussian core model.

This GCM may roughly represent the solvent-
mediated interaction of polymer chains,

nonionic micelles, surface-grafted colloids, ... ,
where pressure p represents osmotic pressure IT .

Effect of vertical magnification:

XlD’ X|o4' - X 1o X0
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~ Rigid-Sphere Limit

Pair Boltzmann factor (S =1/kz7):
b(r, ) = exp[-Bexp(-r?)] .

b(r, B) increases monotonically with 7, attains

value 1/2 at temperature-dependent effective
collision diameter:

)= [ (lﬂz)]m.

b(r,p) atlow T approaches a unit step function:

b(r,p) ~ U[" Hr2 (ﬂ)]
The system approaches rigid-sphere kmetlcs and
thermodynamics.

Asymptotic curves for coexisting fluid and fcc crystal:
B(p) ~ (In2)exp(0.962p72°)

Bor(p) ~ (In2)exp(1.027p7>7?) .



T=0 Duality Relation

Gaussian function is self-similar under Fourier transformation:

fexp(—r? +ik -r)dr = 7% exp(—k* /4) .

Twice the lattice sum per particle (including self interaction):
I(p)=l+Nl;m (2P/N) . ’
¥ >0

Connection betweén reciprocal (dual) lattices:
p 24 ()= (0) 2 Lo (P)
po'=n"

Self-dual density (equal lattice energies): 0= 3

High density asymptotic results:

371'2 2/3 -
Iﬁc(p)::”3/2p{1+8€Xp[-—-—~27§3—- +.o...0,

I, (p) = 7z3/2p{1+126xp[——21/3 2p2/3] } '

Upon isotropic compression, all lattice structures approach
a common / value 7' p , with corrections of the form:

Aexp(—Bp*?) .

ngh—denSIty melting and freezmg curves should have the
asymptotic forms:

B s (p) ~ Cexp(Dp™?) .
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Figure 9. The phase diagram of the GCM obtained by the approach described in the text. The
fcc—bee coexistence lines are also double lines but they cannot be resolved on the scale of the figure
because the fcc-bec density gap is too small. The full dot marks the point at which the fluid-bcc
coexistence curves turn around. The two insets show details of the phase diagram. (a) In the
neighbourhood of zero densities and temperatures. (b) In the neighbourhood of the fluid—fcc—bee
triple temperature, with the dashed line denoting the triple line between these coexisting phases.



364 . F.H. Stillinger, D.K. Stillinger|Physica A 244 (1997} 358-369

1.358

URE

1.356

PRESS

1.354

T I [ I T T
0.0 0.5 1.0 1.5 2.0 25 3.0

TEMPERATURE X 1000

Fig. 2. Virial pressures at p=0.7 from the molecular dynamics simulation. The upper branch refers to the
BCC crystal, the lower branch to the fluid. Superheated BCC and supercooled fluid extensions are included.
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Fig. 3. Fluid-phase virial pressures for the GCM at p=0.7 over an extended 'temperature, range, showing a
minimum. ' ‘
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FIG. 1. Low-order irreducible clusters. Under the graph of
each cluster species G is given the value of I(G)[Eq. (2.17)],
the corresponding contribution to Bf(8).



TABLE I. High-teinperature series coefficients for the Gaussian core model excess free energy.

Cluster -
7, species by (D) ]
1,2 1 3
2,2 1 ey E o
3,2 1 13273 '
3,3 1 Lz2/y
4,2 1 aeh
4,3 1 1 (5073
4,4 1 - H407y
5,2 1 2557277,
5,3 2 H(T2/%+4(870/2)
5,4 2 (7041 (B-D./Z) ) :
5,5 1, &5 (67277
6,2 1 58727
6,3 3 4l8(9-D/2)+f12'(11-D/2)+11%(12-0/2) .
6,4 6 1%(1°'D’2)+%(12'°/2)+%(13"”-2)*2%‘16"’”)
6,5 3 1P/Y+4 (11P/Y) + L (1270/2)
6,6 1 & (6072
7,2 1 1o (7727 }
7,3 4 3 (1127 + £ (14072 + £ (15072 + & (16D/2).

7,4 1 513272 + L (160/%) + (17072 . 118072 +3(192/%) + X (200/%) + 3(217D72) + § (247P/?)
7,5 11 é(13"’/2)+;‘;(16"’/2)+i (17-012)_,.% (18-0/2),,_%(19-1)/2)_,_% (20-0/?)+% (21-D/2)+i(24-0/2)
7,6 4 11107y +4 (14-D/2)+21£(15-p/'2)+%(16-o/2)

7,7 &(7-0/2)

8,2 1 oo (8727%)

8,3 5 76 (183272 + gy (17272) 4 (L (192/2) + 1y (20°P72) + 1L (217D/2) o

8,4 22 7y (16°272) + 1 (20°0/2) + § (227P/) 4+ £ (230 /%) + £ (247D/2) & 5250/ + 1 (2677 + L (27077

’ +3(2877%) + 3 (20P/Y) + §(300/Y) + §, (32012 + 4 (35°0/%) + } (36P7%)

8,5 33 & TP +5(230/0) + L (257277 +5 (2770/%) + §(28°0/2) + 1(29°D/?) + § (3170 Y +§ (327272
+§(33°27%) +3470/2 4 §(362/%) +§ (3702 +§ (402/%) + } (457077

8,6 23 5167077 + 520018 + 1 (22°0/%) +§ (23°0/%) + 4 (24°2/%) + 2570/ 2.+ § (267D/%) + 4 (270/2)
+4(28°0/2) +29°0/2 4 3 (30072 +3(3270/2) +1 (357072 + 4 (36072

8,7 5 1132/ +3 (ATD/Y) +4 (1970/2) +3(20°7/2) +}(2170/2)

8,8 1 Loy ' /
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FIG. 3. Eighth-order cluster contributions bg;(D)p5? plotted
vs j, the number of vertices. For the case shown D=3 and
pp=1. ’ :
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FIG. 4. Eighth-order cluster contributions vs j, for D=15,
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Compression and Gaussian Smoothing

Change density from p to (1+ &)Pp .

Behavior of @ under uniform contraction is equivalent to a
convolution with a Gaussian kernel:

®[R/(1+8)]=(1+)"[7 V2(g 4 g2 /2)]
xjexp[ R-R)’ ](D( )dDNR'.

-DN

(e+€%/2)

Gaussian convolution smooths small-scale variations,
leaves large-scale variations, i.e. tends to reduce the number
of local minima on @ hypersurface.

As £—> o, only bee crystal minima survive.
System has no amorphous solids (“giaéses”) at high density.

Melting at high density becomes an intrabasin phenomenon.



Collective Coordinate Representation

For N particles in rectangular volume Q = L, LyLz,
collective density variables are defined by:

N ‘
p(k) = _ZleXp(ik-r,-) :
J=
k=Q2m, /L, 2m,/L,, 2m,/L).

Alternative forms of system potential energy:

O(ry..ry) = 2v(y)

i<j

= (29)"1%V(k)[p(k),0(~k) -NJ,

where: V' (K) = [exp(ik-r)v(r)dr .
Q

Structure function:

S(k) = (p(k) p(-k)) ~
=1+ pfexp(ik - p)[g@) (r)—1jr .

For the GCM:  V(k) = 7% exp(=k> / 4) .

At high density the K ’s are sparse, so V' (K) can force the
P(K) near the origin to their minimum value 0. If the
temperature is low, this produces a sharp cutoff at

3/2 172
Ky (B) = 2[111[ ”1 n2ﬂ H .

Structure function becomes isomorphous with 1ow- Yo,
pair correlation function. g
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Figure 8. The structure factor S(Q) of the GCM at t+ = 0.01 and 7 = 6.00 as obtaihed from
simulation (solid line) and as given by the analytical expression, equation (24) (dashed line).
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TABLE III; Coexistence parameters for T=0 structural trari-f-
sition. ‘

F.c._c. , B.c.c.
p 0.17941 | 0.17977
&/N 0.115465107 0.116073318
b 0.05529
Ap 0.00036

A(®/N) 0.000608211




Chéllenges to Synthetic Chemistry
and to Theoretical Modeling

Identify backbone modification, side-group inclusion, and
solvent composition for which:

(a) the GCM in its simplest version is an accurate description;
or if that is not possible, then

(b) produce materials/models for which an extended version of
the GCM has 3-body, 4-body, ... nonadditive interactions
that are Gaussian functions of the chain-centroid coordinates;

or if that is not possible, then

(c) produce materials/models for which the interactions are other
functions beside simple Gaussians that are self-similar under
Fourier transformation. '
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